This implements a new geometry node based on T84606.
It is the first node that generates a `VolumeComponent`.
Differential Revision: https://developer.blender.org/D10169
This node allows sampling a texture for every vertex based on some
mapping attribute. Typical attribute names are the name of a uv map
(e.g. "UVMap") and "position". However, every attribute that can be
converted to a vector implicitly is supported.
It should be noted that as of right now, uv map attributes can only be
accessed after a Point Distribute node.
Ref T82584.
Differential Revision: https://developer.blender.org/D10121
The translate node moves every point in the geometry, and the scale
node multiplies the "scale" attribute of the input geometry by its input.
While these operations are already possible with the "Attribute" nodes,
these new nodes fit nicely with the nodes specifically for changing the
"rotation" attribute that already exist, and they provide a simpler way
to do the same thing.
Differential Revision: https://developer.blender.org/D10100
This adds a new Align Rotation to Vector node based on the mockup
in T83669.
Reviewers: HooglyBoogly, simonthommes
Differential Revision: https://developer.blender.org/D10081
This patch implements the same operations and interface as the regular
vector math node, but it runs for every element of the attribute. This
should expand what's possible with geometry nodes quite a bit.
Differential Revision: https://developer.blender.org/D9914
This node updates the "rotation" attribute on points.
Multiple ways to specify the rotation are supported.
Differential Revision: https://developer.blender.org/D9883
Ref T83668.
This new node increases the radiance of an image by a scalar value.
Previously, the only way to adjust the the exposure of an image was with
math node or using the scene's color management.
Reviewed By: jbakker
Differential Revision: https://developer.blender.org/D9677
Ref: T82651
Normally people use "Combine XYZ" to input a vector, but it is more
interesting to have an explicit vector input.
So this is basically "Combine XYZ" without any input sockets, the values
are stored in the node itself.
Differential Revision: https://developer.blender.org/D9885
This patch adds two related nodes, a node for separating points
and mesh vertices based on a boolean attribute input, and a node
for creating boolean attributes with comparisons.
See the differential for an example file and video.
Point Separate (T83059)
The output in both geometries is just point data, contained in the mesh
and point cloud components, depending which components had data in the
input geometry. Any points with the mask attribute set to true will be
moved from the first geometry output to the second. This means that
for meshes, all edge and face data will be removed. Any point domain
attributes are moved to the correct output geometry as well.
Attribute Compare (T83057)
The attribute compare does the "Equal" and "Not Equal" operations by
comparing vectors and colors based on their distance from each other.
For other operations, the comparison is between the lengths of the
vector inputs. In general, the highest complexity data type is used
for the operation, and a new function to determine that is added.
Differential Revision: https://developer.blender.org/D9876
This node can be used to mix two attributes in various ways.
The blend modes are the same as in the MixRGB shader node.
Differential Revision: https://developer.blender.org/D9737
Ref T82374.
This commit adds a node that fills every element of an attribute
with the same value. Currently it supports float, vector, and color
attributes. An immediate use case is for "billboard" scattering.
Currently people are using the same input to a Random Attribute node's
min and max input to fill every element of a vector with the same value,
which is an unintuitive way to accomplish the same thing.
Differential Revision: https://developer.blender.org/D9790
This patch adds support for AOVs in EEVEE. AOV Outputs can be defined in the
render pass tab and used in shader materials. Both Object and World based
shaders are supported. The AOV can be previewed in the viewport using the
renderpass selector in the shading popover.
AOV names that conflict with other AOVs are automatically corrected. AOV
conflicts with render passes get a warning icon. The reason behind this is that
changing render engines/passes can change the conflict, but you might not notice
it. Changing this automatically would also make the materials incorrect, so best
to leave this to the user.
**Implementation**
The patch adds a copies the AOV structures of Cycles into Blender. The goal is
that the Cycles will use Blenders AOV defintions. In the Blender kernel
(`layer.c`) the logic of these structures are implemented.
The GLSL shader of any GPUMaterial can hold multiple outputs (the main output
and the AOV outputs) based on the renderPassUBO the right output is selected.
This selection uses an hash that encodes the AOV structure. The full AOV needed
to be encoded when actually drawing the material pass as the AOV type changes
the behavior of the AOV. This isn't known yet when the GLSL is compiled.
**Future Developments**
* The AOV definitions in the render layer panel isn't shared with Cycles.
Cycles should be migrated to use the same viewlayer aovs. During a previous
attempt this failed as the AOV validation in cycles and in Blender have
implementation differences what made it crash when an aov name was invalid.
This could be fixed by extending the external render engine API.
* Add support to Cycles to render AOVs in the 3d viewport.
* Use a drop down list for selecting AOVs in the AOV Output node.
* Give user feedback when multiple AOV output nodes with the same AOV name
exists in the same shader.
* Fix viewing single channel images in the image editor [T83314]
* Reduce viewport render time by only render needed draw passes. [T83316]
Reviewed By: Brecht van Lommel, Clément Foucault
Differential Revision: https://developer.blender.org/D7010
This is the initial merge from the geometry-nodes branch.
Nodes:
* Attribute Math
* Boolean
* Edge Split
* Float Compare
* Object Info
* Point Distribute
* Point Instance
* Random Attribute
* Random Float
* Subdivision Surface
* Transform
* Triangulate
It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier.
Notes on the Generic attribute access API
The API adds an indirection for attribute access. That has the following benefits:
* Most code does not have to care about how an attribute is stored internally.
This is mainly necessary, because we have to deal with "legacy" attributes
such as vertex weights and attributes that are embedded into other structs
such as vertex positions.
* When reading from an attribute, we generally don't care what domain the
attribute is stored on. So we want to abstract away the interpolation that
that adapts attributes from one domain to another domain (this is not
actually implemented yet).
Other possible improvements for later iterations include:
* Actually implement interpolation between domains.
* Don't use inheritance for the different attribute types. A single class for read
access and one for write access might be enough, because we know all the ways
in which attributes are stored internally. We don't want more different internal
structures in the future. On the contrary, ideally we can consolidate the different
storage formats in the future to reduce the need for this indirection.
* Remove the need for heap allocations when creating attribute accessors.
It includes commits from:
* Dalai Felinto
* Hans Goudey
* Jacques Lucke
* Léo Depoix
The design for how we approach the "Everything Nodes" project
has changed. We will focus on a different part of the project initially.
While future me will likely refer back to some of the code I remove here,
there is no point in keeping this code around in master currently.
It would just confuse other developers working on the project.
This does not remove the simulation modifier and data block. Those are
just cleaned up, so that the boilerplate code can be reused in the future.
The hardcoded age limit is now gone. The behavior can be implemented
with an Age Reached Event and Kill Particle node. Other utility nodes
to handle age limits of particles can be added later. Adding an
Age Limit attribute to particles on birth will be useful for some effects,
e.g. when you want to control the color or size of a particle over its
life time.
The Random Float node takes a seed currently. Different nodes will
produce different values even with the same seed. However, the same
node will generate the same random number for the same seed every
time. The "Hash" of a particle can be used as seed. Later, we'd want
to have more modes in the node to make it more user friendly.
Modes could be: Per Particle, Per Time, Per Particle Per Time,
Per Node Instance, ...
Also a Random Vector node will be useful, as it currently has to be
build using three Random Float nodes.
The following nodes work now (although things can still be improved of course):
Particle Birth Event, Praticle Time Step Event, Set Particle Attribute and Execute Condition.
Multiple Set Particle Attribute nodes can be chained using the "Execute" sockets.
They will be executed from left to right.
Object sockets work now, but only the new Object Transforms and the
Particle Mesh Emitter node use it. The emitter does not actually
use the mesh surface yet. Instead, new particles are just emitted around
the origin of the object.
Internally, handles to object data blocks are passed around in the network,
instead of raw object pointers. Using handles has a couple of benefits:
* The caller of the function has control over which handles can be resolved
and therefore limit access to specific data. The set of data blocks that
is accessed by a node tree should be known statically. This is necessary
for a proper integration with the dependency graph.
* When the pointer to an object changes (e.g. after restarting Blender),
all handles are still valid.
* When an object is deleted, the handle is invalidated without causing crashes.
* The handle is just an integer that can be stored per particle and can be cached easily.
The mapping between handles and their corresponding data blocks is
stored in the Simulation data block.
This commit adds the initial set of particles nodes. These are fairly
low level and are expected to be put into groups that we ship with Blender.
See D7384 for a description of the individual nodes.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D7384
This adds an embedded node tree to the simulation data block dna.
The UI in the `Simulation Editor` has been updated to show a list
of simulation data blocks, instead of individual node trees.
The new `SpaceNodeEditor.simulation` property wraps the existing
`SpaceNodeEditor.id` property. It allows scripts to get and set
the simulation data block that is being edited.
Reviewers: brecht, mont29
Differential Revision: https://developer.blender.org/D7301
This node provides the ability to rotate a vector around a `center` point using either `Axis Angle` , `Single Axis` or `Euler` methods.
Reviewed By: #cycles, brecht
Differential Revision: https://developer.blender.org/D3789
Custom render passes are added in the Shader AOVs panel in the view layer
settings, with a name and data type. In shader nodes, an AOV Output node
is then used to output either a value or color to the pass.
Arbitrary names can be used for these passes, as long as they don't conflict
with built-in passes that are enabled. The AOV Output node can be used in both
material and world shader nodes.
Implemented by Lukas, with tweaks by Brecht.
Differential Revision: https://developer.blender.org/D4837
This patch adds a new Vertex Color node. The node also returns the alpha
of the vertex color layer as an output.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5767
The Volume Info node provides the Color, Desnity, Flame, and Temperature
of smoke domains.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5551
The White Noise node hashes the input and returns a random number in the
range [0, 1]. The input can be a 1D, 2D, 3D, or a 4D vector.
Reviewers: brecht, JacquesLucke
Differential Revision: https://developer.blender.org/D5550
This patch adds a new node that clamps a value between a maximum and
a minimum values.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5476
This patch adds a new Map Range node that linearly remaps an input
value from a range to another. This node is similar to the compositor's
Map Range node.
Reviewers: brecht, JacquesLucke
Differential Revision: https://developer.blender.org/D5471
This was already supported for Cycles shader nodes, but now also works for
Eevee and compositing nodes. Instead of a generic NodeCustomGroup, now
there is ShaderNodeCustomGroup and CompositorNodeCustomGroup that can be
subclassed and registered.
Differential Revision: https://developer.blender.org/D4370
This is a physically-based, easy-to-use shader for rendering hair and fur,
with controls for melanin, roughness and randomization.
Based on the paper "A Practical and Controllable Hair and Fur Model for
Production Path Tracing".
Implemented by Leonardo E. Segovia and Lukas Stockner, part of Google
Summer of Code 2018.
This patch adds a new matte node that implements the Cryptomatte specification.
It also incluces a custom eye dropper that works outside of a color picker.
Cryptomatte export for the Cycles render engine will be in a separate patch.
Reviewers: brecht
Reviewed By: brecht
Subscribers: brecht
Tags: #compositing
Differential Revision: https://developer.blender.org/D3531