import mathutils # Create a KD-tree from a mesh. from bpy import context obj = context.object mesh = obj.data size = len(mesh.vertices) kd = mathutils.kdtree.KDTree(size) for i, v in enumerate(mesh.vertices): kd.insert(v.co, i) kd.balance() # Find the closest point to the center. co_find = (0.0, 0.0, 0.0) co, index, dist = kd.find(co_find) print("Close to center:", co, index, dist) # 3D cursor relative to the object data. co_find = obj.matrix_world.inverted() @ context.scene.cursor.location # Find the closest 10 points to the 3D cursor. print("Close 10 points") for (co, index, dist) in kd.find_n(co_find, 10): print(" ", co, index, dist) # Find points within a radius of the 3D cursor. print("Close points within 0.5 distance") for (co, index, dist) in kd.find_range(co_find, 0.5): print(" ", co, index, dist)