2024-11-03 16:07:40 +11:00

465 lines
14 KiB
Python

# SPDX-FileCopyrightText: 2011-2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
__all__ = (
"mesh_linked_uv_islands",
"mesh_linked_triangles",
"edge_face_count_dict",
"edge_face_count",
"edge_loops_from_edges",
"ngon_tessellate",
"triangle_random_points",
)
def mesh_linked_uv_islands(mesh):
"""
Returns lists of polygon indices connected by UV islands.
:arg mesh: the mesh used to group with.
:type mesh: :class:`bpy.types.Mesh`
:return: list of lists containing polygon indices
:rtype: list[list[int]]
"""
if mesh.polygons and not mesh.uv_layers.active.data:
# Currently, when in edit mode, UV Layer data will always be empty
# when accessed though RNA. This may change in the future.
raise ValueError(
"UV Layers are not currently available from python in Edit Mode. "
"Use bmesh and bpy_extras.bmesh_utils.bmesh_linked_uv_islands instead."
)
uv_loops = [luv.uv[:] for luv in mesh.uv_layers.active.data]
poly_loops = [poly.loop_indices for poly in mesh.polygons]
luv_hash = {}
luv_hash_get = luv_hash.get
luv_hash_ls = [None] * len(uv_loops)
for pi, poly_indices in enumerate(poly_loops):
for li in poly_indices:
uv = uv_loops[li]
uv_hub = luv_hash_get(uv)
if uv_hub is None:
uv_hub = luv_hash[uv] = [pi]
else:
uv_hub.append(pi)
luv_hash_ls[li] = uv_hub
poly_islands = []
# 0 = none, 1 = added, 2 = searched
poly_tag = [0] * len(poly_loops)
while True:
poly_index = -1
for i in range(len(poly_loops)):
if poly_tag[i] == 0:
poly_index = i
break
if poly_index != -1:
island = [poly_index]
poly_tag[poly_index] = 1
poly_islands.append(island)
else:
break # we're done
added = True
while added:
added = False
for poly_index in island[:]:
if poly_tag[poly_index] == 1:
for li in poly_loops[poly_index]:
for poly_index_shared in luv_hash_ls[li]:
if poly_tag[poly_index_shared] == 0:
added = True
poly_tag[poly_index_shared] = 1
island.append(poly_index_shared)
poly_tag[poly_index] = 2
return poly_islands
def mesh_linked_triangles(mesh):
"""
Splits the mesh into connected triangles, use this for separating cubes from
other mesh elements within 1 mesh data-block.
:arg mesh: the mesh used to group with.
:type mesh: :class:`bpy.types.Mesh`
:return: Lists of lists containing triangles.
:rtype: list[list[:class:`bpy.types.MeshLoopTriangle`]]
"""
# Build vert face connectivity
vert_tris = [[] for i in range(len(mesh.vertices))]
for t in mesh.loop_triangles:
for v in t.vertices:
vert_tris[v].append(t)
# sort triangles into connectivity groups
tri_groups = [[t] for t in mesh.loop_triangles]
# map old, new tri location
tri_mapping = list(range(len(mesh.loop_triangles)))
# Now clump triangles iteratively
ok = True
while ok:
ok = False
for t in mesh.loop_triangles:
mapped_index = tri_mapping[t.index]
mapped_group = tri_groups[mapped_index]
for v in t.vertices:
for nxt_t in vert_tris[v]:
if nxt_t != t:
nxt_mapped_index = tri_mapping[nxt_t.index]
# We are not a part of the same group
if mapped_index != nxt_mapped_index:
ok = True
# Assign mapping to this group so they
# all map to this group
for grp_t in tri_groups[nxt_mapped_index]:
tri_mapping[grp_t.index] = mapped_index
# Move triangles into this group
mapped_group.extend(tri_groups[nxt_mapped_index])
# remove reference to the list
tri_groups[nxt_mapped_index] = None
# return all tri groups that are not null
# this is all the triangles that are connected in their own lists.
return [tg for tg in tri_groups if tg]
def edge_face_count_dict(mesh):
"""
:return: Dictionary of edge keys with their value set to the number of faces using each edge.
:rtype: dict[tuple[int, int], int]
"""
face_edge_count = {}
loops = mesh.loops
edges = mesh.edges
for poly in mesh.polygons:
for i in poly.loop_indices:
key = edges[loops[i].edge_index].key
try:
face_edge_count[key] += 1
except KeyError:
face_edge_count[key] = 1
return face_edge_count
def edge_face_count(mesh):
"""
:return: list face users for each item in mesh.edges.
:rtype: list[int]
"""
edge_face_count = edge_face_count_dict(mesh)
get = dict.get
return [get(edge_face_count, ed.key, 0) for ed in mesh.edges]
def edge_loops_from_edges(mesh, edges=None):
"""
Edge loops defined by edges
Takes me.edges or a list of edges and returns the edge loops
return a list of vertex indices.
[ [1, 6, 7, 2], ...]
closed loops have matching start and end values.
"""
line_polys = []
# Get edges not used by a face
if edges is None:
edges = mesh.edges
if not hasattr(edges, "pop"):
edges = edges[:]
while edges:
current_edge = edges.pop()
vert_end, vert_start = current_edge.vertices[:]
line_poly = [vert_start, vert_end]
ok = True
while ok:
ok = False
# for i, ed in enumerate(edges):
i = len(edges)
while i:
i -= 1
ed = edges[i]
v1, v2 = ed.vertices
if v1 == vert_end:
line_poly.append(v2)
vert_end = line_poly[-1]
ok = 1
del edges[i]
# break
elif v2 == vert_end:
line_poly.append(v1)
vert_end = line_poly[-1]
ok = 1
del edges[i]
# break
elif v1 == vert_start:
line_poly.insert(0, v2)
vert_start = line_poly[0]
ok = 1
del edges[i]
# break
elif v2 == vert_start:
line_poly.insert(0, v1)
vert_start = line_poly[0]
ok = 1
del edges[i]
# break
line_polys.append(line_poly)
return line_polys
def ngon_tessellate(from_data, indices, fix_loops=True, debug_print=True):
"""
Takes a poly-line of indices (ngon) and returns a list of face
index lists. Designed to be used for importers that need indices for an
ngon to create from existing verts.
:arg from_data: Either a mesh, or a list/tuple of 3D vectors.
:type from_data: :class:`bpy.types.Mesh` | list[Sequence[float]] | tuple[Sequence[float]]
:arg indices: a list of indices to use this list
is the ordered closed poly-line
to fill, and can be a subset of the data given.
:type indices: list[int]
:arg fix_loops: If this is enabled poly-lines
that use loops to make multiple
poly-lines are dealt with correctly.
:type fix_loops: bool
"""
from mathutils.geometry import tessellate_polygon
from mathutils import Vector
vector_to_tuple = Vector.to_tuple
if not indices:
return []
def mlen(co):
# Manhatten length of a vector, faster then length.
return abs(co[0]) + abs(co[1]) + abs(co[2])
def vert_from_vector_with_extra_data(v, i):
# Calculate data per-vector, for reuse.
return v, vector_to_tuple(v, 6), i, mlen(v)
def ed_key_mlen(v1, v2):
if v1[3] > v2[3]:
return v2[1], v1[1]
else:
return v1[1], v2[1]
if not fix_loops:
# Normal single concave loop filling.
if type(from_data) in {tuple, list}:
verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
else:
verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]
# same as reversed(range(1, len(verts))):
for i in range(len(verts) - 1, 0, -1):
if verts[i][1] == verts[i - 1][0]:
verts.pop(i - 1)
fill = tessellate_polygon([verts])
else:
# Separate this loop into multiple loops be finding edges that are
# used twice. This is used by Light-Wave LWO files a lot.
if type(from_data) in {tuple, list}:
verts = [
vert_from_vector_with_extra_data(Vector(from_data[i]), ii)
for ii, i in enumerate(indices)
]
else:
verts = [
vert_from_vector_with_extra_data(from_data.vertices[i].co, ii)
for ii, i in enumerate(indices)
]
edges = [(i, i - 1) for i in range(len(verts))]
if edges:
edges[0] = (0, len(verts) - 1)
if not verts:
return []
edges_used = set()
edges_doubles = set()
# We need to check if any edges are used twice location based.
for ed in edges:
edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
if edkey in edges_used:
edges_doubles.add(edkey)
else:
edges_used.add(edkey)
# Store a list of unconnected loop segments split by double edges.
# will join later
loop_segments = []
v_prev = verts[0]
context_loop = [v_prev]
loop_segments = [context_loop]
for v in verts:
if v != v_prev:
# Are we crossing an edge we removed?
if ed_key_mlen(v, v_prev) in edges_doubles:
context_loop = [v]
loop_segments.append(context_loop)
else:
if context_loop and context_loop[-1][1] == v[1]:
pass
else:
context_loop.append(v)
v_prev = v
# Now join loop segments
def join_seg(s1, s2):
if s2[-1][1] == s1[0][1]:
s1, s2 = s2, s1
elif s1[-1][1] == s2[0][1]:
pass
else:
return False
# If were still here s1 and s2 are 2 segments in the same poly-line.
s1.pop() # remove the last vert from s1
s1.extend(s2) # add segment 2 to segment 1
if s1[0][1] == s1[-1][1]: # remove endpoints double
s1.pop()
del s2[:] # Empty this segment s2 so we don't use it again.
return True
joining_segments = True
while joining_segments:
joining_segments = False
segcount = len(loop_segments)
for j in range(segcount - 1, -1, -1): # reversed(range(segcount)):
seg_j = loop_segments[j]
if seg_j:
for k in range(j - 1, -1, -1): # reversed(range(j)):
if not seg_j:
break
seg_k = loop_segments[k]
if seg_k and join_seg(seg_j, seg_k):
joining_segments = True
loop_list = loop_segments
for verts in loop_list:
while verts and verts[0][1] == verts[-1][1]:
verts.pop()
loop_list = [verts for verts in loop_list if len(verts) > 2]
# DONE DEALING WITH LOOP FIXING
# vert mapping
vert_map = [None] * len(indices)
ii = 0
for verts in loop_list:
if len(verts) > 2:
for i, vert in enumerate(verts):
vert_map[i + ii] = vert[2]
ii += len(verts)
fill = tessellate_polygon([[v[0] for v in loop] for loop in loop_list])
# draw_loops(loop_list)
# raise Exception("done loop")
# map to original indices
fill = [[vert_map[i] for i in f] for f in fill]
if not fill:
if debug_print:
print('Warning Cannot scanfill, fallback on a triangle fan.')
fill = [[0, i - 1, i] for i in range(2, len(indices))]
else:
# Use real scan-fill.
# See if its flipped the wrong way.
flip = None
for fi in fill:
if flip is not None:
break
for i, vi in enumerate(fi):
if vi == 0 and fi[i - 1] == 1:
flip = False
break
elif vi == 1 and fi[i - 1] == 0:
flip = True
break
if not flip:
for i, fi in enumerate(fill):
fill[i] = tuple(reversed(fi))
return fill
def triangle_random_points(num_points, loop_triangles):
"""
Generates a list of random points over mesh loop triangles.
:arg num_points: The number of random points to generate on each triangle.
:type num_points: int
:arg loop_triangles: Sequence of the triangles to generate points on.
:type loop_triangles: Sequence[:class:`bpy.types.MeshLoopTriangle`]
:return: List of random points over all triangles.
:rtype: list[:class:`mathutils.Vector`]
"""
from random import random
# For each triangle, generate the required number of random points
sampled_points = [None] * (num_points * len(loop_triangles))
for i, lt in enumerate(loop_triangles):
# Get triangle vertex coordinates
verts = lt.id_data.vertices
ltv = lt.vertices[:]
tv = (verts[ltv[0]].co, verts[ltv[1]].co, verts[ltv[2]].co)
for k in range(num_points):
u1 = random()
u2 = random()
u_tot = u1 + u2
if u_tot > 1:
u1 = 1.0 - u1
u2 = 1.0 - u2
side1 = tv[1] - tv[0]
side2 = tv[2] - tv[0]
p = tv[0] + u1 * side1 + u2 * side2
sampled_points[num_points * i + k] = p
return sampled_points