Sergey Sharybin 03806d0b67 Re-design of submodules used in blender.git
This commit implements described in the #104573.

The goal is to fix the confusion of the submodule hashes change, which are not
ideal for any of the supported git-module configuration (they are either always
visible causing confusion, or silently staged and committed, also causing
confusion).

This commit replaces submodules with a checkout of addons and addons_contrib,
covered by the .gitignore, and locale and developer tools are moved to the
main repository.

This also changes the paths:
- /release/scripts are moved to the /scripts
- /source/tools are moved to the /tools
- /release/datafiles/locale is moved to /locale

This is done to avoid conflicts when using bisect, and also allow buildbot to
automatically "recover" wgen building older or newer branches/patches.

Running `make update` will initialize the local checkout to the changed
repository configuration.

Another aspect of the change is that the make update will support Github style
of remote organization (origin remote pointing to thy fork, upstream remote
pointing to the upstream blender/blender.git).

Pull Request #104755
2023-02-21 16:39:58 +01:00

464 lines
14 KiB
Python

# SPDX-License-Identifier: GPL-2.0-or-later
__all__ = (
"mesh_linked_uv_islands",
"mesh_linked_triangles",
"edge_face_count_dict",
"edge_face_count",
"edge_loops_from_edges",
"ngon_tessellate",
"triangle_random_points",
)
def mesh_linked_uv_islands(mesh):
"""
Returns lists of polygon indices connected by UV islands.
:arg mesh: the mesh used to group with.
:type mesh: :class:`bpy.types.Mesh`
:return: list of lists containing polygon indices
:rtype: list
"""
if mesh.polygons and not mesh.uv_layers.active.data:
# Currently, when in edit mode, UV Layer data will always be empty
# when accessed though RNA. This may change in the future.
raise ValueError(
"UV Layers are not currently available from python in Edit Mode. "
"Use bmesh and bpy_extras.bmesh_utils.bmesh_linked_uv_islands instead."
)
uv_loops = [luv.uv[:] for luv in mesh.uv_layers.active.data]
poly_loops = [poly.loop_indices for poly in mesh.polygons]
luv_hash = {}
luv_hash_get = luv_hash.get
luv_hash_ls = [None] * len(uv_loops)
for pi, poly_indices in enumerate(poly_loops):
for li in poly_indices:
uv = uv_loops[li]
uv_hub = luv_hash_get(uv)
if uv_hub is None:
uv_hub = luv_hash[uv] = [pi]
else:
uv_hub.append(pi)
luv_hash_ls[li] = uv_hub
poly_islands = []
# 0 = none, 1 = added, 2 = searched
poly_tag = [0] * len(poly_loops)
while True:
poly_index = -1
for i in range(len(poly_loops)):
if poly_tag[i] == 0:
poly_index = i
break
if poly_index != -1:
island = [poly_index]
poly_tag[poly_index] = 1
poly_islands.append(island)
else:
break # we're done
added = True
while added:
added = False
for poly_index in island[:]:
if poly_tag[poly_index] == 1:
for li in poly_loops[poly_index]:
for poly_index_shared in luv_hash_ls[li]:
if poly_tag[poly_index_shared] == 0:
added = True
poly_tag[poly_index_shared] = 1
island.append(poly_index_shared)
poly_tag[poly_index] = 2
return poly_islands
def mesh_linked_triangles(mesh):
"""
Splits the mesh into connected triangles, use this for separating cubes from
other mesh elements within 1 mesh datablock.
:arg mesh: the mesh used to group with.
:type mesh: :class:`bpy.types.Mesh`
:return: lists of lists containing triangles.
:rtype: list
"""
# Build vert face connectivity
vert_tris = [[] for i in range(len(mesh.vertices))]
for t in mesh.loop_triangles:
for v in t.vertices:
vert_tris[v].append(t)
# sort triangles into connectivity groups
tri_groups = [[t] for t in mesh.loop_triangles]
# map old, new tri location
tri_mapping = list(range(len(mesh.loop_triangles)))
# Now clump triangles iteratively
ok = True
while ok:
ok = False
for t in mesh.loop_triangles:
mapped_index = tri_mapping[t.index]
mapped_group = tri_groups[mapped_index]
for v in t.vertices:
for nxt_t in vert_tris[v]:
if nxt_t != t:
nxt_mapped_index = tri_mapping[nxt_t.index]
# We are not a part of the same group
if mapped_index != nxt_mapped_index:
ok = True
# Assign mapping to this group so they
# all map to this group
for grp_t in tri_groups[nxt_mapped_index]:
tri_mapping[grp_t.index] = mapped_index
# Move triangles into this group
mapped_group.extend(tri_groups[nxt_mapped_index])
# remove reference to the list
tri_groups[nxt_mapped_index] = None
# return all tri groups that are not null
# this is all the triangles that are connected in their own lists.
return [tg for tg in tri_groups if tg]
def edge_face_count_dict(mesh):
"""
:return: dict of edge keys with their value set to the number of
faces using each edge.
:rtype: dict
"""
face_edge_count = {}
loops = mesh.loops
edges = mesh.edges
for poly in mesh.polygons:
for i in poly.loop_indices:
key = edges[loops[i].edge_index].key
try:
face_edge_count[key] += 1
except:
face_edge_count[key] = 1
return face_edge_count
def edge_face_count(mesh):
"""
:return: list face users for each item in mesh.edges.
:rtype: list
"""
edge_face_count = edge_face_count_dict(mesh)
get = dict.get
return [get(edge_face_count, ed.key, 0) for ed in mesh.edges]
def edge_loops_from_edges(mesh, edges=None):
"""
Edge loops defined by edges
Takes me.edges or a list of edges and returns the edge loops
return a list of vertex indices.
[ [1, 6, 7, 2], ...]
closed loops have matching start and end values.
"""
line_polys = []
# Get edges not used by a face
if edges is None:
edges = mesh.edges
if not hasattr(edges, "pop"):
edges = edges[:]
while edges:
current_edge = edges.pop()
vert_end, vert_start = current_edge.vertices[:]
line_poly = [vert_start, vert_end]
ok = True
while ok:
ok = False
# for i, ed in enumerate(edges):
i = len(edges)
while i:
i -= 1
ed = edges[i]
v1, v2 = ed.vertices
if v1 == vert_end:
line_poly.append(v2)
vert_end = line_poly[-1]
ok = 1
del edges[i]
# break
elif v2 == vert_end:
line_poly.append(v1)
vert_end = line_poly[-1]
ok = 1
del edges[i]
# break
elif v1 == vert_start:
line_poly.insert(0, v2)
vert_start = line_poly[0]
ok = 1
del edges[i]
# break
elif v2 == vert_start:
line_poly.insert(0, v1)
vert_start = line_poly[0]
ok = 1
del edges[i]
# break
line_polys.append(line_poly)
return line_polys
def ngon_tessellate(from_data, indices, fix_loops=True, debug_print=True):
"""
Takes a polyline of indices (ngon) and returns a list of face
index lists. Designed to be used for importers that need indices for an
ngon to create from existing verts.
:arg from_data: either a mesh, or a list/tuple of vectors.
:type from_data: list or :class:`bpy.types.Mesh`
:arg indices: a list of indices to use this list
is the ordered closed polyline
to fill, and can be a subset of the data given.
:type indices: list
:arg fix_loops: If this is enabled polylines
that use loops to make multiple
polylines are delt with correctly.
:type fix_loops: bool
"""
from mathutils.geometry import tessellate_polygon
from mathutils import Vector
vector_to_tuple = Vector.to_tuple
if not indices:
return []
def mlen(co):
# Manhatten length of a vector, faster then length.
return abs(co[0]) + abs(co[1]) + abs(co[2])
def vert_from_vector_with_extra_data(v, i):
# Calculate data per-vector, for reuse.
return v, vector_to_tuple(v, 6), i, mlen(v)
def ed_key_mlen(v1, v2):
if v1[3] > v2[3]:
return v2[1], v1[1]
else:
return v1[1], v2[1]
if not fix_loops:
# Normal single concave loop filling.
if type(from_data) in {tuple, list}:
verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
else:
verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]
# same as reversed(range(1, len(verts))):
for i in range(len(verts) - 1, 0, -1):
if verts[i][1] == verts[i - 1][0]:
verts.pop(i - 1)
fill = tessellate_polygon([verts])
else:
# Separate this loop into multiple loops be finding edges that are
# used twice. This is used by Light-Wave LWO files a lot.
if type(from_data) in {tuple, list}:
verts = [
vert_from_vector_with_extra_data(Vector(from_data[i]), ii)
for ii, i in enumerate(indices)
]
else:
verts = [
vert_from_vector_with_extra_data(from_data.vertices[i].co, ii)
for ii, i in enumerate(indices)
]
edges = [(i, i - 1) for i in range(len(verts))]
if edges:
edges[0] = (0, len(verts) - 1)
if not verts:
return []
edges_used = set()
edges_doubles = set()
# We need to check if any edges are used twice location based.
for ed in edges:
edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
if edkey in edges_used:
edges_doubles.add(edkey)
else:
edges_used.add(edkey)
# Store a list of unconnected loop segments split by double edges.
# will join later
loop_segments = []
v_prev = verts[0]
context_loop = [v_prev]
loop_segments = [context_loop]
for v in verts:
if v != v_prev:
# Are we crossing an edge we removed?
if ed_key_mlen(v, v_prev) in edges_doubles:
context_loop = [v]
loop_segments.append(context_loop)
else:
if context_loop and context_loop[-1][1] == v[1]:
pass
else:
context_loop.append(v)
v_prev = v
# Now join loop segments
def join_seg(s1, s2):
if s2[-1][1] == s1[0][1]:
s1, s2 = s2, s1
elif s1[-1][1] == s2[0][1]:
pass
else:
return False
# If were still here s1 and s2 are 2 segments in the same poly-line.
s1.pop() # remove the last vert from s1
s1.extend(s2) # add segment 2 to segment 1
if s1[0][1] == s1[-1][1]: # remove endpoints double
s1.pop()
del s2[:] # Empty this segment s2 so we don't use it again.
return True
joining_segments = True
while joining_segments:
joining_segments = False
segcount = len(loop_segments)
for j in range(segcount - 1, -1, -1): # reversed(range(segcount)):
seg_j = loop_segments[j]
if seg_j:
for k in range(j - 1, -1, -1): # reversed(range(j)):
if not seg_j:
break
seg_k = loop_segments[k]
if seg_k and join_seg(seg_j, seg_k):
joining_segments = True
loop_list = loop_segments
for verts in loop_list:
while verts and verts[0][1] == verts[-1][1]:
verts.pop()
loop_list = [verts for verts in loop_list if len(verts) > 2]
# DONE DEALING WITH LOOP FIXING
# vert mapping
vert_map = [None] * len(indices)
ii = 0
for verts in loop_list:
if len(verts) > 2:
for i, vert in enumerate(verts):
vert_map[i + ii] = vert[2]
ii += len(verts)
fill = tessellate_polygon([[v[0] for v in loop] for loop in loop_list])
# draw_loops(loop_list)
#raise Exception("done loop")
# map to original indices
fill = [[vert_map[i] for i in f] for f in fill]
if not fill:
if debug_print:
print('Warning Cannot scanfill, fallback on a triangle fan.')
fill = [[0, i - 1, i] for i in range(2, len(indices))]
else:
# Use real scan-fill.
# See if its flipped the wrong way.
flip = None
for fi in fill:
if flip is not None:
break
for i, vi in enumerate(fi):
if vi == 0 and fi[i - 1] == 1:
flip = False
break
elif vi == 1 and fi[i - 1] == 0:
flip = True
break
if not flip:
for i, fi in enumerate(fill):
fill[i] = tuple([ii for ii in reversed(fi)])
return fill
def triangle_random_points(num_points, loop_triangles):
"""
Generates a list of random points over mesh loop triangles.
:arg num_points: the number of random points to generate on each triangle.
:type int:
:arg loop_triangles: list of the triangles to generate points on.
:type loop_triangles: :class:`bpy.types.MeshLoopTriangle`, sequence
:return: list of random points over all triangles.
:rtype: list
"""
from random import random
# For each triangle, generate the required number of random points
sampled_points = [None] * (num_points * len(loop_triangles))
for i, lt in enumerate(loop_triangles):
# Get triangle vertex coordinates
verts = lt.id_data.vertices
ltv = lt.vertices[:]
tv = (verts[ltv[0]].co, verts[ltv[1]].co, verts[ltv[2]].co)
for k in range(num_points):
u1 = random()
u2 = random()
u_tot = u1 + u2
if u_tot > 1:
u1 = 1.0 - u1
u2 = 1.0 - u2
side1 = tv[1] - tv[0]
side2 = tv[2] - tv[0]
p = tv[0] + u1 * side1 + u2 * side2
sampled_points[num_points * i + k] = p
return sampled_points