/* Abstract Object Interface (many thanks to Jim Fulton) */
#include "Python.h"
#include <ctype.h>
#include "structmember.h" /* we need the offsetof() macro from there */
#include "longintrepr.h"
/* Shorthands to return certain errors */
static PyObject *
type_error(const char *msg, PyObject *obj)
{
PyErr_Format(PyExc_TypeError, msg, obj->ob_type->tp_name);
return NULL;
}
null_error(void)
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"null argument to internal routine");
/* Operations on any object */
int
PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)
int r;
if (o1 == NULL || o2 == NULL) {
null_error();
return -1;
r = PyObject_Compare(o1, o2);
if (PyErr_Occurred())
*result = r;
return 0;
PyObject *
PyObject_Type(PyObject *o)
PyObject *v;
if (o == NULL)
return null_error();
v = (PyObject *)o->ob_type;
Py_INCREF(v);
return v;
Py_ssize_t
PyObject_Size(PyObject *o)
PySequenceMethods *m;
if (o == NULL) {
m = o->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(o);
return PyMapping_Size(o);
#undef PyObject_Length
PyObject_Length(PyObject *o)
return PyObject_Size(o);
#define PyObject_Length PyObject_Size
/* The length hint function returns a non-negative value from o.__len__()
or o.__length_hint__(). If those methods aren't found or return a negative
value, then the defaultvalue is returned. This function never fails.
Accordingly, it will mask exceptions raised in either method.
*/
_PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue)
static PyObject *hintstrobj = NULL;
PyObject *ro;
Py_ssize_t rv;
/* try o.__len__() */
rv = PyObject_Size(o);
if (rv >= 0)
return rv;
PyErr_Clear();
/* cache a hashed version of the attribute string */
if (hintstrobj == NULL) {
hintstrobj = PyUnicode_InternFromString("__length_hint__");
if (hintstrobj == NULL)
goto defaultcase;
/* try o.__length_hint__() */
ro = PyObject_CallMethodObjArgs(o, hintstrobj, NULL);
if (ro == NULL)
rv = PyLong_AsSsize_t(ro);
Py_DECREF(ro);
defaultcase:
return defaultvalue;
PyObject_GetItem(PyObject *o, PyObject *key)
PyMappingMethods *m;
if (o == NULL || key == NULL)
m = o->ob_type->tp_as_mapping;
if (m && m->mp_subscript)
return m->mp_subscript(o, key);
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return PySequence_GetItem(o, key_value);
else if (o->ob_type->tp_as_sequence->sq_item)
return type_error("sequence index must "
"be integer, not '%.200s'", key);
return type_error("'%.200s' object is unsubscriptable", o);
PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value)
if (o == NULL || key == NULL || value == NULL) {
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, value);
return PySequence_SetItem(o, key_value, value);
else if (o->ob_type->tp_as_sequence->sq_ass_item) {
type_error("sequence index must be "
"integer, not '%.200s'", key);
type_error("'%.200s' object does not support item assignment", o);
PyObject_DelItem(PyObject *o, PyObject *key)
if (o == NULL || key == NULL) {
return m->mp_ass_subscript(o, key, (PyObject*)NULL);
return PySequence_DelItem(o, key_value);
type_error("'%.200s' object does not support item deletion", o);
PyObject_DelItemString(PyObject *o, char *key)
PyObject *okey;
int ret;
okey = PyUnicode_FromString(key);
if (okey == NULL)
ret = PyObject_DelItem(o, okey);
Py_DECREF(okey);
return ret;
/* We release the buffer right after use of this function which could
cause issues later on. Don't use these functions in new code.
PyObject_AsCharBuffer(PyObject *obj,
const char **buffer,
Py_ssize_t *buffer_len)
PyBufferProcs *pb;
Py_buffer view;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
pb = obj->ob_type->tp_as_buffer;
if (pb == NULL || pb->bf_getbuffer == NULL) {
PyErr_SetString(PyExc_TypeError,
"expected an object with the buffer interface");
if ((*pb->bf_getbuffer)(obj, &view, PyBUF_SIMPLE)) return -1;
*buffer = view.buf;
*buffer_len = view.len;
if (pb->bf_releasebuffer != NULL)
(*pb->bf_releasebuffer)(obj, &view);
PyObject_CheckReadBuffer(PyObject *obj)
PyBufferProcs *pb = obj->ob_type->tp_as_buffer;
if (pb == NULL ||
pb->bf_getbuffer == NULL)
if ((*pb->bf_getbuffer)(obj, NULL, PyBUF_SIMPLE) == -1) {
if (*pb->bf_releasebuffer != NULL)
(*pb->bf_releasebuffer)(obj, NULL);
return 1;
int PyObject_AsReadBuffer(PyObject *obj,
const void **buffer,
pb->bf_getbuffer == NULL) {
"expected an object with a buffer interface");
int PyObject_AsWriteBuffer(PyObject *obj,
void **buffer,
pb->bf_getbuffer == NULL ||
((*pb->bf_getbuffer)(obj, &view, PyBUF_WRITABLE) != 0)) {
"expected an object with a writable buffer interface");
/* Buffer C-API for Python 3.0 */
PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
if (!PyObject_CheckBuffer(obj)) {
PyErr_Format(PyExc_TypeError,
"'%100s' does not have the buffer interface",
Py_TYPE(obj)->tp_name);
return (*(obj->ob_type->tp_as_buffer->bf_getbuffer))(obj, view, flags);
static int
_IsFortranContiguous(Py_buffer *view)
Py_ssize_t sd, dim;
int i;
if (view->ndim == 0) return 1;
if (view->strides == NULL) return (view->ndim == 1);
sd = view->itemsize;
if (view->ndim == 1) return (view->shape[0] == 1 ||
sd == view->strides[0]);
for (i=0; i<view->ndim; i++) {
dim = view->shape[i];
if (dim == 0) return 1;
if (view->strides[i] != sd) return 0;
sd *= dim;
_IsCContiguous(Py_buffer *view)
if (view->strides == NULL) return 1;
for (i=view->ndim-1; i>=0; i--) {
PyBuffer_IsContiguous(Py_buffer *view, char fort)
if (view->suboffsets != NULL) return 0;
if (fort == 'C')
return _IsCContiguous(view);
else if (fort == 'F')
return _IsFortranContiguous(view);
else if (fort == 'A')
return (_IsCContiguous(view) || _IsFortranContiguous(view));
void*
PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices)
char* pointer;
pointer = (char *)view->buf;
for (i = 0; i < view->ndim; i++) {
pointer += view->strides[i]*indices[i];
if ((view->suboffsets != NULL) && (view->suboffsets[i] >= 0)) {
pointer = *((char**)pointer) + view->suboffsets[i];
return (void*)pointer;
void
_add_one_to_index_F(int nd, Py_ssize_t *index, Py_ssize_t *shape)
int k;
for (k=0; k<nd; k++) {
if (index[k] < shape[k]-1) {
index[k]++;
break;
else {
index[k] = 0;
_add_one_to_index_C(int nd, Py_ssize_t *index, Py_ssize_t *shape)
for (k=nd-1; k>=0; k--) {
/* view is not checked for consistency in either of these. It is
assumed that the size of the buffer is view->len in
view->len / view->itemsize elements.
PyBuffer_ToContiguous(void *buf, Py_buffer *view, Py_ssize_t len, char fort)
void (*addone)(int, Py_ssize_t *, Py_ssize_t *);
Py_ssize_t *indices, elements;
char *dest, *ptr;
if (len > view->len) {
len = view->len;
if (PyBuffer_IsContiguous(view, fort)) {
/* simplest copy is all that is needed */
memcpy(buf, view->buf, len);
/* Otherwise a more elaborate scheme is needed */
/* XXX(nnorwitz): need to check for overflow! */
indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim));
if (indices == NULL) {
PyErr_NoMemory();
for (k=0; k<view->ndim;k++) {
indices[k] = 0;
if (fort == 'F') {
addone = _add_one_to_index_F;
addone = _add_one_to_index_C;
dest = buf;
/* XXX : This is not going to be the fastest code in the world
several optimizations are possible.
elements = len / view->itemsize;
while (elements--) {
addone(view->ndim, indices, view->shape);
ptr = PyBuffer_GetPointer(view, indices);
memcpy(dest, ptr, view->itemsize);
dest += view->itemsize;
PyMem_Free(indices);
PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort)
char *src, *ptr;
memcpy(view->buf, buf, len);
src = buf;
memcpy(ptr, src, view->itemsize);
src += view->itemsize;
int PyObject_CopyData(PyObject *dest, PyObject *src)
Py_buffer view_dest, view_src;
char *dptr, *sptr;
if (!PyObject_CheckBuffer(dest) ||
!PyObject_CheckBuffer(src)) {
"both destination and source must have the "\
"buffer interface");
if (PyObject_GetBuffer(dest, &view_dest, PyBUF_FULL) != 0) return -1;
if (PyObject_GetBuffer(src, &view_src, PyBUF_FULL_RO) != 0) {
PyBuffer_Release(&view_dest);
if (view_dest.len < view_src.len) {
PyErr_SetString(PyExc_BufferError,
"destination is too small to receive data from source");
PyBuffer_Release(&view_src);
if ((PyBuffer_IsContiguous(&view_dest, 'C') &&
PyBuffer_IsContiguous(&view_src, 'C')) ||
(PyBuffer_IsContiguous(&view_dest, 'F') &&
PyBuffer_IsContiguous(&view_src, 'F'))) {
memcpy(view_dest.buf, view_src.buf, view_src.len);
/* Otherwise a more elaborate copy scheme is needed */
indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*view_src.ndim);
for (k=0; k<view_src.ndim;k++) {
elements = 1;
for (k=0; k<view_src.ndim; k++) {
/* XXX(nnorwitz): can this overflow? */
elements *= view_src.shape[k];
_add_one_to_index_C(view_src.ndim, indices, view_src.shape);
dptr = PyBuffer_GetPointer(&view_dest, indices);
sptr = PyBuffer_GetPointer(&view_src, indices);
memcpy(dptr, sptr, view_src.itemsize);
PyBuffer_FillContiguousStrides(int nd, Py_ssize_t *shape,
Py_ssize_t *strides, int itemsize,
char fort)
Py_ssize_t sd;
sd = itemsize;
strides[k] = sd;
sd *= shape[k];
return;
PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len,
int readonly, int flags)
if (view == NULL) return 0;
if (((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE) &&
(readonly == 1)) {
"Object is not writable.");
view->obj = obj;
if (obj)
Py_INCREF(obj);
view->buf = buf;
view->len = len;
view->readonly = readonly;
view->itemsize = 1;
view->format = NULL;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = "B";
view->ndim = 1;
view->shape = NULL;
if ((flags & PyBUF_ND) == PyBUF_ND)
view->shape = &(view->len);
view->strides = NULL;
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES)
view->strides = &(view->itemsize);
view->suboffsets = NULL;
view->internal = NULL;
PyBuffer_Release(Py_buffer *view)
PyObject *obj = view->obj;
if (obj && Py_TYPE(obj)->tp_as_buffer && Py_TYPE(obj)->tp_as_buffer->bf_releasebuffer)
Py_TYPE(obj)->tp_as_buffer->bf_releasebuffer(obj, view);
Py_XDECREF(obj);
view->obj = NULL;
PyObject_Format(PyObject *obj, PyObject *format_spec)
static PyObject * str__format__ = NULL;
PyObject *meth;
PyObject *empty = NULL;
PyObject *result = NULL;
/* Initialize cached value */
if (str__format__ == NULL) {
/* Initialize static variable needed by _PyType_Lookup */
str__format__ = PyUnicode_FromString("__format__");
if (str__format__ == NULL)
goto done;
/* If no format_spec is provided, use an empty string */
if (format_spec == NULL) {
empty = PyUnicode_FromUnicode(NULL, 0);
format_spec = empty;
/* Make sure the type is initialized. float gets initialized late */
if (Py_TYPE(obj)->tp_dict == NULL)
if (PyType_Ready(Py_TYPE(obj)) < 0)
/* Find the (unbound!) __format__ method (a borrowed reference) */
meth = _PyType_Lookup(Py_TYPE(obj), str__format__);
if (meth == NULL) {
"Type %.100s doesn't define __format__",
/* And call it, binding it to the value */
result = PyObject_CallFunctionObjArgs(meth, obj, format_spec, NULL);
if (result && !PyUnicode_Check(result)) {
"__format__ method did not return string");
Py_DECREF(result);
result = NULL;
done:
Py_XDECREF(empty);
return result;
/* Operations on numbers */
PyNumber_Check(PyObject *o)
return o && o->ob_type->tp_as_number &&
(o->ob_type->tp_as_number->nb_int ||
o->ob_type->tp_as_number->nb_float);
/* Binary operators */
#define NB_SLOT(x) offsetof(PyNumberMethods, x)
#define NB_BINOP(nb_methods, slot) \
(*(binaryfunc*)(& ((char*)nb_methods)[slot]))
#define NB_TERNOP(nb_methods, slot) \
(*(ternaryfunc*)(& ((char*)nb_methods)[slot]))
/*
Calling scheme used for binary operations:
Order operations are tried until either a valid result or error:
w.op(v,w)[*], v.op(v,w), w.op(v,w)
[*] only when v->ob_type != w->ob_type && w->ob_type is a subclass of
v->ob_type
binary_op1(PyObject *v, PyObject *w, const int op_slot)
PyObject *x;
binaryfunc slotv = NULL;
binaryfunc slotw = NULL;
if (v->ob_type->tp_as_number != NULL)
slotv = NB_BINOP(v->ob_type->tp_as_number, op_slot);
if (w->ob_type != v->ob_type &&
w->ob_type->tp_as_number != NULL) {
slotw = NB_BINOP(w->ob_type->tp_as_number, op_slot);
if (slotw == slotv)
slotw = NULL;
if (slotv) {
if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) {
x = slotw(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
x = slotv(v, w);
if (slotw) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
binop_type_error(PyObject *v, PyObject *w, const char *op_name)
"unsupported operand type(s) for %.100s: "
"'%.100s' and '%.100s'",
op_name,
v->ob_type->tp_name,
w->ob_type->tp_name);
binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name)
PyObject *result = binary_op1(v, w, op_slot);
if (result == Py_NotImplemented) {
return binop_type_error(v, w, op_name);
Calling scheme used for ternary operations:
v.op(v,w,z), w.op(v,w,z), z.op(v,w,z)
ternary_op(PyObject *v,
PyObject *w,
PyObject *z,
const int op_slot,
const char *op_name)
PyNumberMethods *mv, *mw, *mz;
PyObject *x = NULL;
ternaryfunc slotv = NULL;
ternaryfunc slotw = NULL;
ternaryfunc slotz = NULL;
mv = v->ob_type->tp_as_number;
mw = w->ob_type->tp_as_number;
if (mv != NULL)
slotv = NB_TERNOP(mv, op_slot);
mw != NULL) {
slotw = NB_TERNOP(mw, op_slot);
x = slotw(v, w, z);
x = slotv(v, w, z);
mz = z->ob_type->tp_as_number;
if (mz != NULL) {
slotz = NB_TERNOP(mz, op_slot);
if (slotz == slotv || slotz == slotw)
slotz = NULL;
if (slotz) {
x = slotz(v, w, z);
if (z == Py_None)
PyErr_Format(
PyExc_TypeError,
"unsupported operand type(s) for ** or pow(): "
else
"unsupported operand type(s) for pow(): "
"'%.100s', '%.100s', '%.100s'",
w->ob_type->tp_name,
z->ob_type->tp_name);
#define BINARY_FUNC(func, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_op(v, w, NB_SLOT(op), op_name); \
BINARY_FUNC(PyNumber_Or, nb_or, "|")
BINARY_FUNC(PyNumber_Xor, nb_xor, "^")
BINARY_FUNC(PyNumber_And, nb_and, "&")
BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<")
BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>")
BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-")
BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()")
PyNumber_Add(PyObject *v, PyObject *w)
PyObject *result = binary_op1(v, w, NB_SLOT(nb_add));
PySequenceMethods *m = v->ob_type->tp_as_sequence;
if (m && m->sq_concat) {
return (*m->sq_concat)(v, w);
result = binop_type_error(v, w, "+");
sequence_repeat(ssizeargfunc repeatfunc, PyObject *seq, PyObject *n)
Py_ssize_t count;
if (PyIndex_Check(n)) {
count = PyNumber_AsSsize_t(n, PyExc_OverflowError);
if (count == -1 && PyErr_Occurred())
return type_error("can't multiply sequence by "
"non-int of type '%.200s'", n);
return (*repeatfunc)(seq, count);
PyNumber_Multiply(PyObject *v, PyObject *w)
PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply));
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
if (mv && mv->sq_repeat) {
return sequence_repeat(mv->sq_repeat, v, w);
else if (mw && mw->sq_repeat) {
return sequence_repeat(mw->sq_repeat, w, v);
result = binop_type_error(v, w, "*");
PyNumber_FloorDivide(PyObject *v, PyObject *w)
return binary_op(v, w, NB_SLOT(nb_floor_divide), "//");
PyNumber_TrueDivide(PyObject *v, PyObject *w)
return binary_op(v, w, NB_SLOT(nb_true_divide), "/");
PyNumber_Remainder(PyObject *v, PyObject *w)
return binary_op(v, w, NB_SLOT(nb_remainder), "%");
PyNumber_Power(PyObject *v, PyObject *w, PyObject *z)
return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()");
/* Binary in-place operators */
/* The in-place operators are defined to fall back to the 'normal',
non in-place operations, if the in-place methods are not in place.
- If the left hand object has the appropriate struct members, and
they are filled, call the appropriate function and return the
result. No coercion is done on the arguments; the left-hand object
is the one the operation is performed on, and it's up to the
function to deal with the right-hand object.
- Otherwise, in-place modification is not supported. Handle it exactly as
a non in-place operation of the same kind.
binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot)
PyNumberMethods *mv = v->ob_type->tp_as_number;
if (mv != NULL) {
binaryfunc slot = NB_BINOP(mv, iop_slot);
if (slot) {
PyObject *x = (slot)(v, w);
if (x != Py_NotImplemented) {
Py_DECREF(x);
return binary_op1(v, w, op_slot);
binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
PyObject *result = binary_iop1(v, w, iop_slot, op_slot);
#define INPLACE_BINOP(func, iop, op, op_name) \
return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \
INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=")
INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=")
INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=")
INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=")
INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=")
INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=")
PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w)
return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide),
NB_SLOT(nb_floor_divide), "//=");
PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w)
return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide),
NB_SLOT(nb_true_divide), "/=");
PyNumber_InPlaceAdd(PyObject *v, PyObject *w)
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add));
if (m != NULL) {
binaryfunc f = NULL;
f = m->sq_inplace_concat;
if (f == NULL)
f = m->sq_concat;
if (f != NULL)
return (*f)(v, w);
result = binop_type_error(v, w, "+=");
PyNumber_InPlaceMultiply(PyObject *v, PyObject *w)
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply));
ssizeargfunc f = NULL;
f = mv->sq_inplace_repeat;
f = mv->sq_repeat;
return sequence_repeat(f, v, w);
else if (mw != NULL) {
/* Note that the right hand operand should not be
* mutated in this case so sq_inplace_repeat is not
* used. */
if (mw->sq_repeat)
result = binop_type_error(v, w, "*=");
PyNumber_InPlaceRemainder(PyObject *v, PyObject *w)
return binary_iop(v, w, NB_SLOT(nb_inplace_remainder),
NB_SLOT(nb_remainder), "%=");
PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z)
if (v->ob_type->tp_as_number &&
v->ob_type->tp_as_number->nb_inplace_power != NULL) {
return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**=");
return ternary_op(v, w, z, NB_SLOT(nb_power), "**=");
/* Unary operators and functions */
PyNumber_Negative(PyObject *o)
PyNumberMethods *m;
m = o->ob_type->tp_as_number;
if (m && m->nb_negative)
return (*m->nb_negative)(o);
return type_error("bad operand type for unary -: '%.200s'", o);
PyNumber_Positive(PyObject *o)
if (m && m->nb_positive)
return (*m->nb_positive)(o);
return type_error("bad operand type for unary +: '%.200s'", o);
PyNumber_Invert(PyObject *o)
if (m && m->nb_invert)
return (*m->nb_invert)(o);
return type_error("bad operand type for unary ~: '%.200s'", o);
PyNumber_Absolute(PyObject *o)
if (m && m->nb_absolute)
return m->nb_absolute(o);
return type_error("bad operand type for abs(): '%.200s'", o);
/* Return a Python Int or Long from the object item
Raise TypeError if the result is not an int-or-long
or if the object cannot be interpreted as an index.
PyNumber_Index(PyObject *item)
if (item == NULL)
if (PyLong_Check(item)) {
Py_INCREF(item);
return item;
if (PyIndex_Check(item)) {
result = item->ob_type->tp_as_number->nb_index(item);
if (result && !PyLong_Check(result)) {
"__index__ returned non-int "
"(type %.200s)",
result->ob_type->tp_name);
"'%.200s' object cannot be interpreted "
"as an integer", item->ob_type->tp_name);
/* Return an error on Overflow only if err is not NULL*/
PyNumber_AsSsize_t(PyObject *item, PyObject *err)
Py_ssize_t result;
PyObject *runerr;
PyObject *value = PyNumber_Index(item);
if (value == NULL)
/* We're done if PyLong_AsSsize_t() returns without error. */
result = PyLong_AsSsize_t(value);
if (result != -1 || !(runerr = PyErr_Occurred()))
goto finish;
/* Error handling code -- only manage OverflowError differently */
if (!PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError))
/* If no error-handling desired then the default clipping
is sufficient.
if (!err) {
assert(PyLong_Check(value));
/* Whether or not it is less than or equal to
zero is determined by the sign of ob_size
if (_PyLong_Sign(value) < 0)
result = PY_SSIZE_T_MIN;
result = PY_SSIZE_T_MAX;
/* Otherwise replace the error with caller's error object. */
PyErr_Format(err,
"cannot fit '%.200s' into an index-sized integer",
item->ob_type->tp_name);
finish:
Py_DECREF(value);
_PyNumber_ConvertIntegralToInt(PyObject *integral, const char* error_format)
static PyObject *int_name = NULL;
if (int_name == NULL) {
int_name = PyUnicode_InternFromString("__int__");
if (int_name == NULL)
if (integral && !PyLong_Check(integral)) {
/* Don't go through tp_as_number->nb_int to avoid
hitting the classic class fallback to __trunc__. */
PyObject *int_func = PyObject_GetAttr(integral, int_name);
if (int_func == NULL) {
PyErr_Clear(); /* Raise a different error. */
goto non_integral_error;
Py_DECREF(integral);
integral = PyEval_CallObject(int_func, NULL);
Py_DECREF(int_func);
return integral;
non_integral_error:
PyErr_Format(PyExc_TypeError, error_format, Py_TYPE(integral)->tp_name);
/* Add a check for embedded NULL-bytes in the argument. */
long_from_string(const char *s, Py_ssize_t len)
char *end;
x = PyLong_FromString((char*)s, &end, 10);
if (x == NULL)
if (end != s + len) {
PyErr_SetString(PyExc_ValueError,
"null byte in argument for int()");
PyNumber_Long(PyObject *o)
static PyObject *trunc_name = NULL;
PyObject *trunc_func;
const char *buffer;
Py_ssize_t buffer_len;
if (trunc_name == NULL) {
trunc_name = PyUnicode_InternFromString("__trunc__");
if (trunc_name == NULL)
if (PyLong_CheckExact(o)) {
Py_INCREF(o);
return o;
if (m && m->nb_int) { /* This should include subclasses of int */
PyObject *res = m->nb_int(o);
if (res && !PyLong_Check(res)) {
"__int__ returned non-int (type %.200s)",
res->ob_type->tp_name);
Py_DECREF(res);
return res;
if (m && m->nb_long) { /* This should include subclasses of long */
/* Classic classes always take this branch. */
PyObject *res = m->nb_long(o);
"__long__ returned non-long (type %.200s)",
if (PyLong_Check(o)) /* A long subclass without nb_long */
return _PyLong_Copy((PyLongObject *)o);
trunc_func = PyObject_GetAttr(o, trunc_name);
if (trunc_func) {
PyObject *truncated = PyEval_CallObject(trunc_func, NULL);
PyObject *int_instance;
Py_DECREF(trunc_func);
/* __trunc__ is specified to return an Integral type,
but long() needs to return a long. */
int_instance = _PyNumber_ConvertIntegralToInt(
truncated,
"__trunc__ returned non-Integral (type %.200s)");
return int_instance;
PyErr_Clear(); /* It's not an error if o.__trunc__ doesn't exist. */
if (PyBytes_Check(o))
/* need to do extra error checking that PyLong_FromString()
* doesn't do. In particular long('9.5') must raise an
* exception, not truncate the float.
return long_from_string(PyBytes_AS_STRING(o),
PyBytes_GET_SIZE(o));
if (PyUnicode_Check(o))
/* The above check is done in PyLong_FromUnicode(). */
return PyLong_FromUnicode(PyUnicode_AS_UNICODE(o),
PyUnicode_GET_SIZE(o),
10);
if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len))
return long_from_string(buffer, buffer_len);
return type_error("int() argument must be a string or a "
"number, not '%.200s'", o);
PyNumber_Float(PyObject *o)
if (m && m->nb_float) { /* This should include subclasses of float */
PyObject *res = m->nb_float(o);
if (res && !PyFloat_Check(res)) {
"__float__ returned non-float (type %.200s)",
if (PyFloat_Check(o)) { /* A float subclass with nb_float == NULL */
PyFloatObject *po = (PyFloatObject *)o;
return PyFloat_FromDouble(po->ob_fval);
return PyFloat_FromString(o);
PyNumber_ToBase(PyObject *n, int base)
PyObject *res = NULL;
PyObject *index = PyNumber_Index(n);
if (!index)
if (PyLong_Check(index))
res = _PyLong_Format(index, base);
/* It should not be possible to get here, as
PyNumber_Index already has a check for the same
condition */
PyErr_SetString(PyExc_ValueError, "PyNumber_ToBase: index not "
"int or long");
Py_DECREF(index);
/* Operations on sequences */
PySequence_Check(PyObject *s)
if (PyObject_IsInstance(s, (PyObject *)&PyDict_Type))
return s != NULL && s->ob_type->tp_as_sequence &&
s->ob_type->tp_as_sequence->sq_item != NULL;
PySequence_Size(PyObject *s)
if (s == NULL) {
m = s->ob_type->tp_as_sequence;
return m->sq_length(s);
type_error("object of type '%.200s' has no len()", s);
#undef PySequence_Length
PySequence_Length(PyObject *s)
return PySequence_Size(s);
#define PySequence_Length PySequence_Size
PySequence_Concat(PyObject *s, PyObject *o)
if (s == NULL || o == NULL)
if (m && m->sq_concat)
return m->sq_concat(s, o);
/* Instances of user classes defining an __add__() method only
have an nb_add slot, not an sq_concat slot. So we fall back
to nb_add if both arguments appear to be sequences. */
if (PySequence_Check(s) && PySequence_Check(o)) {
PyObject *result = binary_op1(s, o, NB_SLOT(nb_add));
if (result != Py_NotImplemented)
return type_error("'%.200s' object can't be concatenated", s);
PySequence_Repeat(PyObject *o, Py_ssize_t count)
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
/* Instances of user classes defining a __mul__() method only
have an nb_multiply slot, not an sq_repeat slot. so we fall back
to nb_multiply if o appears to be a sequence. */
if (PySequence_Check(o)) {
PyObject *n, *result;
n = PyLong_FromSsize_t(count);
if (n == NULL)
result = binary_op1(o, n, NB_SLOT(nb_multiply));
Py_DECREF(n);
return type_error("'%.200s' object can't be repeated", o);
PySequence_InPlaceConcat(PyObject *s, PyObject *o)
if (m && m->sq_inplace_concat)
return m->sq_inplace_concat(s, o);
PyObject *result = binary_iop1(s, o, NB_SLOT(nb_inplace_add),
PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
if (m && m->sq_inplace_repeat)
return m->sq_inplace_repeat(o, count);
result = binary_iop1(o, n, NB_SLOT(nb_inplace_multiply),
PySequence_GetItem(PyObject *s, Py_ssize_t i)
if (s == NULL)
if (m && m->sq_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
i += l;
return m->sq_item(s, i);
return type_error("'%.200s' object does not support indexing", s);
PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
PyMappingMethods *mp;
if (!s) return null_error();
mp = s->ob_type->tp_as_mapping;
if (mp->mp_subscript) {
PyObject *res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
res = mp->mp_subscript(s, slice);
Py_DECREF(slice);
return type_error("'%.200s' object is unsliceable", s);
PySequence_SetItem(PyObject *s, Py_ssize_t i, PyObject *o)
if (m && m->sq_ass_item) {
return m->sq_ass_item(s, i, o);
type_error("'%.200s' object does not support item assignment", s);
PySequence_DelItem(PyObject *s, Py_ssize_t i)
return m->sq_ass_item(s, i, (PyObject *)NULL);
type_error("'%.200s' object doesn't support item deletion", s);
PySequence_SetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2, PyObject *o)
if (mp->mp_ass_subscript) {
int res;
res = mp->mp_ass_subscript(s, slice, o);
type_error("'%.200s' object doesn't support slice assignment", s);
PySequence_DelSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
res = mp->mp_ass_subscript(s, slice, NULL);
type_error("'%.200s' object doesn't support slice deletion", s);
PySequence_Tuple(PyObject *v)
PyObject *it; /* iter(v) */
Py_ssize_t n; /* guess for result tuple size */
PyObject *result;
Py_ssize_t j;
if (v == NULL)
/* Special-case the common tuple and list cases, for efficiency. */
if (PyTuple_CheckExact(v)) {
/* Note that we can't know whether it's safe to return
a tuple *subclass* instance as-is, hence the restriction
to exact tuples here. In contrast, lists always make
a copy, so there's no need for exactness below. */
if (PyList_Check(v))
return PyList_AsTuple(v);
/* Get iterator. */
it = PyObject_GetIter(v);
if (it == NULL)
/* Guess result size and allocate space. */
n = _PyObject_LengthHint(v, 10);
result = PyTuple_New(n);
if (result == NULL)
goto Fail;
/* Fill the tuple. */
for (j = 0; ; ++j) {
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (j >= n) {
Py_ssize_t oldn = n;
/* The over-allocation strategy can grow a bit faster
than for lists because unlike lists the
over-allocation isn't permanent -- we reclaim
the excess before the end of this routine.
So, grow by ten and then add 25%.
n += 10;
n += n >> 2;
if (n < oldn) {
/* Check for overflow */
Py_DECREF(item);
if (_PyTuple_Resize(&result, n) != 0) {
PyTuple_SET_ITEM(result, j, item);
/* Cut tuple back if guess was too large. */
if (j < n &&
_PyTuple_Resize(&result, j) != 0)
Py_DECREF(it);
Fail:
Py_XDECREF(result);
PySequence_List(PyObject *v)
PyObject *result; /* result list */
PyObject *rv; /* return value from PyList_Extend */
result = PyList_New(0);
rv = _PyList_Extend((PyListObject *)result, v);
if (rv == NULL) {
Py_DECREF(rv);
PySequence_Fast(PyObject *v, const char *m)
PyObject *it;
if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) {
if (it == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
PyErr_SetString(PyExc_TypeError, m);
v = PySequence_List(it);
/* Iterate over seq. Result depends on the operation:
PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq.
PY_ITERSEARCH_INDEX: 0-based index of first occurence of obj in seq;
set ValueError and return -1 if none found; also return -1 on error.
Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error.
_PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation)
Py_ssize_t n;
int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */
PyObject *it; /* iter(seq) */
if (seq == NULL || obj == NULL) {
it = PyObject_GetIter(seq);
type_error("argument of type '%.200s' is not iterable", seq);
n = wrapped = 0;
for (;;) {
int cmp;
cmp = PyObject_RichCompareBool(obj, item, Py_EQ);
if (cmp < 0)
if (cmp > 0) {
switch (operation) {
case PY_ITERSEARCH_COUNT:
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"count exceeds C integer size");
++n;
case PY_ITERSEARCH_INDEX:
if (wrapped) {
"index exceeds C integer size");
goto Done;
case PY_ITERSEARCH_CONTAINS:
n = 1;
default:
assert(!"unknown operation");
if (operation == PY_ITERSEARCH_INDEX) {
if (n == PY_SSIZE_T_MAX)
wrapped = 1;
if (operation != PY_ITERSEARCH_INDEX)
"sequence.index(x): x not in sequence");
/* fall into failure code */
n = -1;
/* fall through */
Done:
return n;
/* Return # of times o appears in s. */
PySequence_Count(PyObject *s, PyObject *o)
return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT);
/* Return -1 if error; 1 if ob in seq; 0 if ob not in seq.
* Use sq_contains if possible, else defer to _PySequence_IterSearch().
PySequence_Contains(PyObject *seq, PyObject *ob)
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
/* Backwards compatibility */
#undef PySequence_In
PySequence_In(PyObject *w, PyObject *v)
return PySequence_Contains(w, v);
PySequence_Index(PyObject *s, PyObject *o)
return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX);
/* Operations on mappings */
PyMapping_Check(PyObject *o)
return o && o->ob_type->tp_as_mapping &&
o->ob_type->tp_as_mapping->mp_subscript;
PyMapping_Size(PyObject *o)
if (m && m->mp_length)
return m->mp_length(o);
type_error("object of type '%.200s' has no len()", o);
#undef PyMapping_Length
PyMapping_Length(PyObject *o)
#define PyMapping_Length PyMapping_Size
PyMapping_GetItemString(PyObject *o, char *key)
PyObject *okey, *r;
if (key == NULL)
r = PyObject_GetItem(o, okey);
return r;
PyMapping_SetItemString(PyObject *o, char *key, PyObject *value)
if (key == NULL) {
r = PyObject_SetItem(o, okey, value);
PyMapping_HasKeyString(PyObject *o, char *key)
v = PyMapping_GetItemString(o, key);
if (v) {
Py_DECREF(v);
PyMapping_HasKey(PyObject *o, PyObject *key)
v = PyObject_GetItem(o, key);
PyMapping_Keys(PyObject *o)
PyObject *keys;
PyObject *fast;
if (PyDict_CheckExact(o))
return PyDict_Keys(o);
keys = PyObject_CallMethod(o, "keys", NULL);
if (keys == NULL)
fast = PySequence_Fast(keys, "o.keys() are not iterable");
Py_DECREF(keys);
return fast;
PyMapping_Items(PyObject *o)
PyObject *items;
return PyDict_Items(o);
items = PyObject_CallMethod(o, "items", NULL);
if (items == NULL)
fast = PySequence_Fast(items, "o.items() are not iterable");
Py_DECREF(items);
PyMapping_Values(PyObject *o)
PyObject *values;
return PyDict_Values(o);
values = PyObject_CallMethod(o, "values", NULL);
if (values == NULL)
fast = PySequence_Fast(values, "o.values() are not iterable");
Py_DECREF(values);
/* Operations on callable objects */
/* XXX PyCallable_Check() is in object.c */
PyObject_CallObject(PyObject *o, PyObject *a)
return PyEval_CallObjectWithKeywords(o, a, NULL);
PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw)
ternaryfunc call;
if ((call = func->ob_type->tp_call) != NULL) {
if (Py_EnterRecursiveCall(" while calling a Python object"))
result = (*call)(func, arg, kw);
Py_LeaveRecursiveCall();
if (result == NULL && !PyErr_Occurred())
PyErr_SetString(
PyExc_SystemError,
"NULL result without error in PyObject_Call");
PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable",
func->ob_type->tp_name);
static PyObject*
call_function_tail(PyObject *callable, PyObject *args)
PyObject *retval;
if (args == NULL)
if (!PyTuple_Check(args)) {
PyObject *a;
a = PyTuple_New(1);
if (a == NULL) {
Py_DECREF(args);
PyTuple_SET_ITEM(a, 0, args);
args = a;
retval = PyObject_Call(callable, args, NULL);
return retval;
PyObject_CallFunction(PyObject *callable, char *format, ...)
va_list va;
PyObject *args;
if (callable == NULL)
if (format && *format) {
va_start(va, format);
args = Py_VaBuildValue(format, va);
va_end(va);
args = PyTuple_New(0);
return call_function_tail(callable, args);
_PyObject_CallFunction_SizeT(PyObject *callable, char *format, ...)
args = _Py_VaBuildValue_SizeT(format, va);
PyObject_CallMethod(PyObject *o, char *name, char *format, ...)
PyObject *func = NULL;
PyObject *retval = NULL;
if (o == NULL || name == NULL)
func = PyObject_GetAttrString(o, name);
if (func == NULL) {
PyErr_SetString(PyExc_AttributeError, name);
if (!PyCallable_Check(func)) {
type_error("attribute of type '%.200s' is not callable", func);
goto exit;
retval = call_function_tail(func, args);
exit:
/* args gets consumed in call_function_tail */
Py_XDECREF(func);
_PyObject_CallMethod_SizeT(PyObject *o, char *name, char *format, ...)
objargs_mktuple(va_list va)
int i, n = 0;
va_list countva;
PyObject *result, *tmp;
#ifdef VA_LIST_IS_ARRAY
memcpy(countva, va, sizeof(va_list));
#else
#ifdef __va_copy
__va_copy(countva, va);
countva = va;
#endif
while (((PyObject *)va_arg(countva, PyObject *)) != NULL)
if (result != NULL && n > 0) {
for (i = 0; i < n; ++i) {
tmp = (PyObject *)va_arg(va, PyObject *);
PyTuple_SET_ITEM(result, i, tmp);
Py_INCREF(tmp);
PyObject_CallMethodObjArgs(PyObject *callable, PyObject *name, ...)
PyObject *args, *tmp;
va_list vargs;
if (callable == NULL || name == NULL)
callable = PyObject_GetAttr(callable, name);
/* count the args */
va_start(vargs, name);
args = objargs_mktuple(vargs);
va_end(vargs);
if (args == NULL) {
Py_DECREF(callable);
tmp = PyObject_Call(callable, args, NULL);
return tmp;
PyObject_CallFunctionObjArgs(PyObject *callable, ...)
va_start(vargs, callable);
/* isinstance(), issubclass() */
/* abstract_get_bases() has logically 4 return states, with a sort of 0th
* state that will almost never happen.
*
* 0. creating the __bases__ static string could get a MemoryError
* 1. getattr(cls, '__bases__') could raise an AttributeError
* 2. getattr(cls, '__bases__') could raise some other exception
* 3. getattr(cls, '__bases__') could return a tuple
* 4. getattr(cls, '__bases__') could return something other than a tuple
* Only state #3 is a non-error state and only it returns a non-NULL object
* (it returns the retrieved tuple).
* Any raised AttributeErrors are masked by clearing the exception and
* returning NULL. If an object other than a tuple comes out of __bases__,
* then again, the return value is NULL. So yes, these two situations
* produce exactly the same results: NULL is returned and no error is set.
* If some exception other than AttributeError is raised, then NULL is also
* returned, but the exception is not cleared. That's because we want the
* exception to be propagated along.
* Callers are expected to test for PyErr_Occurred() when the return value
* is NULL to decide whether a valid exception should be propagated or not.
* When there's no exception to propagate, it's customary for the caller to
* set a TypeError.
abstract_get_bases(PyObject *cls)
static PyObject *__bases__ = NULL;
PyObject *bases;
if (__bases__ == NULL) {
__bases__ = PyUnicode_InternFromString("__bases__");
if (__bases__ == NULL)
Py_ALLOW_RECURSION
bases = PyObject_GetAttr(cls, __bases__);
Py_END_ALLOW_RECURSION
if (bases == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
if (!PyTuple_Check(bases)) {
Py_DECREF(bases);
return bases;
abstract_issubclass(PyObject *derived, PyObject *cls)
Py_ssize_t i, n;
int r = 0;
if (derived == cls)
if (PyTuple_Check(cls)) {
/* Not a general sequence -- that opens up the road to
recursion and stack overflow. */
n = PyTuple_GET_SIZE(cls);
for (i = 0; i < n; i++) {
if (derived == PyTuple_GET_ITEM(cls, i))
bases = abstract_get_bases(derived);
n = PyTuple_GET_SIZE(bases);
r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls);
if (r != 0)
check_class(PyObject *cls, const char *error)
PyObject *bases = abstract_get_bases(cls);
/* Do not mask errors. */
PyErr_SetString(PyExc_TypeError, error);
recursive_isinstance(PyObject *inst, PyObject *cls, int recursion_depth)
PyObject *icls;
static PyObject *__class__ = NULL;
int retval = 0;
if (__class__ == NULL) {
__class__ = PyUnicode_InternFromString("__class__");
if (__class__ == NULL)
if (PyType_Check(cls)) {
retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls);
if (retval == 0) {
PyObject *c = PyObject_GetAttr(inst, __class__);
if (c == NULL) {
if (c != (PyObject *)(inst->ob_type) &&
PyType_Check(c))
retval = PyType_IsSubtype(
(PyTypeObject *)c,
(PyTypeObject *)cls);
Py_DECREF(c);
else if (PyTuple_Check(cls)) {
if (!recursion_depth) {
PyErr_SetString(PyExc_RuntimeError,
"nest level of tuple too deep");
retval = recursive_isinstance(
inst,
PyTuple_GET_ITEM(cls, i),
recursion_depth-1);
if (retval != 0)
if (!check_class(cls,
"isinstance() arg 2 must be a class, type,"
" or tuple of classes and types"))
icls = PyObject_GetAttr(inst, __class__);
if (icls == NULL) {
retval = 0;
retval = abstract_issubclass(icls, cls);
Py_DECREF(icls);
PyObject_IsInstance(PyObject *inst, PyObject *cls)
static PyObject *name = NULL;
PyObject *checker;
/* Quick test for an exact match */
if (Py_TYPE(inst) == (PyTypeObject *)cls)
if (name == NULL) {
name = PyUnicode_InternFromString("__instancecheck__");
if (name == NULL)
checker = PyObject_GetAttr(cls, name);
if (checker == NULL && PyErr_Occurred())
if (checker != NULL) {
int ok = -1;
if (Py_EnterRecursiveCall(" in __instancecheck__")) {
Py_DECREF(checker);
return ok;
res = PyObject_CallFunctionObjArgs(checker, inst, NULL);
if (res != NULL) {
ok = PyObject_IsTrue(res);
return recursive_isinstance(inst, cls, Py_GetRecursionLimit());
recursive_issubclass(PyObject *derived, PyObject *cls, int recursion_depth)
int retval;
if (!check_class(derived,
"issubclass() arg 1 must be a class"))
Py_ssize_t i;
Py_ssize_t n = PyTuple_GET_SIZE(cls);
retval = recursive_issubclass(
derived,
if (retval != 0) {
/* either found it, or got an error */
"issubclass() arg 2 must be a class"
" or tuple of classes"))
retval = abstract_issubclass(derived, cls);
PyObject_IsSubclass(PyObject *derived, PyObject *cls)
PyObject *t, *v, *tb;
PyErr_Fetch(&t, &v, &tb);
name = PyUnicode_InternFromString("__subclasscheck__");
PyErr_Restore(t, v, tb);
if (Py_EnterRecursiveCall(" in __subclasscheck__"))
res = PyObject_CallFunctionObjArgs(checker, derived, NULL);
return recursive_issubclass(derived, cls, Py_GetRecursionLimit());
PyObject_GetIter(PyObject *o)
PyTypeObject *t = o->ob_type;
getiterfunc f = NULL;
f = t->tp_iter;
if (f == NULL) {
if (PySequence_Check(o))
return PySeqIter_New(o);
return type_error("'%.200s' object is not iterable", o);
PyObject *res = (*f)(o);
if (res != NULL && !PyIter_Check(res)) {
"iter() returned non-iterator "
"of type '%.100s'",
res = NULL;
/* Return next item.
* If an error occurs, return NULL. PyErr_Occurred() will be true.
* If the iteration terminates normally, return NULL and clear the
* PyExc_StopIteration exception (if it was set). PyErr_Occurred()
* will be false.
* Else return the next object. PyErr_Occurred() will be false.
PyIter_Next(PyObject *iter)
assert(PyIter_Check(iter));
result = (*iter->ob_type->tp_iternext)(iter);
if (result == NULL &&
PyErr_Occurred() &&
PyErr_ExceptionMatches(PyExc_StopIteration))