Added a non-recursive implementation of conjoin(), and a Knight's Tour
solver. In conjunction, they easily found a tour of a 200x200 board: that's 200**2 == 40,000 levels of backtracking. Explicitly resumable generators allow that to be coded as easily as a recursive solver (easier, actually, because different levels can use level-customized algorithms without pain), but without blowing the stack. Indeed, I've never written an exhaustive Tour solver in any language before that can handle boards so large ("exhaustive" == guaranteed to find a solution if one exists, as opposed to probabilistic heuristic approaches; of course, the age of the universe may be a blip in the time needed!).
This commit is contained in:
parent
a5aa0b5261
commit
31569561fd
@ -909,6 +909,42 @@ def conjoin(gs):
|
||||
for x in gen(0):
|
||||
yield x
|
||||
|
||||
# And one more approach: For backtracking apps like the Knight's Tour
|
||||
# solver below, the number of backtracking levels can be enormous (one
|
||||
# level per square, for the Knight's Tour, so that e.g. a 100x100 board
|
||||
# needs 10,000 levels). In such cases Python is likely to run out of
|
||||
# stack space due to recursion. So here's a recursion-free version of
|
||||
# conjoin too.
|
||||
# NOTE WELL: This allows large problems to be solved with only trivial
|
||||
# demands on stack space. Without explicitly resumable generators, this is
|
||||
# much harder to achieve.
|
||||
|
||||
def flat_conjoin(gs): # rename to conjoin to run tests with this instead
|
||||
n = len(gs)
|
||||
values = [None] * n
|
||||
iters = [None] * n
|
||||
i = 0
|
||||
while i >= 0:
|
||||
# Need a fresh iterator.
|
||||
if i >= n:
|
||||
yield values
|
||||
# Backtrack.
|
||||
i -= 1
|
||||
else:
|
||||
iters[i] = gs[i]().next
|
||||
|
||||
# Need next value from current iterator.
|
||||
while i >= 0:
|
||||
try:
|
||||
values[i] = iters[i]()
|
||||
except StopIteration:
|
||||
# Backtrack.
|
||||
i -= 1
|
||||
else:
|
||||
# Start fresh at next level.
|
||||
i += 1
|
||||
break
|
||||
|
||||
# A conjoin-based N-Queens solver.
|
||||
|
||||
class Queens:
|
||||
@ -961,12 +997,207 @@ class Queens:
|
||||
print "|" + "|".join(squares) + "|"
|
||||
print sep
|
||||
|
||||
# A conjoin-based Knight's Tour solver. This is pretty sophisticated
|
||||
# (e.g., when used with flat_conjoin above, and passing hard=1 to the
|
||||
# constructor, a 200x200 Knight's Tour was found quickly -- note that we're
|
||||
# creating 10s of thousands of generators then!), so goes on at some length
|
||||
|
||||
class Knights:
|
||||
def __init__(self, n, hard=0):
|
||||
self.n = n
|
||||
|
||||
def coords2index(i, j):
|
||||
return i*n + j
|
||||
|
||||
offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
|
||||
(-1, -2), (-2, -1), (-2, 1), (-1, 2)]
|
||||
succs = []
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
s = [coords2index(i+io, j+jo) for io, jo in offsets
|
||||
if 0 <= i+io < n and
|
||||
0 <= j+jo < n]
|
||||
succs.append(s)
|
||||
del s
|
||||
del offsets
|
||||
|
||||
free = [0] * n**2 # 0 if occupied, 1 if visited
|
||||
nexits = free[:] # number of free successors
|
||||
|
||||
def decrexits(i0):
|
||||
# If we remove all exits from a free square, we're dead:
|
||||
# even if we move to it next, we can't leave it again.
|
||||
# If we create a square with one exit, we must visit it next;
|
||||
# else somebody else will have to visit it, and since there's
|
||||
# only one adjacent, there won't be a way to leave it again.
|
||||
# Finelly, if we create more than one free square with a
|
||||
# single exit, we can only move to one of them next, leaving
|
||||
# the other one a dead end.
|
||||
ne0 = ne1 = 0
|
||||
for i in succs[i0]:
|
||||
if free[i]:
|
||||
e = nexits[i] - 1
|
||||
nexits[i] = e
|
||||
if e == 0:
|
||||
ne0 += 1
|
||||
elif e == 1:
|
||||
ne1 += 1
|
||||
return ne0 == 0 and ne1 < 2
|
||||
|
||||
def increxits(i0):
|
||||
for i in succs[i0]:
|
||||
if free[i]:
|
||||
nexits[i] += 1
|
||||
|
||||
# Generate the first move.
|
||||
def first():
|
||||
if n < 1:
|
||||
return
|
||||
|
||||
# Initialize board structures.
|
||||
for i in xrange(n**2):
|
||||
free[i] = 1
|
||||
nexits[i] = len(succs[i])
|
||||
|
||||
# Since we're looking for a cycle, it doesn't matter where we
|
||||
# start. Starting in a corner makes the 2nd move easy.
|
||||
corner = coords2index(0, 0)
|
||||
free[corner] = 0
|
||||
decrexits(corner)
|
||||
self.lastij = corner
|
||||
yield corner
|
||||
increxits(corner)
|
||||
free[corner] = 1
|
||||
|
||||
# Generate the second moves.
|
||||
def second():
|
||||
corner = coords2index(0, 0)
|
||||
assert self.lastij == corner # i.e., we started in the corner
|
||||
if n < 3:
|
||||
return
|
||||
assert nexits[corner] == len(succs[corner]) == 2
|
||||
assert coords2index(1, 2) in succs[corner]
|
||||
assert coords2index(2, 1) in succs[corner]
|
||||
# Only two choices. Whichever we pick, the other must be the
|
||||
# square picked on move n**2, as it's the only way to get back
|
||||
# to (0, 0). Save its index in self.final so that moves before
|
||||
# the last know it must be kept free.
|
||||
for i, j in (1, 2), (2, 1):
|
||||
this, final = coords2index(i, j), coords2index(3-i, 3-j)
|
||||
assert free[this] and free[final]
|
||||
self.final = final
|
||||
nexits[final] += 1 # it has an exit back to 0,0
|
||||
|
||||
free[this] = 0
|
||||
decrexits(this)
|
||||
self.lastij = this
|
||||
yield this
|
||||
increxits(this)
|
||||
free[this] = 1
|
||||
|
||||
nexits[final] -= 1
|
||||
|
||||
# Generate moves 3 thru n**2-1.
|
||||
def advance():
|
||||
# If some successor has only one exit, must take it.
|
||||
# Else favor successors with fewer exits.
|
||||
candidates = []
|
||||
for i in succs[self.lastij]:
|
||||
if free[i]:
|
||||
e = nexits[i]
|
||||
assert e > 0, "else decrexits() pruning flawed"
|
||||
if e == 1:
|
||||
candidates = [(e, i)]
|
||||
break
|
||||
candidates.append((e, i))
|
||||
else:
|
||||
candidates.sort()
|
||||
|
||||
for e, i in candidates:
|
||||
if i != self.final:
|
||||
if decrexits(i):
|
||||
free[i] = 0
|
||||
self.lastij = i
|
||||
yield i
|
||||
free[i] = 1
|
||||
increxits(i)
|
||||
|
||||
# Generate moves 3 thru n**2-1. Alternative version using a
|
||||
# stronger (but more expensive) heuristic to order successors.
|
||||
# Since the # of backtracking levels is n**2, a poor move early on
|
||||
# can take eons to undo. Smallest n for which this matters a lot is
|
||||
# n==52.
|
||||
def advance_hard(midpoint=(n-1)/2.0):
|
||||
# If some successor has only one exit, must take it.
|
||||
# Else favor successors with fewer exits.
|
||||
# Break ties via max distance from board centerpoint (favor
|
||||
# corners and edges whenever possible).
|
||||
candidates = []
|
||||
for i in succs[self.lastij]:
|
||||
if free[i]:
|
||||
e = nexits[i]
|
||||
assert e > 0, "else decrexits() pruning flawed"
|
||||
if e == 1:
|
||||
candidates = [(e, 0, i)]
|
||||
break
|
||||
i1, j1 = divmod(i, n)
|
||||
d = (i1 - midpoint)**2 + (j1 - midpoint)**2
|
||||
candidates.append((e, -d, i))
|
||||
else:
|
||||
candidates.sort()
|
||||
|
||||
for e, d, i in candidates:
|
||||
if i != self.final:
|
||||
if decrexits(i):
|
||||
free[i] = 0
|
||||
self.lastij = i
|
||||
yield i
|
||||
free[i] = 1
|
||||
increxits(i)
|
||||
|
||||
# Generate the last move.
|
||||
def last():
|
||||
assert self.final in succs[self.lastij]
|
||||
yield self.final
|
||||
|
||||
if n <= 1:
|
||||
self.rowgenerators = [first]
|
||||
else:
|
||||
self.rowgenerators = [first, second] + \
|
||||
[hard and advance_hard or advance] * (n**2 - 3) + \
|
||||
[last]
|
||||
|
||||
# Generate solutions.
|
||||
def solve(self):
|
||||
for x in conjoin(self.rowgenerators):
|
||||
yield x
|
||||
|
||||
def printsolution(self, x):
|
||||
n = self.n
|
||||
assert len(x) == n**2
|
||||
w = len(str(n**2 + 1))
|
||||
format = "%" + str(w) + "d"
|
||||
|
||||
squares = [[None] * n for i in range(n)]
|
||||
k = 1
|
||||
for i in x:
|
||||
i1, j1 = divmod(i, n)
|
||||
squares[i1][j1] = format % k
|
||||
k += 1
|
||||
|
||||
sep = "+" + ("-" * w + "+") * n
|
||||
print sep
|
||||
for i in range(n):
|
||||
row = squares[i]
|
||||
print "|" + "|".join(row) + "|"
|
||||
print sep
|
||||
|
||||
conjoin_tests = """
|
||||
|
||||
Generate the 3-bit binary numbers in order. This illustrates dumbest-
|
||||
possible use of conjoin, just to generate the full cross-product.
|
||||
|
||||
>>> for c in conjoin([lambda: (0, 1)] * 3):
|
||||
>>> for c in conjoin([lambda: iter((0, 1))] * 3):
|
||||
... print c
|
||||
[0, 0, 0]
|
||||
[0, 0, 1]
|
||||
@ -986,7 +1217,7 @@ generated sequence, you need to copy its results.
|
||||
... yield x[:]
|
||||
|
||||
>>> for n in range(10):
|
||||
... all = list(gencopy(conjoin([lambda: (0, 1)] * n)))
|
||||
... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n)))
|
||||
... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n
|
||||
0 1 1 1
|
||||
1 2 1 1
|
||||
@ -1048,6 +1279,64 @@ Solution 2
|
||||
|
||||
>>> print count, "solutions in all."
|
||||
92 solutions in all.
|
||||
|
||||
And run a Knight's Tour on a 10x10 board. Note that there are about
|
||||
20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.
|
||||
|
||||
>>> k = Knights(10)
|
||||
>>> LIMIT = 2
|
||||
>>> count = 0
|
||||
>>> for x in k.solve():
|
||||
... count += 1
|
||||
... if count <= LIMIT:
|
||||
... print "Solution", count
|
||||
... k.printsolution(x)
|
||||
... else:
|
||||
... break
|
||||
Solution 1
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 87| 98| 91| 80| 77| 84| 53| 46| 65| 44|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 90| 23| 88| 95| 70| 79| 68| 83| 14| 17|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 97| 92| 21| 78| 81| 94| 19| 16| 45| 66|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 22| 89| 96| 93| 20| 69| 82| 67| 18| 15|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
Solution 2
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 87| 98| 89| 80| 77| 84| 53| 46| 65| 44|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 90| 23| 92| 95| 70| 79| 68| 83| 14| 17|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 97| 88| 21| 78| 81| 94| 19| 16| 45| 66|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
| 22| 91| 96| 93| 20| 69| 82| 67| 18| 15|
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
"""
|
||||
|
||||
__test__ = {"tut": tutorial_tests,
|
||||
|
Loading…
x
Reference in New Issue
Block a user