godotengine/servers/rendering/rendering_device.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1739 lines
69 KiB
C++
Raw Permalink Normal View History

/**************************************************************************/
/* rendering_device.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#pragma once
#include "core/object/worker_thread_pool.h"
#include "core/os/condition_variable.h"
#include "core/os/thread_safe.h"
#include "core/templates/local_vector.h"
#include "core/templates/rid_owner.h"
#include "core/variant/typed_array.h"
#include "servers/display_server.h"
#include "servers/rendering/rendering_device_commons.h"
#include "servers/rendering/rendering_device_driver.h"
#include "servers/rendering/rendering_device_graph.h"
class RDTextureFormat;
class RDTextureView;
class RDAttachmentFormat;
class RDSamplerState;
class RDVertexAttribute;
class RDShaderSource;
class RDShaderSPIRV;
2022-08-31 19:24:04 +02:00
class RDUniform;
class RDPipelineRasterizationState;
class RDPipelineMultisampleState;
class RDPipelineDepthStencilState;
class RDPipelineColorBlendState;
class RDFramebufferPass;
class RDPipelineSpecializationConstant;
class RenderingDevice : public RenderingDeviceCommons {
GDCLASS(RenderingDevice, Object)
_THREAD_SAFE_CLASS_
private:
Thread::ID render_thread_id;
public:
typedef int64_t DrawListID;
typedef int64_t ComputeListID;
typedef void (*InvalidationCallback)(void *);
private:
static RenderingDevice *singleton;
RenderingContextDriver *context = nullptr;
RenderingDeviceDriver *driver = nullptr;
RenderingContextDriver::Device device;
bool local_device_processing = false;
bool is_main_instance = false;
protected:
static void _bind_methods();
#ifndef DISABLE_DEPRECATED
RID _shader_create_from_bytecode_bind_compat_79606(const Vector<uint8_t> &p_shader_binary);
RID _texture_create_from_extension_compat_105570(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_usage, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers);
static void _bind_compatibility_methods();
#endif
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
public:
//base numeric ID for all types
enum {
INVALID_FORMAT_ID = -1
};
enum IDType {
ID_TYPE_FRAMEBUFFER_FORMAT,
ID_TYPE_VERTEX_FORMAT,
ID_TYPE_DRAW_LIST,
ID_TYPE_COMPUTE_LIST = 4,
ID_TYPE_MAX,
ID_BASE_SHIFT = 58, // 5 bits for ID types.
ID_MASK = (ID_BASE_SHIFT - 1),
};
private:
HashMap<RID, HashSet<RID>> dependency_map; // IDs to IDs that depend on it.
HashMap<RID, HashSet<RID>> reverse_dependency_map; // Same as above, but in reverse.
void _add_dependency(RID p_id, RID p_depends_on);
void _free_dependencies(RID p_id);
private:
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
// These are temporary buffers on CPU memory that hold
// the information until the CPU fetches it and places it
// either on GPU buffers, or images (textures). It ensures
// updates are properly synchronized with whatever the
// GPU is doing.
//
// The logic here is as follows, only 3 of these
// blocks are created at the beginning (one per frame)
// they can each belong to a frame (assigned to current when
// used) and they can only be reused after the same frame is
// recycled.
//
// When CPU requires to allocate more than what is available,
// more of these buffers are created. If a limit is reached,
// then a fence will ensure will wait for blocks allocated
// in previous frames are processed. If that fails, then
// another fence will ensure everything pending for the current
// frame is processed (effectively stalling).
//
// See the comments in the code to understand better how it works.
enum StagingRequiredAction {
STAGING_REQUIRED_ACTION_NONE,
STAGING_REQUIRED_ACTION_FLUSH_AND_STALL_ALL,
STAGING_REQUIRED_ACTION_STALL_PREVIOUS,
};
struct StagingBufferBlock {
RDD::BufferID driver_id;
uint64_t frame_used = 0;
uint32_t fill_amount = 0;
};
struct StagingBuffers {
Vector<StagingBufferBlock> blocks;
int current = 0;
uint32_t block_size = 0;
uint64_t max_size = 0;
BitField<RDD::BufferUsageBits> usage_bits = {};
bool used = false;
};
Error _staging_buffer_allocate(StagingBuffers &p_staging_buffers, uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, StagingRequiredAction &r_required_action, bool p_can_segment = true);
void _staging_buffer_execute_required_action(StagingBuffers &p_staging_buffers, StagingRequiredAction p_required_action);
Error _insert_staging_block(StagingBuffers &p_staging_buffers);
StagingBuffers upload_staging_buffers;
StagingBuffers download_staging_buffers;
struct Buffer {
RDD::BufferID driver_id;
uint32_t size = 0;
BitField<RDD::BufferUsageBits> usage = {};
RDG::ResourceTracker *draw_tracker = nullptr;
int32_t transfer_worker_index = -1;
uint64_t transfer_worker_operation = 0;
};
Buffer *_get_buffer_from_owner(RID p_buffer);
Error _buffer_initialize(Buffer *p_buffer, const uint8_t *p_data, size_t p_data_size, uint32_t p_required_align = 32);
void update_perf_report();
// Flag for batching descriptor sets.
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
bool descriptor_set_batching = true;
// When true, the final draw call that copies our offscreen result into the Swapchain is put into its
// own cmd buffer, so that the whole rendering can start early instead of having to wait for the
// swapchain semaphore to be signaled (which causes bubbles).
bool split_swapchain_into_its_own_cmd_buffer = true;
uint32_t gpu_copy_count = 0;
uint32_t copy_bytes_count = 0;
uint32_t prev_gpu_copy_count = 0;
uint32_t prev_copy_bytes_count = 0;
RID_Owner<Buffer, true> uniform_buffer_owner;
RID_Owner<Buffer, true> storage_buffer_owner;
RID_Owner<Buffer, true> texture_buffer_owner;
struct BufferGetDataRequest {
uint32_t frame_local_index = 0;
uint32_t frame_local_count = 0;
Callable callback;
uint32_t size = 0;
};
public:
Error buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size);
Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data);
Error buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size);
Vector<uint8_t> buffer_get_data(RID p_buffer, uint32_t p_offset = 0, uint32_t p_size = 0); // This causes stall, only use to retrieve large buffers for saving.
Error buffer_get_data_async(RID p_buffer, const Callable &p_callback, uint32_t p_offset = 0, uint32_t p_size = 0);
uint64_t buffer_get_device_address(RID p_buffer);
private:
/******************/
/**** CALLBACK ****/
/******************/
public:
enum CallbackResourceType {
CALLBACK_RESOURCE_TYPE_TEXTURE,
CALLBACK_RESOURCE_TYPE_BUFFER,
};
enum CallbackResourceUsage {
CALLBACK_RESOURCE_USAGE_NONE,
CALLBACK_RESOURCE_USAGE_COPY_FROM,
CALLBACK_RESOURCE_USAGE_COPY_TO,
CALLBACK_RESOURCE_USAGE_RESOLVE_FROM,
CALLBACK_RESOURCE_USAGE_RESOLVE_TO,
CALLBACK_RESOURCE_USAGE_UNIFORM_BUFFER_READ,
CALLBACK_RESOURCE_USAGE_INDIRECT_BUFFER_READ,
CALLBACK_RESOURCE_USAGE_TEXTURE_BUFFER_READ,
CALLBACK_RESOURCE_USAGE_TEXTURE_BUFFER_READ_WRITE,
CALLBACK_RESOURCE_USAGE_STORAGE_BUFFER_READ,
CALLBACK_RESOURCE_USAGE_STORAGE_BUFFER_READ_WRITE,
CALLBACK_RESOURCE_USAGE_VERTEX_BUFFER_READ,
CALLBACK_RESOURCE_USAGE_INDEX_BUFFER_READ,
CALLBACK_RESOURCE_USAGE_TEXTURE_SAMPLE,
CALLBACK_RESOURCE_USAGE_STORAGE_IMAGE_READ,
CALLBACK_RESOURCE_USAGE_STORAGE_IMAGE_READ_WRITE,
CALLBACK_RESOURCE_USAGE_ATTACHMENT_COLOR_READ_WRITE,
CALLBACK_RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ_WRITE,
CALLBACK_RESOURCE_USAGE_ATTACHMENT_FRAGMENT_SHADING_RATE_READ,
CALLBACK_RESOURCE_USAGE_ATTACHMENT_FRAGMENT_DENSITY_MAP_READ,
CALLBACK_RESOURCE_USAGE_MAX
};
struct CallbackResource {
RID rid;
CallbackResourceType type = CALLBACK_RESOURCE_TYPE_TEXTURE;
CallbackResourceUsage usage = CALLBACK_RESOURCE_USAGE_NONE;
};
Error driver_callback_add(RDD::DriverCallback p_callback, void *p_userdata, VectorView<CallbackResource> p_resources);
/*****************/
/**** TEXTURE ****/
/*****************/
// In modern APIs, the concept of textures may not exist;
// instead there is the image (the memory pretty much,
// the view (how the memory is interpreted) and the
// sampler (how it's sampled from the shader).
//
// Texture here includes the first two stages, but
// It's possible to create textures sharing the image
// but with different views. The main use case for this
// is textures that can be read as both SRGB/Linear,
// or slices of a texture (a mipmap, a layer, a 3D slice)
// for a framebuffer to render into it.
struct Texture {
struct SharedFallback {
uint32_t revision = 1;
RDD::TextureID texture;
RDG::ResourceTracker *texture_tracker = nullptr;
RDD::BufferID buffer;
RDG::ResourceTracker *buffer_tracker = nullptr;
bool raw_reinterpretation = false;
};
RDD::TextureID driver_id;
TextureType type = TEXTURE_TYPE_MAX;
DataFormat format = DATA_FORMAT_MAX;
TextureSamples samples = TEXTURE_SAMPLES_MAX;
TextureSliceType slice_type = TEXTURE_SLICE_MAX;
Rect2i slice_rect;
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
uint32_t layers = 0;
uint32_t mipmaps = 0;
uint32_t usage_flags = 0;
uint32_t base_mipmap = 0;
uint32_t base_layer = 0;
Vector<DataFormat> allowed_shared_formats;
bool is_resolve_buffer = false;
bool is_discardable = false;
bool has_initial_data = false;
BitField<RDD::TextureAspectBits> read_aspect_flags = {};
BitField<RDD::TextureAspectBits> barrier_aspect_flags = {};
bool bound = false; // Bound to framebuffer.
RID owner;
RDG::ResourceTracker *draw_tracker = nullptr;
HashMap<Rect2i, RDG::ResourceTracker *> *slice_trackers = nullptr;
SharedFallback *shared_fallback = nullptr;
int32_t transfer_worker_index = -1;
uint64_t transfer_worker_operation = 0;
RDD::TextureSubresourceRange barrier_range() const {
RDD::TextureSubresourceRange r;
r.aspect = barrier_aspect_flags;
r.base_mipmap = base_mipmap;
r.mipmap_count = mipmaps;
r.base_layer = base_layer;
r.layer_count = layers;
return r;
}
TextureFormat texture_format() const {
TextureFormat tf;
tf.format = format;
tf.width = width;
tf.height = height;
tf.depth = depth;
tf.array_layers = layers;
tf.mipmaps = mipmaps;
tf.texture_type = type;
tf.samples = samples;
tf.usage_bits = usage_flags;
tf.shareable_formats = allowed_shared_formats;
tf.is_resolve_buffer = is_resolve_buffer;
tf.is_discardable = is_discardable;
return tf;
}
};
RID_Owner<Texture, true> texture_owner;
uint32_t texture_upload_region_size_px = 0;
uint32_t texture_download_region_size_px = 0;
Vector<uint8_t> _texture_get_data(Texture *tex, uint32_t p_layer, bool p_2d = false);
uint32_t _texture_layer_count(Texture *p_texture) const;
uint32_t _texture_alignment(Texture *p_texture) const;
Error _texture_initialize(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, bool p_immediate_flush = false);
void _texture_check_shared_fallback(Texture *p_texture);
void _texture_update_shared_fallback(RID p_texture_rid, Texture *p_texture, bool p_for_writing);
void _texture_free_shared_fallback(Texture *p_texture);
void _texture_copy_shared(RID p_src_texture_rid, Texture *p_src_texture, RID p_dst_texture_rid, Texture *p_dst_texture);
void _texture_create_reinterpret_buffer(Texture *p_texture);
uint32_t _texture_vrs_method_to_usage_bits() const;
struct TextureGetDataRequest {
uint32_t frame_local_index = 0;
uint32_t frame_local_count = 0;
Callable callback;
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
uint32_t mipmaps = 0;
RDD::DataFormat format = RDD::DATA_FORMAT_MAX;
};
public:
struct TextureView {
DataFormat format_override = DATA_FORMAT_MAX; // // Means, use same as format.
TextureSwizzle swizzle_r = TEXTURE_SWIZZLE_R;
TextureSwizzle swizzle_g = TEXTURE_SWIZZLE_G;
TextureSwizzle swizzle_b = TEXTURE_SWIZZLE_B;
TextureSwizzle swizzle_a = TEXTURE_SWIZZLE_A;
bool operator==(const TextureView &p_other) const {
if (format_override != p_other.format_override) {
return false;
} else if (swizzle_r != p_other.swizzle_r) {
return false;
} else if (swizzle_g != p_other.swizzle_g) {
return false;
} else if (swizzle_b != p_other.swizzle_b) {
return false;
} else if (swizzle_a != p_other.swizzle_a) {
return false;
} else {
return true;
}
}
};
RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
RID texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_usage, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers, uint64_t p_mipmaps = 1);
RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D, uint32_t p_layers = 0);
Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data);
Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer); // CPU textures will return immediately, while GPU textures will most likely force a flush
Error texture_get_data_async(RID p_texture, uint32_t p_layer, const Callable &p_callback);
bool texture_is_format_supported_for_usage(DataFormat p_format, BitField<TextureUsageBits> p_usage) const;
bool texture_is_shared(RID p_texture);
bool texture_is_valid(RID p_texture);
TextureFormat texture_get_format(RID p_texture);
Size2i texture_size(RID p_texture);
#ifndef DISABLE_DEPRECATED
uint64_t texture_get_native_handle(RID p_texture);
#endif
2019-08-26 17:43:58 -03:00
Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer);
Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers);
Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture);
void texture_set_discardable(RID p_texture, bool p_discardable);
bool texture_is_discardable(RID p_texture);
2019-10-03 17:39:08 -03:00
public:
/*************/
/**** VRS ****/
/*************/
enum VRSMethod {
VRS_METHOD_NONE,
VRS_METHOD_FRAGMENT_SHADING_RATE,
VRS_METHOD_FRAGMENT_DENSITY_MAP,
};
private:
VRSMethod vrs_method = VRS_METHOD_NONE;
DataFormat vrs_format = DATA_FORMAT_MAX;
Size2i vrs_texel_size;
static RDG::ResourceUsage _vrs_usage_from_method(VRSMethod p_method);
static RDD::PipelineStageBits _vrs_stages_from_method(VRSMethod p_method);
static RDD::TextureLayout _vrs_layout_from_method(VRSMethod p_method);
void _vrs_detect_method();
public:
VRSMethod vrs_get_method() const;
DataFormat vrs_get_format() const;
Size2i vrs_get_texel_size() const;
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
// In modern APIs, generally, framebuffers work similar to how they
// do in OpenGL, with the exception that
// the "format" (RDD::RenderPassID) is not dynamic
// and must be more or less the same as the one
// used for the render pipelines.
struct AttachmentFormat {
enum : uint32_t {
UNUSED_ATTACHMENT = 0xFFFFFFFF
};
DataFormat format;
TextureSamples samples;
uint32_t usage_flags;
AttachmentFormat() {
format = DATA_FORMAT_R8G8B8A8_UNORM;
samples = TEXTURE_SAMPLES_1;
usage_flags = 0;
}
};
struct FramebufferPass {
Vector<int32_t> color_attachments;
Vector<int32_t> input_attachments;
Vector<int32_t> resolve_attachments;
Vector<int32_t> preserve_attachments;
int32_t depth_attachment = ATTACHMENT_UNUSED;
};
typedef int64_t FramebufferFormatID;
private:
struct FramebufferFormatKey {
Vector<AttachmentFormat> attachments;
Vector<FramebufferPass> passes;
uint32_t view_count = 1;
VRSMethod vrs_method = VRS_METHOD_NONE;
int32_t vrs_attachment = ATTACHMENT_UNUSED;
Size2i vrs_texel_size;
bool operator<(const FramebufferFormatKey &p_key) const {
if (vrs_texel_size != p_key.vrs_texel_size) {
return vrs_texel_size < p_key.vrs_texel_size;
}
if (vrs_attachment != p_key.vrs_attachment) {
return vrs_attachment < p_key.vrs_attachment;
}
if (vrs_method != p_key.vrs_method) {
return vrs_method < p_key.vrs_method;
}
if (view_count != p_key.view_count) {
return view_count < p_key.view_count;
}
uint32_t pass_size = passes.size();
uint32_t key_pass_size = p_key.passes.size();
if (pass_size != key_pass_size) {
return pass_size < key_pass_size;
}
const FramebufferPass *pass_ptr = passes.ptr();
const FramebufferPass *key_pass_ptr = p_key.passes.ptr();
for (uint32_t i = 0; i < pass_size; i++) {
{ // Compare color attachments.
uint32_t attachment_size = pass_ptr[i].color_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].color_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].color_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].color_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare input attachments.
uint32_t attachment_size = pass_ptr[i].input_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].input_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].input_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].input_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare resolve attachments.
uint32_t attachment_size = pass_ptr[i].resolve_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].resolve_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].resolve_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].resolve_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare preserve attachments.
uint32_t attachment_size = pass_ptr[i].preserve_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].preserve_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].preserve_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].preserve_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
if (pass_ptr[i].depth_attachment != key_pass_ptr[i].depth_attachment) {
return pass_ptr[i].depth_attachment < key_pass_ptr[i].depth_attachment;
}
}
int as = attachments.size();
int bs = p_key.attachments.size();
if (as != bs) {
return as < bs;
}
const AttachmentFormat *af_a = attachments.ptr();
const AttachmentFormat *af_b = p_key.attachments.ptr();
for (int i = 0; i < as; i++) {
const AttachmentFormat &a = af_a[i];
const AttachmentFormat &b = af_b[i];
if (a.format != b.format) {
return a.format < b.format;
}
if (a.samples != b.samples) {
return a.samples < b.samples;
}
if (a.usage_flags != b.usage_flags) {
return a.usage_flags < b.usage_flags;
}
}
return false; // Equal.
}
};
static RDD::RenderPassID _render_pass_create(RenderingDeviceDriver *p_driver, const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, VectorView<RDD::AttachmentLoadOp> p_load_ops, VectorView<RDD::AttachmentStoreOp> p_store_ops, uint32_t p_view_count = 1, VRSMethod p_vrs_method = VRS_METHOD_NONE, int32_t p_vrs_attachment = -1, Size2i p_vrs_texel_size = Size2i(), Vector<TextureSamples> *r_samples = nullptr);
static RDD::RenderPassID _render_pass_create_from_graph(RenderingDeviceDriver *p_driver, VectorView<RDD::AttachmentLoadOp> p_load_ops, VectorView<RDD::AttachmentStoreOp> p_store_ops, void *p_user_data);
// This is a cache and it's never freed, it ensures
// IDs for a given format are always unique.
RBMap<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
struct FramebufferFormat {
const RBMap<FramebufferFormatKey, FramebufferFormatID>::Element *E;
RDD::RenderPassID render_pass; // Here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec).
Vector<TextureSamples> pass_samples;
uint32_t view_count = 1; // Number of views.
};
HashMap<FramebufferFormatID, FramebufferFormat> framebuffer_formats;
struct Framebuffer {
RenderingDevice *rendering_device = nullptr;
FramebufferFormatID format_id;
uint32_t storage_mask = 0;
Vector<RID> texture_ids;
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
RDG::FramebufferCache *framebuffer_cache = nullptr;
Size2 size;
uint32_t view_count;
};
RID_Owner<Framebuffer, true> framebuffer_owner;
public:
// This ID is warranted to be unique for the same formats, does not need to be freed
FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count = 1, int32_t p_vrs_attachment = -1);
FramebufferFormatID framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count = 1, int32_t p_vrs_attachment = -1);
FramebufferFormatID framebuffer_format_create_empty(TextureSamples p_samples = TEXTURE_SAMPLES_1);
TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass = 0);
RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples = TEXTURE_SAMPLES_1, FramebufferFormatID p_format_check = INVALID_ID);
bool framebuffer_is_valid(RID p_framebuffer) const;
void framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata);
FramebufferFormatID framebuffer_get_format(RID p_framebuffer);
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
Size2 framebuffer_get_size(RID p_framebuffer);
/*****************/
/**** SAMPLER ****/
/*****************/
private:
RID_Owner<RDD::SamplerID, true> sampler_owner;
public:
RID sampler_create(const SamplerState &p_state);
bool sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const;
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
typedef int64_t VertexFormatID;
private:
// Vertex buffers in Vulkan are similar to how
// they work in OpenGL, except that instead of
// an attribute index, there is a buffer binding
// index (for binding the buffers in real-time)
// and a location index (what is used in the shader).
//
// This mapping is done here internally, and it's not
// exposed.
RID_Owner<Buffer, true> vertex_buffer_owner;
struct VertexDescriptionKey {
Vector<VertexAttribute> vertex_formats;
bool operator==(const VertexDescriptionKey &p_key) const {
int vdc = vertex_formats.size();
int vdck = p_key.vertex_formats.size();
if (vdc != vdck) {
return false;
} else {
const VertexAttribute *a_ptr = vertex_formats.ptr();
const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &a = a_ptr[i];
const VertexAttribute &b = b_ptr[i];
if (a.location != b.location) {
return false;
}
if (a.offset != b.offset) {
return false;
}
if (a.format != b.format) {
return false;
}
if (a.stride != b.stride) {
return false;
}
if (a.frequency != b.frequency) {
return false;
}
}
return true; // They are equal.
}
}
uint32_t hash() const {
int vdc = vertex_formats.size();
uint32_t h = hash_murmur3_one_32(vdc);
const VertexAttribute *ptr = vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &vd = ptr[i];
h = hash_murmur3_one_32(vd.location, h);
h = hash_murmur3_one_32(vd.offset, h);
h = hash_murmur3_one_32(vd.format, h);
h = hash_murmur3_one_32(vd.stride, h);
h = hash_murmur3_one_32(vd.frequency, h);
}
return hash_fmix32(h);
}
};
struct VertexDescriptionHash {
static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
return p_key.hash();
}
};
// This is a cache and it's never freed, it ensures that
// ID used for a specific format always remain the same.
HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;
struct VertexDescriptionCache {
Vector<VertexAttribute> vertex_formats;
RDD::VertexFormatID driver_id;
};
HashMap<VertexFormatID, VertexDescriptionCache> vertex_formats;
struct VertexArray {
RID buffer;
VertexFormatID description;
int vertex_count = 0;
uint32_t max_instances_allowed = 0;
Vector<RDD::BufferID> buffers; // Not owned, just referenced.
Vector<RDG::ResourceTracker *> draw_trackers; // Not owned, just referenced.
Vector<uint64_t> offsets;
Vector<int32_t> transfer_worker_indices;
Vector<uint64_t> transfer_worker_operations;
HashSet<RID> untracked_buffers;
};
RID_Owner<VertexArray, true> vertex_array_owner;
struct IndexBuffer : public Buffer {
uint32_t max_index = 0; // Used for validation.
uint32_t index_count = 0;
IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16;
bool supports_restart_indices = false;
};
RID_Owner<IndexBuffer, true> index_buffer_owner;
struct IndexArray {
uint32_t max_index = 0; // Remember the maximum index here too, for validation.
RDD::BufferID driver_id; // Not owned, inherited from index buffer.
RDG::ResourceTracker *draw_tracker = nullptr; // Not owned, inherited from index buffer.
uint32_t offset = 0;
uint32_t indices = 0;
IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16;
bool supports_restart_indices = false;
int32_t transfer_worker_index = -1;
uint64_t transfer_worker_operation = 0;
};
RID_Owner<IndexArray, true> index_array_owner;
public:
enum BufferCreationBits {
BUFFER_CREATION_DEVICE_ADDRESS_BIT = (1 << 0),
BUFFER_CREATION_AS_STORAGE_BIT = (1 << 1),
};
enum StorageBufferUsage {
STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT = (1 << 0),
};
RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<BufferCreationBits> p_creation_bits = 0);
// This ID is warranted to be unique for the same formats, does not need to be freed
VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_descriptions);
RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets = Vector<uint64_t>());
RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false, BitField<BufferCreationBits> p_creation_bits = 0);
RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
/****************/
/**** SHADER ****/
/****************/
// Some APIs (e.g., Vulkan) specifies a really complex behavior for the application
// in order to tell when descriptor sets need to be re-bound (or not).
// "When binding a descriptor set (see Descriptor Set Binding) to set
// number N, if the previously bound descriptor sets for sets zero
// through N-1 were all bound using compatible pipeline layouts,
// then performing this binding does not disturb any of the lower numbered sets.
// If, additionally, the previous bound descriptor set for set N was
// bound using a pipeline layout compatible for set N, then the bindings
// in sets numbered greater than N are also not disturbed."
// As a result, we need to figure out quickly when something is no longer "compatible".
// in order to avoid costly rebinds.
2021-03-22 21:04:55 +11:00
private:
struct UniformSetFormat {
Vector<ShaderUniform> uniforms;
_FORCE_INLINE_ bool operator<(const UniformSetFormat &p_other) const {
if (uniforms.size() != p_other.uniforms.size()) {
return uniforms.size() < p_other.uniforms.size();
}
for (int i = 0; i < uniforms.size(); i++) {
if (uniforms[i] < p_other.uniforms[i]) {
return true;
} else if (p_other.uniforms[i] < uniforms[i]) {
return false;
}
}
return false;
}
};
// Always grows, never shrinks, ensuring unique IDs, but we assume
// the amount of formats will never be a problem, as the amount of shaders
// in a game is limited.
RBMap<UniformSetFormat, uint32_t> uniform_set_format_cache;
// Shaders in Vulkan are just pretty much
// precompiled blocks of SPIR-V bytecode. They
// are most likely not really compiled to host
// assembly until a pipeline is created.
//
// When supplying the shaders, this implementation
// will use the reflection abilities of glslang to
// understand and cache everything required to
// create and use the descriptor sets (Vulkan's
// biggest pain).
//
// Additionally, hashes are created for every set
// to do quick validation and ensuring the user
// does not submit something invalid.
struct Shader : public ShaderReflection {
String name; // Used for debug.
RDD::ShaderID driver_id;
uint32_t layout_hash = 0;
BitField<RDD::PipelineStageBits> stage_bits = {};
Vector<uint32_t> set_formats;
};
String _shader_uniform_debug(RID p_shader, int p_set = -1);
RID_Owner<Shader, true> shader_owner;
#ifndef DISABLE_DEPRECATED
public:
enum BarrierMask {
BARRIER_MASK_VERTEX = 1,
BARRIER_MASK_FRAGMENT = 8,
BARRIER_MASK_COMPUTE = 2,
BARRIER_MASK_TRANSFER = 4,
BARRIER_MASK_RASTER = BARRIER_MASK_VERTEX | BARRIER_MASK_FRAGMENT, // 9,
BARRIER_MASK_ALL_BARRIERS = 0x7FFF, // all flags set
BARRIER_MASK_NO_BARRIER = 0x8000,
};
enum InitialAction {
INITIAL_ACTION_LOAD,
INITIAL_ACTION_CLEAR,
INITIAL_ACTION_DISCARD,
INITIAL_ACTION_MAX,
INITIAL_ACTION_CLEAR_REGION = INITIAL_ACTION_CLEAR,
INITIAL_ACTION_CLEAR_REGION_CONTINUE = INITIAL_ACTION_CLEAR,
INITIAL_ACTION_KEEP = INITIAL_ACTION_LOAD,
INITIAL_ACTION_DROP = INITIAL_ACTION_DISCARD,
INITIAL_ACTION_CONTINUE = INITIAL_ACTION_LOAD,
};
enum FinalAction {
FINAL_ACTION_STORE,
FINAL_ACTION_DISCARD,
FINAL_ACTION_MAX,
FINAL_ACTION_READ = FINAL_ACTION_STORE,
FINAL_ACTION_CONTINUE = FINAL_ACTION_STORE,
};
void barrier(BitField<BarrierMask> p_from = BARRIER_MASK_ALL_BARRIERS, BitField<BarrierMask> p_to = BARRIER_MASK_ALL_BARRIERS);
void full_barrier();
void draw_command_insert_label(String p_label_name, const Color &p_color = Color(1, 1, 1, 1));
Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
Error draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids);
Vector<int64_t> _draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const TypedArray<RID> &p_storage_textures = TypedArray<RID>());
Vector<int64_t> _draw_list_switch_to_next_pass_split(uint32_t p_splits);
private:
void _draw_list_end_bind_compat_81356(BitField<BarrierMask> p_post_barrier);
void _compute_list_end_bind_compat_81356(BitField<BarrierMask> p_post_barrier);
void _barrier_bind_compat_81356(BitField<BarrierMask> p_from, BitField<BarrierMask> p_to);
void _draw_list_end_bind_compat_84976(BitField<BarrierMask> p_post_barrier);
void _compute_list_end_bind_compat_84976(BitField<BarrierMask> p_post_barrier);
InitialAction _convert_initial_action_84976(InitialAction p_old_initial_action);
FinalAction _convert_final_action_84976(FinalAction p_old_final_action);
DrawListID _draw_list_begin_bind_compat_84976(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const TypedArray<RID> &p_storage_textures);
ComputeListID _compute_list_begin_bind_compat_84976(bool p_allow_draw_overlap);
Error _buffer_update_bind_compat_84976(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier);
Error _buffer_clear_bind_compat_84976(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier);
Error _texture_update_bind_compat_84976(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier);
Error _texture_copy_bind_compat_84976(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier);
Error _texture_clear_bind_compat_84976(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier);
Error _texture_resolve_multisample_bind_compat_84976(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier);
FramebufferFormatID _screen_get_framebuffer_format_bind_compat_87340() const;
DrawListID _draw_list_begin_bind_compat_90993(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region);
DrawListID _draw_list_begin_bind_compat_98670(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, uint32_t p_breadcrumb);
RID _uniform_buffer_create_bind_compat_101561(uint32_t p_size_bytes, const Vector<uint8_t> &p_data);
RID _vertex_buffer_create_bind_compat_101561(uint32_t p_size_bytes, const Vector<uint8_t> &p_data, bool p_use_as_storage);
RID _index_buffer_create_bind_compat_101561(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data, bool p_use_restart_indices);
RID _storage_buffer_create_bind_compat_101561(uint32_t p_size, const Vector<uint8_t> &p_data, BitField<StorageBufferUsage> p_usage);
#endif
public:
RenderingDeviceDriver *get_device_driver() const { return driver; }
2024-05-17 09:55:42 +02:00
RenderingContextDriver *get_context_driver() const { return context; }
const RDD::Capabilities &get_device_capabilities() const { return driver->get_capabilities(); }
bool has_feature(const Features p_feature) const;
Vector<uint8_t> shader_compile_spirv_from_source(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language = SHADER_LANGUAGE_GLSL, String *r_error = nullptr, bool p_allow_cache = true);
Vector<uint8_t> shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
RID shader_create_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
RID shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, RID p_placeholder = RID());
RID shader_create_placeholder();
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
void shader_destroy_modules(RID p_shader);
uint64_t shader_get_vertex_input_attribute_mask(RID p_shader);
/******************/
/**** UNIFORMS ****/
/******************/
String get_perf_report() const;
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
/*****************/
/**** BUFFERS ****/
/*****************/
RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<BufferCreationBits> p_creation_bits = 0);
RID storage_buffer_create(uint32_t p_size, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<StorageBufferUsage> p_usage = 0, BitField<BufferCreationBits> p_creation_bits = 0);
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());
struct Uniform {
UniformType uniform_type = UNIFORM_TYPE_IMAGE;
uint32_t binding = 0; // Binding index as specified in shader.
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
// This flag specifies that this is an immutable sampler to be set when creating pipeline layout.
bool immutable_sampler = false;
private:
// In most cases only one ID is provided per binding, so avoid allocating memory unnecessarily for performance.
RID id; // If only one is provided, this is used.
Vector<RID> ids; // If multiple ones are provided, this is used instead.
public:
_FORCE_INLINE_ uint32_t get_id_count() const {
return (id.is_valid() ? 1 : ids.size());
}
_FORCE_INLINE_ RID get_id(uint32_t p_idx) const {
if (id.is_valid()) {
ERR_FAIL_COND_V(p_idx != 0, RID());
return id;
} else {
return ids[p_idx];
}
}
_FORCE_INLINE_ void set_id(uint32_t p_idx, RID p_id) {
if (id.is_valid()) {
ERR_FAIL_COND(p_idx != 0);
id = p_id;
} else {
ids.write[p_idx] = p_id;
}
}
_FORCE_INLINE_ void append_id(RID p_id) {
if (ids.is_empty()) {
if (id == RID()) {
id = p_id;
} else {
ids.push_back(id);
ids.push_back(p_id);
id = RID();
}
} else {
ids.push_back(p_id);
}
}
_FORCE_INLINE_ void clear_ids() {
id = RID();
ids.clear();
}
_FORCE_INLINE_ Uniform(UniformType p_type, int p_binding, RID p_id) {
uniform_type = p_type;
binding = p_binding;
id = p_id;
}
_FORCE_INLINE_ Uniform(UniformType p_type, int p_binding, const Vector<RID> &p_ids) {
uniform_type = p_type;
binding = p_binding;
ids = p_ids;
}
_FORCE_INLINE_ Uniform() = default;
};
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
typedef Uniform PipelineImmutableSampler;
RID shader_create_from_bytecode_with_samplers(const Vector<uint8_t> &p_shader_binary, RID p_placeholder = RID(), const Vector<PipelineImmutableSampler> &p_immutable_samplers = Vector<PipelineImmutableSampler>());
private:
static const uint32_t MAX_UNIFORM_SETS = 16;
static const uint32_t MAX_PUSH_CONSTANT_SIZE = 128;
// This structure contains the descriptor set. They _need_ to be allocated
// for a shader (and will be erased when this shader is erased), but should
// work for other shaders as long as the hash matches. This covers using
// them in shader variants.
//
// Keep also in mind that you can share buffers between descriptor sets, so
// the above restriction is not too serious.
struct UniformSet {
uint32_t format = 0;
RID shader_id;
uint32_t shader_set = 0;
RDD::UniformSetID driver_id;
struct AttachableTexture {
uint32_t bind = 0;
RID texture;
};
struct SharedTexture {
uint32_t writing = 0;
RID texture;
};
LocalVector<AttachableTexture> attachable_textures; // Used for validation.
Vector<RDG::ResourceTracker *> draw_trackers;
Vector<RDG::ResourceUsage> draw_trackers_usage;
HashMap<RID, RDG::ResourceUsage> untracked_usage;
LocalVector<SharedTexture> shared_textures_to_update;
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
};
RID_Owner<UniformSet, true> uniform_set_owner;
void _uniform_set_update_shared(UniformSet *p_uniform_set);
public:
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
/** Bake a set of uniforms that can be bound at runtime with the given shader.
* @remark Setting p_linear_pool = true while keeping the RID around for longer than the current frame will result in undefined behavior.
* @param p_uniforms The uniforms to bake into a set.
* @param p_shader The shader you intend to bind these uniforms with.
* @param p_set_index The set. Should be in range [0; 4)
* The value 4 comes from physical_device_properties.limits.maxBoundDescriptorSets. Vulkan only guarantees maxBoundDescriptorSets >= 4 (== 4 is very common on Mobile).
* @param p_linear_pool If you call this function every frame (and free the returned RID within the same frame!), set it to true for better performance.
* If you plan on keeping the return value around for more than one frame (e.g. Sets that are created once and reused forever) you MUST set it to false.
* @return Baked descriptor set.
*/
RID uniform_set_create(const VectorView<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set, bool p_linear_pool = false);
bool uniform_set_is_valid(RID p_uniform_set);
void uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata);
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
bool uniform_sets_have_linear_pools() const;
/*******************/
/**** PIPELINES ****/
/*******************/
// Render pipeline contains ALL the
// information required for drawing.
// This includes all the rasterizer state
// as well as shader used, framebuffer format,
// etc.
// While the pipeline is just a single object
// (VkPipeline) a lot of values are also saved
// here to do validation (vulkan does none by
// default) and warn the user if something
// was not supplied as intended.
private:
struct RenderPipeline {
// Cached values for validation.
#ifdef DEBUG_ENABLED
struct Validation {
FramebufferFormatID framebuffer_format;
uint32_t render_pass = 0;
uint32_t dynamic_state = 0;
VertexFormatID vertex_format;
bool uses_restart_indices = false;
uint32_t primitive_minimum = 0;
uint32_t primitive_divisor = 0;
} validation;
#endif
// Actual pipeline.
RID shader;
RDD::ShaderID shader_driver_id;
uint32_t shader_layout_hash = 0;
Vector<uint32_t> set_formats;
RDD::PipelineID driver_id;
BitField<RDD::PipelineStageBits> stage_bits = {};
uint32_t push_constant_size = 0;
};
RID_Owner<RenderPipeline, true> render_pipeline_owner;
bool pipeline_cache_enabled = false;
size_t pipeline_cache_size = 0;
String pipeline_cache_file_path;
WorkerThreadPool::TaskID pipeline_cache_save_task = WorkerThreadPool::INVALID_TASK_ID;
Vector<uint8_t> _load_pipeline_cache();
void _update_pipeline_cache(bool p_closing = false);
static void _save_pipeline_cache(void *p_data);
struct ComputePipeline {
RID shader;
RDD::ShaderID shader_driver_id;
uint32_t shader_layout_hash = 0;
Vector<uint32_t> set_formats;
RDD::PipelineID driver_id;
uint32_t push_constant_size = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
};
RID_Owner<ComputePipeline, true> compute_pipeline_owner;
public:
RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags = 0, uint32_t p_for_render_pass = 0, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
bool render_pipeline_is_valid(RID p_pipeline);
RID compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
bool compute_pipeline_is_valid(RID p_pipeline);
private:
/****************/
/**** SCREEN ****/
/****************/
HashMap<DisplayServer::WindowID, RDD::SwapChainID> screen_swap_chains;
HashMap<DisplayServer::WindowID, RDD::FramebufferID> screen_framebuffers;
uint32_t _get_swap_chain_desired_count() const;
public:
Error screen_create(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID);
Error screen_prepare_for_drawing(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID);
int screen_get_width(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const;
int screen_get_height(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const;
int screen_get_pre_rotation_degrees(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const;
FramebufferFormatID screen_get_framebuffer_format(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const;
Error screen_free(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID);
/*************************/
/**** DRAW LISTS (II) ****/
/*************************/
private:
// Draw list contains both the command buffer
// used for drawing as well as a LOT of
// information used for validation. This
// validation is cheap so most of it can
// also run in release builds.
struct DrawList {
Rect2i viewport;
bool active = false;
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
RDD::UniformSetID uniform_set_driver_id;
RID uniform_set;
bool bound = false;
};
struct State {
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
RID pipeline_shader;
RDD::ShaderID pipeline_shader_driver_id;
uint32_t pipeline_shader_layout_hash = 0;
uint32_t pipeline_push_constant_size = 0;
RID vertex_array;
RID index_array;
uint32_t draw_count = 0;
} state;
#ifdef DEBUG_ENABLED
struct Validation {
// Actual render pass values.
uint32_t dynamic_state = 0;
VertexFormatID vertex_format = INVALID_ID;
uint32_t vertex_array_size = 0;
uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
bool index_buffer_uses_restart_indices = false;
uint32_t index_array_count = 0;
uint32_t index_array_max_index = 0;
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
uint32_t pipeline_dynamic_state = 0;
VertexFormatID pipeline_vertex_format = INVALID_ID;
RID pipeline_shader;
bool pipeline_uses_restart_indices = false;
uint32_t pipeline_primitive_divisor = 0;
uint32_t pipeline_primitive_minimum = 0;
uint32_t pipeline_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#else
struct Validation {
uint32_t vertex_array_size = 0;
uint32_t index_array_count = 0;
} validation;
#endif
};
DrawList draw_list;
uint32_t draw_list_subpass_count = 0;
#ifdef DEBUG_ENABLED
FramebufferFormatID draw_list_framebuffer_format = INVALID_ID;
#endif
uint32_t draw_list_current_subpass = 0;
LocalVector<RID> draw_list_bound_textures;
void _draw_list_start(const Rect2i &p_viewport);
void _draw_list_end(Rect2i *r_last_viewport = nullptr);
public:
enum DrawFlags {
DRAW_DEFAULT_ALL = 0,
DRAW_CLEAR_COLOR_0 = (1 << 0),
DRAW_CLEAR_COLOR_1 = (1 << 1),
DRAW_CLEAR_COLOR_2 = (1 << 2),
DRAW_CLEAR_COLOR_3 = (1 << 3),
DRAW_CLEAR_COLOR_4 = (1 << 4),
DRAW_CLEAR_COLOR_5 = (1 << 5),
DRAW_CLEAR_COLOR_6 = (1 << 6),
DRAW_CLEAR_COLOR_7 = (1 << 7),
DRAW_CLEAR_COLOR_MASK = 0xFF,
DRAW_CLEAR_COLOR_ALL = DRAW_CLEAR_COLOR_MASK,
DRAW_IGNORE_COLOR_0 = (1 << 8),
DRAW_IGNORE_COLOR_1 = (1 << 9),
DRAW_IGNORE_COLOR_2 = (1 << 10),
DRAW_IGNORE_COLOR_3 = (1 << 11),
DRAW_IGNORE_COLOR_4 = (1 << 12),
DRAW_IGNORE_COLOR_5 = (1 << 13),
DRAW_IGNORE_COLOR_6 = (1 << 14),
DRAW_IGNORE_COLOR_7 = (1 << 15),
DRAW_IGNORE_COLOR_MASK = 0xFF00,
DRAW_IGNORE_COLOR_ALL = DRAW_IGNORE_COLOR_MASK,
DRAW_CLEAR_DEPTH = (1 << 16),
DRAW_IGNORE_DEPTH = (1 << 17),
DRAW_CLEAR_STENCIL = (1 << 18),
DRAW_IGNORE_STENCIL = (1 << 19),
DRAW_CLEAR_ALL = DRAW_CLEAR_COLOR_ALL | DRAW_CLEAR_DEPTH | DRAW_CLEAR_STENCIL,
DRAW_IGNORE_ALL = DRAW_IGNORE_COLOR_ALL | DRAW_IGNORE_DEPTH | DRAW_IGNORE_STENCIL
};
DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());
DrawListID draw_list_begin(RID p_framebuffer, BitField<DrawFlags> p_draw_flags = DRAW_DEFAULT_ALL, VectorView<Color> p_clear_color_values = VectorView<Color>(), float p_clear_depth_value = 1.0f, uint32_t p_clear_stencil_value = 0, const Rect2 &p_region = Rect2(), uint32_t p_breadcrumb = 0);
DrawListID _draw_list_begin_bind(RID p_framebuffer, BitField<DrawFlags> p_draw_flags = DRAW_DEFAULT_ALL, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth_value = 1.0f, uint32_t p_clear_stencil_value = 0, const Rect2 &p_region = Rect2(), uint32_t p_breadcrumb = 0);
void draw_list_set_blend_constants(DrawListID p_list, const Color &p_color);
void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
void draw_list_set_line_width(DrawListID p_list, float p_width);
void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);
void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);
2024-09-20 21:05:50 +02:00
void draw_list_draw_indirect(DrawListID p_list, bool p_use_indices, RID p_buffer, uint32_t p_offset = 0, uint32_t p_draw_count = 1, uint32_t p_stride = 0);
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
void draw_list_set_viewport(DrawListID p_list, const Rect2 &p_rect);
void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
void draw_list_disable_scissor(DrawListID p_list);
uint32_t draw_list_get_current_pass();
DrawListID draw_list_switch_to_next_pass();
void draw_list_end();
private:
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
struct ComputeList {
bool active = false;
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
RDD::UniformSetID uniform_set_driver_id;
RID uniform_set;
bool bound = false;
};
struct State {
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
RID pipeline_shader;
RDD::ShaderID pipeline_shader_driver_id;
uint32_t pipeline_shader_layout_hash = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
uint8_t push_constant_data[MAX_PUSH_CONSTANT_SIZE] = {};
uint32_t push_constant_size = 0;
uint32_t dispatch_count = 0;
} state;
#ifdef DEBUG_ENABLED
struct Validation {
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
RID pipeline_shader;
uint32_t invalid_set_from = 0;
uint32_t pipeline_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#endif
};
ComputeList compute_list;
ComputeList::State compute_list_barrier_state;
2019-09-25 16:44:44 -03:00
public:
ComputeListID compute_list_begin();
void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
void compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads);
void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset);
void compute_list_add_barrier(ComputeListID p_list);
2019-09-25 16:44:44 -03:00
void compute_list_end();
private:
/*************************/
/**** TRANSFER WORKER ****/
/*************************/
struct TransferWorker {
uint32_t index = 0;
RDD::BufferID staging_buffer;
uint32_t max_transfer_size = 0;
uint32_t staging_buffer_size_in_use = 0;
uint32_t staging_buffer_size_allocated = 0;
RDD::CommandBufferID command_buffer;
RDD::CommandPoolID command_pool;
RDD::FenceID command_fence;
LocalVector<RDD::TextureBarrier> texture_barriers;
bool recording = false;
bool submitted = false;
BinaryMutex thread_mutex;
uint64_t operations_processed = 0;
uint64_t operations_submitted = 0;
uint64_t operations_counter = 0;
BinaryMutex operations_mutex;
};
LocalVector<TransferWorker *> transfer_worker_pool;
uint32_t transfer_worker_pool_max_size = 1;
LocalVector<uint64_t> transfer_worker_operation_used_by_draw;
LocalVector<uint32_t> transfer_worker_pool_available_list;
LocalVector<RDD::TextureBarrier> transfer_worker_pool_texture_barriers;
BinaryMutex transfer_worker_pool_mutex;
BinaryMutex transfer_worker_pool_texture_barriers_mutex;
ConditionVariable transfer_worker_pool_condition;
TransferWorker *_acquire_transfer_worker(uint32_t p_transfer_size, uint32_t p_required_align, uint32_t &r_staging_offset);
void _release_transfer_worker(TransferWorker *p_transfer_worker);
void _end_transfer_worker(TransferWorker *p_transfer_worker);
void _submit_transfer_worker(TransferWorker *p_transfer_worker, VectorView<RDD::SemaphoreID> p_signal_semaphores = VectorView<RDD::SemaphoreID>());
void _wait_for_transfer_worker(TransferWorker *p_transfer_worker);
void _flush_barriers_for_transfer_worker(TransferWorker *p_transfer_worker);
void _check_transfer_worker_operation(uint32_t p_transfer_worker_index, uint64_t p_transfer_worker_operation);
void _check_transfer_worker_buffer(Buffer *p_buffer);
void _check_transfer_worker_texture(Texture *p_texture);
void _check_transfer_worker_vertex_array(VertexArray *p_vertex_array);
void _check_transfer_worker_index_array(IndexArray *p_index_array);
void _submit_transfer_workers(RDD::CommandBufferID p_draw_command_buffer = RDD::CommandBufferID());
void _submit_transfer_barriers(RDD::CommandBufferID p_draw_command_buffer);
void _wait_for_transfer_workers();
void _free_transfer_workers();
/***********************/
/**** COMMAND GRAPH ****/
/***********************/
bool _texture_make_mutable(Texture *p_texture, RID p_texture_id);
bool _buffer_make_mutable(Buffer *p_buffer, RID p_buffer_id);
bool _vertex_array_make_mutable(VertexArray *p_vertex_array, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker);
bool _index_array_make_mutable(IndexArray *p_index_array, RDG::ResourceTracker *p_resource_tracker);
bool _uniform_set_make_mutable(UniformSet *p_uniform_set, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker);
bool _dependency_make_mutable(RID p_id, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker);
bool _dependencies_make_mutable_recursive(RID p_id, RDG::ResourceTracker *p_resource_tracker);
bool _dependencies_make_mutable(RID p_id, RDG::ResourceTracker *p_resource_tracker);
RenderingDeviceGraph draw_graph;
/**************************/
/**** QUEUE MANAGEMENT ****/
/**************************/
RDD::CommandQueueFamilyID main_queue_family;
RDD::CommandQueueFamilyID transfer_queue_family;
RDD::CommandQueueFamilyID present_queue_family;
RDD::CommandQueueID main_queue;
RDD::CommandQueueID transfer_queue;
RDD::CommandQueueID present_queue;
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
// This is the frame structure. There are normally
// 3 of these (used for triple buffering), or 2
// (double buffering). They are cycled constantly.
//
// It contains two command buffers, one that is
// used internally for setting up (creating stuff)
// and another used mostly for drawing.
//
// They also contains a list of things that need
// to be disposed of when deleted, which can't
// happen immediately due to the asynchronous
// nature of the GPU. They will get deleted
// when the frame is cycled.
struct Frame {
// List in usage order, from last to free to first to free.
List<Buffer> buffers_to_dispose_of;
List<Texture> textures_to_dispose_of;
List<Framebuffer> framebuffers_to_dispose_of;
List<RDD::SamplerID> samplers_to_dispose_of;
List<Shader> shaders_to_dispose_of;
List<UniformSet> uniform_sets_to_dispose_of;
List<RenderPipeline> render_pipelines_to_dispose_of;
List<ComputePipeline> compute_pipelines_to_dispose_of;
// Pending asynchronous data transfer for buffers.
LocalVector<RDD::BufferID> download_buffer_staging_buffers;
LocalVector<RDD::BufferCopyRegion> download_buffer_copy_regions;
LocalVector<BufferGetDataRequest> download_buffer_get_data_requests;
// Pending asynchronous data transfer for textures.
LocalVector<RDD::BufferID> download_texture_staging_buffers;
LocalVector<RDD::BufferTextureCopyRegion> download_buffer_texture_copy_regions;
LocalVector<uint32_t> download_texture_mipmap_offsets;
LocalVector<TextureGetDataRequest> download_texture_get_data_requests;
// The command pool used by the command buffer.
RDD::CommandPoolID command_pool;
// The command buffer used by the main thread when recording the frame.
RDD::CommandBufferID command_buffer;
// Signaled by the command buffer submission. Present must wait on this semaphore.
RDD::SemaphoreID semaphore;
// Signaled by the command buffer submission. Must wait on this fence before beginning command recording for the frame.
RDD::FenceID fence;
bool fence_signaled = false;
// Semaphores the frame must wait on before executing the command buffer.
LocalVector<RDD::SemaphoreID> semaphores_to_wait_on;
// Swap chains prepared for drawing during the frame that must be presented.
LocalVector<RDD::SwapChainID> swap_chains_to_present;
// Semaphores the transfer workers can use to wait before rendering the frame.
// This must have the same size of the transfer worker pool.
TightLocalVector<RDD::SemaphoreID> transfer_worker_semaphores;
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
// Extra command buffer pool used for driver workarounds or to reduce GPU bubbles by
// splitting the final render pass to the swapchain into its own cmd buffer.
RDG::CommandBufferPool command_buffer_pool;
struct Timestamp {
String description;
uint64_t value = 0;
};
RDD::QueryPoolID timestamp_pool;
TightLocalVector<String> timestamp_names;
TightLocalVector<uint64_t> timestamp_cpu_values;
uint32_t timestamp_count = 0;
TightLocalVector<String> timestamp_result_names;
TightLocalVector<uint64_t> timestamp_cpu_result_values;
TightLocalVector<uint64_t> timestamp_result_values;
uint32_t timestamp_result_count = 0;
uint64_t index = 0;
};
uint32_t max_timestamp_query_elements = 0;
int frame = 0;
TightLocalVector<Frame> frames;
uint64_t frames_drawn = 0;
Keep processing Graphics if there are pending operations Fixes #90017 Fixes #90030 Fixes #98044 This PR makes the following changes: # Force processing of GPU commands for frame_count frames The variable `frames_pending_resources_for_processing` is added to track this. The ticket #98044 suggested to use `_flush_and_stall_for_all_frames()` while minimized. Technically this works and is a viable solution. However I noticed that this issue was happening because Logic/Physics continue to work "business as usual" while minimized(\*). Only Graphics was being deactivated (which caused commands to accumulate until window is restored). To continue this behavior of "business as usual", I decided that GPU work should also "continue as usual" by buffering commands in a double or triple buffer scheme until all commands are done processing (if they ever stop coming). This is specially important if the app specifically intends to keep processing while minimized. Calling `_flush_and_stall_for_all_frames()` would fix the leak, but it would make Godot's behavior different while minimized vs while the window is presenting. \* `OS::add_frame_delay` _does_ consider being minimized, but it just throttles CPU usage. Some platforms such as Android completely disable processing because the higher level code stops being called when the app goes into background. But this seems like an implementation-detail that diverges from the rest of the platforms (e.g. Windows, Linux & macOS continue to process while minimized). # Rename p_swap_buffers for p_present **This is potentially a breaking change** (if it actually breaks anything, I ignore. But I strongly suspect it doesn't break anything). "Swap Buffers" is a concept carried from OpenGL, where a frame is "done" when `glSwapBuffers()` is called, which basically means "present to the screen". However it _also_ means that OpenGL internally swaps its internal buffers in a double/triple buffer scheme (in Vulkan, we do that ourselves and is tracked by `RenderingDevice::frame`). Modern APIs like Vulkan differentiate between "submitting GPU work" and "presenting". Before this PR, calling `RendererCompositorRD::end_frame(false)` would literally do nothing. This is often undesired and the cause of the leak. After this PR, calling `RendererCompositorRD::end_frame(false)` will now process commands, swap our internal buffers in a double/triple buffer scheme **but avoid presenting to the screen**. Hence the rename of the variable from `p_swap_buffers` to `p_present` (which slightly alters its behavior). If we want `RendererCompositorRD::end_frame(false)` to do nothing, then we should not call it at all. This PR reflects such change: When we're minimized **_and_** `has_pending_resources_for_processing()` returns false, we don't call `RendererCompositorRD::end_frame()` at all. But if `has_pending_resources_for_processing()` returns true, we will call it, but with `p_present = false` because we're minimized. There's still the issue that Godot keeps processing work (logic, scripts, physics) while minimized, which we shouldn't do by default. But that's work for follow up PR.
2024-12-10 19:25:46 -03:00
// Whenever logic/physics request a graphics operation (not just deleting a resource) that requires
// us to flush all graphics commands, we must set frames_pending_resources_for_processing = frames.size().
// This is important for when the user requested for the logic loop to still be updated while
// graphics should not (e.g. headless Multiplayer servers, minimized windows that need to still
// process something on the background).
uint32_t frames_pending_resources_for_processing = 0u;
public:
bool has_pending_resources_for_processing() const { return frames_pending_resources_for_processing != 0u; }
private:
void _free_pending_resources(int p_frame);
uint64_t texture_memory = 0;
uint64_t buffer_memory = 0;
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
protected:
void execute_chained_cmds(bool p_present_swap_chain,
RenderingDeviceDriver::FenceID p_draw_fence,
RenderingDeviceDriver::SemaphoreID p_dst_draw_semaphore_to_signal);
public:
void _free_internal(RID p_id);
Improvements from TheForge (see description) The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up. This is the most "risky" PR so far because the previous ones have been miscellaneous stuff aimed at either [improve debugging](https://github.com/godotengine/godot/pull/90993) (e.g. device lost), [improve Android experience](https://github.com/godotengine/godot/pull/96439) (add Swappy for better Frame Pacing + Pre-Transformed Swapchains for slightly better performance), or harmless [ASTC improvements](https://github.com/godotengine/godot/pull/96045) (better performance by simply toggling a feature when available). However this PR contains larger modifications aimed at improving performance or reducing memory fragmentation. With greater modifications, come greater risks of bugs or breakage. Changes introduced by this PR: TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to Render Targets that are not backed by actual GPU memory (everything stays in cache). This works as long as load action isn't `LOAD`, and store action must be `DONT_CARE`. This saves VRAM (it also makes painfully obvious when a mistake introduces a performance regression). Of particular usefulness is when doing MSAA and keeping the raw MSAA content is not necessary. Some GPUs get faster when the sampler settings are hard-coded into the GLSL shaders (instead of being dynamically bound at runtime). This required changes to the GLSL shaders, PSO creation routines, Descriptor creation routines, and Descriptor binding routines. - `bool immutable_samplers_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Immutable samplers requires that the samplers stay... immutable, hence this boolean is useful if the promise gets broken. We might want to turn this into a `GLOBAL_DEF` setting. Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every frame that need to be freed individually when they are no longer needed, they all get freed at once by resetting the whole pool. Once the whole pool is no longer in use by the GPU, it gets reset and its memory recycled. Descriptor sets that are created to be kept around for longer or forever (i.e. not created and freed within the same frame) **must not** use linear pools. There may be more than one pool per frame. How many pools per frame Godot ends up with depends on its capacity, and that is controlled by `rendering/rendering_device/vulkan/max_descriptors_per_pool`. - **Possible improvement for later:** It should be possible for Godot to adapt to how many descriptors per pool are needed on a per-key basis (i.e. grow their capacity like `std::vector` does) after rendering a few frames; which would be better than the current solution of having a single global value for all pools (`max_descriptors_per_pool`) that the user needs to tweak. - `bool linear_descriptor_pools_enabled = true` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. Setting it to false is required when workarounding driver bugs (e.g. Adreno 730). A ridiculous optimization. Ridiculous because the original code should've done this in the first place. Previously Godot was doing the following: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This resets the cmd buffer because Godot requests the `VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag. 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, and repeat from step 3. The problem here is that step 3 resets each command buffer individually. Initially Godot used to have 1 cmd buffer per pool, thus the impact is very low. But not anymore (specially with Adreno workarounds to force splitting compute dispatches into a new cmd buffer, more on this later). However Godot keeps around a very low amount of command buffers per frame. The recommended method is to reset the whole pool, to reset all cmd buffers at once. Hence the new steps would be: 1. Create a command buffer **pool**. One per frame. 2. Create multiple command buffers from the pool in point 1. 3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is already reset/empty (see step 6). 4. Add commands to the cmd buffers from point 2. 5. Submit those commands. 6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 & 2, call `vkResetCommandPool` and repeat from step 3. **Possible issues:** @dariosamo added `transfer_worker` which creates a command buffer pool: ```cpp transfer_worker->command_pool = driver->command_pool_create(transfer_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ``` As expected, validation was complaining that command buffers were being reused without being reset (that's good, we now know Validation Layers will warn us of wrong use). I fixed it by adding: ```cpp void RenderingDevice::_wait_for_transfer_worker(TransferWorker *p_transfer_worker) { driver->fence_wait(p_transfer_worker->command_fence); driver->command_pool_reset(p_transfer_worker->command_pool); // ! New line ! ``` **Secondary cmd buffers are subject to the same issue but I didn't alter them. I talked this with Dario and he is aware of this.** Secondary cmd buffers are currently disabled due to other issues (it's disabled on master). - `bool RenderingDeviceCommons::command_pool_reset_enabled` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Adds `command_bind_render_uniform_sets` and `add_draw_list_bind_uniform_sets` (+ compute variants). It performs the same as `add_draw_list_bind_uniform_set` (notice singular vs plural), but on multiple consecutive uniform sets, thus reducing graph and draw call overhead. - `bool descriptor_set_batching = true;` Setting it to false enforces the old behavior. Useful for debugging bugs and regressions. There's no other reason for this boolean. Possibly once it becomes well tested, the boolean could be removed entirely. Godot currently does the following: 1. Fill the entire cmd buffer with commands. 2. `submit()` - Wait with a semaphore for the swapchain. - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 3. `present()` The optimization opportunity here is that 95% of Godot's rendering is done offscreen. Then a fullscreen pass copies everything to the swapchain. Godot doesn't practically render directly to the swapchain. The problem with this is that the GPU has to wait for the swapchain to be released **to start anything**, when we could start *much earlier*. Only the final blit pass must wait for the swapchain. TheForge changed it to the following (more complicated, I'm simplifying the idea): 1. Fill the entire cmd buffer with commands. 2. In `screen_prepare_for_drawing` do `submit()` - There are no semaphore waits for the swapchain. - Trigger a semaphore to indicate when we're done. 3. Fill a new cmd buffer that only does the final blit to the swapchain. 4. `submit()` - Wait with a semaphore for the submit() from step 2. - Wait with a semaphore for the swapchain (so the swapchain can submit). - Trigger a semaphore to indicate when we're done (so the swapchain can submit). 5. `present()` Dario discovered this problem independently while working on a different platform. **However TheForge's solution had to be rewritten from scratch:** The complexity to achieve the solution was high and quite difficult to maintain with the way Godot works now (after Übershaders PR). But on the other hand, re-implementing the solution became much simpler because Dario already had to do something similar: To fix an Adreno 730 driver bug, he had to implement splitting command buffers. **This is exactly what we need!**. Thus it was re-written using this existing functionality for a new purpose. To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to `RenderingDeviceGraph::add_draw_list_begin`, which is only set to true by `RenderingDevice::draw_list_begin_for_screen`. The graph will split the draw list into its own command buffer. - `bool split_swapchain_into_its_own_cmd_buffer = true;` Setting it to false enforces the old behavior. This might be necessary for consoles which follow an alternate solution to the same problem. If not, then we should consider removing it. PR #90993 added `shader_destroy_modules()` but it was not actually in use. This PR adds several places where `shader_destroy_modules()` is called after initialization to free up memory of SPIR-V structures that are no longer needed.
2024-11-14 13:03:14 -03:00
void _begin_frame(bool p_presented = false);
void _end_frame();
void _execute_frame(bool p_present);
void _stall_for_frame(uint32_t p_frame);
void _stall_for_previous_frames();
void _flush_and_stall_for_all_frames();
2019-09-25 16:44:44 -03:00
template <typename T>
void _free_rids(T &p_owner, const char *p_type);
2019-10-03 17:39:08 -03:00
#ifdef DEV_ENABLED
HashMap<RID, String> resource_names;
#endif
public:
Error initialize(RenderingContextDriver *p_context, DisplayServer::WindowID p_main_window = DisplayServer::INVALID_WINDOW_ID);
void finalize();
void _set_max_fps(int p_max_fps);
void free(RID p_id);
/****************/
/**** Timing ****/
/****************/
void capture_timestamp(const String &p_name);
uint32_t get_captured_timestamps_count() const;
uint64_t get_captured_timestamps_frame() const;
uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
String get_captured_timestamp_name(uint32_t p_index) const;
/****************/
/**** LIMITS ****/
/****************/
uint64_t limit_get(Limit p_limit) const;
Keep processing Graphics if there are pending operations Fixes #90017 Fixes #90030 Fixes #98044 This PR makes the following changes: # Force processing of GPU commands for frame_count frames The variable `frames_pending_resources_for_processing` is added to track this. The ticket #98044 suggested to use `_flush_and_stall_for_all_frames()` while minimized. Technically this works and is a viable solution. However I noticed that this issue was happening because Logic/Physics continue to work "business as usual" while minimized(\*). Only Graphics was being deactivated (which caused commands to accumulate until window is restored). To continue this behavior of "business as usual", I decided that GPU work should also "continue as usual" by buffering commands in a double or triple buffer scheme until all commands are done processing (if they ever stop coming). This is specially important if the app specifically intends to keep processing while minimized. Calling `_flush_and_stall_for_all_frames()` would fix the leak, but it would make Godot's behavior different while minimized vs while the window is presenting. \* `OS::add_frame_delay` _does_ consider being minimized, but it just throttles CPU usage. Some platforms such as Android completely disable processing because the higher level code stops being called when the app goes into background. But this seems like an implementation-detail that diverges from the rest of the platforms (e.g. Windows, Linux & macOS continue to process while minimized). # Rename p_swap_buffers for p_present **This is potentially a breaking change** (if it actually breaks anything, I ignore. But I strongly suspect it doesn't break anything). "Swap Buffers" is a concept carried from OpenGL, where a frame is "done" when `glSwapBuffers()` is called, which basically means "present to the screen". However it _also_ means that OpenGL internally swaps its internal buffers in a double/triple buffer scheme (in Vulkan, we do that ourselves and is tracked by `RenderingDevice::frame`). Modern APIs like Vulkan differentiate between "submitting GPU work" and "presenting". Before this PR, calling `RendererCompositorRD::end_frame(false)` would literally do nothing. This is often undesired and the cause of the leak. After this PR, calling `RendererCompositorRD::end_frame(false)` will now process commands, swap our internal buffers in a double/triple buffer scheme **but avoid presenting to the screen**. Hence the rename of the variable from `p_swap_buffers` to `p_present` (which slightly alters its behavior). If we want `RendererCompositorRD::end_frame(false)` to do nothing, then we should not call it at all. This PR reflects such change: When we're minimized **_and_** `has_pending_resources_for_processing()` returns false, we don't call `RendererCompositorRD::end_frame()` at all. But if `has_pending_resources_for_processing()` returns true, we will call it, but with `p_present = false` because we're minimized. There's still the issue that Godot keeps processing work (logic, scripts, physics) while minimized, which we shouldn't do by default. But that's work for follow up PR.
2024-12-10 19:25:46 -03:00
void swap_buffers(bool p_present);
2019-10-05 10:27:43 -03:00
uint32_t get_frame_delay() const;
void submit();
void sync();
enum MemoryType {
MEMORY_TEXTURES,
MEMORY_BUFFERS,
MEMORY_TOTAL
};
uint64_t get_memory_usage(MemoryType p_type) const;
RenderingDevice *create_local_device();
void set_resource_name(RID p_id, const String &p_name);
void _draw_command_begin_label(String p_label_name, const Color &p_color = Color(1, 1, 1, 1));
void draw_command_begin_label(const Span<char> p_label_name, const Color &p_color = Color(1, 1, 1, 1));
void draw_command_end_label();
String get_device_vendor_name() const;
String get_device_name() const;
DeviceType get_device_type() const;
String get_device_api_name() const;
String get_device_api_version() const;
String get_device_pipeline_cache_uuid() const;
bool is_composite_alpha_supported() const;
uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0);
String get_driver_and_device_memory_report() const;
String get_tracked_object_name(uint32_t p_type_index) const;
uint64_t get_tracked_object_type_count() const;
uint64_t get_driver_total_memory() const;
uint64_t get_driver_allocation_count() const;
uint64_t get_driver_memory_by_object_type(uint32_t p_type) const;
uint64_t get_driver_allocs_by_object_type(uint32_t p_type) const;
uint64_t get_device_total_memory() const;
uint64_t get_device_allocation_count() const;
uint64_t get_device_memory_by_object_type(uint32_t p_type) const;
uint64_t get_device_allocs_by_object_type(uint32_t p_type) const;
static RenderingDevice *get_singleton();
void make_current();
RenderingDevice();
~RenderingDevice();
private:
/*****************/
/**** BINDERS ****/
/*****************/
RID _texture_create(const Ref<RDTextureFormat> &p_format, const Ref<RDTextureView> &p_view, const TypedArray<PackedByteArray> &p_data = Array());
RID _texture_create_shared(const Ref<RDTextureView> &p_view, RID p_with_texture);
2021-08-03 00:07:32 -07:00
RID _texture_create_shared_from_slice(const Ref<RDTextureView> &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D);
2023-07-10 22:31:27 +10:00
Ref<RDTextureFormat> _texture_get_format(RID p_rd_texture);
FramebufferFormatID _framebuffer_format_create(const TypedArray<RDAttachmentFormat> &p_attachments, uint32_t p_view_count);
FramebufferFormatID _framebuffer_format_create_multipass(const TypedArray<RDAttachmentFormat> &p_attachments, const TypedArray<RDFramebufferPass> &p_passes, uint32_t p_view_count);
RID _framebuffer_create(const TypedArray<RID> &p_textures, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID _framebuffer_create_multipass(const TypedArray<RID> &p_textures, const TypedArray<RDFramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID _sampler_create(const Ref<RDSamplerState> &p_state);
VertexFormatID _vertex_format_create(const TypedArray<RDVertexAttribute> &p_vertex_formats);
RID _vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const TypedArray<RID> &p_src_buffers, const Vector<int64_t> &p_offsets = Vector<int64_t>());
Ref<RDShaderSPIRV> _shader_compile_spirv_from_source(const Ref<RDShaderSource> &p_source, bool p_allow_cache = true);
Vector<uint8_t> _shader_compile_binary_from_spirv(const Ref<RDShaderSPIRV> &p_bytecode, const String &p_shader_name = "");
RID _shader_create_from_spirv(const Ref<RDShaderSPIRV> &p_spirv, const String &p_shader_name = "");
2022-08-31 19:24:04 +02:00
RID _uniform_set_create(const TypedArray<RDUniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
Error _buffer_update_bind(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector<uint8_t> &p_data);
RID _render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const Ref<RDPipelineRasterizationState> &p_rasterization_state, const Ref<RDPipelineMultisampleState> &p_multisample_state, const Ref<RDPipelineDepthStencilState> &p_depth_stencil_state, const Ref<RDPipelineColorBlendState> &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags, uint32_t p_for_render_pass, const TypedArray<RDPipelineSpecializationConstant> &p_specialization_constants);
RID _compute_pipeline_create(RID p_shader, const TypedArray<RDPipelineSpecializationConstant> &p_specialization_constants);
void _draw_list_set_push_constant(DrawListID p_list, const Vector<uint8_t> &p_data, uint32_t p_data_size);
void _compute_list_set_push_constant(ComputeListID p_list, const Vector<uint8_t> &p_data, uint32_t p_data_size);
};
VARIANT_ENUM_CAST(RenderingDevice::DeviceType)
VARIANT_ENUM_CAST(RenderingDevice::DriverResource)
VARIANT_ENUM_CAST(RenderingDevice::ShaderStage)
VARIANT_ENUM_CAST(RenderingDevice::ShaderLanguage)
VARIANT_ENUM_CAST(RenderingDevice::CompareOperator)
VARIANT_ENUM_CAST(RenderingDevice::DataFormat)
VARIANT_ENUM_CAST(RenderingDevice::TextureType)
VARIANT_ENUM_CAST(RenderingDevice::TextureSamples)
VARIANT_BITFIELD_CAST(RenderingDevice::TextureUsageBits)
VARIANT_ENUM_CAST(RenderingDevice::TextureSwizzle)
VARIANT_ENUM_CAST(RenderingDevice::TextureSliceType)
VARIANT_ENUM_CAST(RenderingDevice::SamplerFilter)
VARIANT_ENUM_CAST(RenderingDevice::SamplerRepeatMode)
VARIANT_ENUM_CAST(RenderingDevice::SamplerBorderColor)
VARIANT_ENUM_CAST(RenderingDevice::VertexFrequency)
VARIANT_ENUM_CAST(RenderingDevice::IndexBufferFormat)
VARIANT_BITFIELD_CAST(RenderingDevice::StorageBufferUsage)
VARIANT_BITFIELD_CAST(RenderingDevice::BufferCreationBits)
VARIANT_ENUM_CAST(RenderingDevice::UniformType)
VARIANT_ENUM_CAST(RenderingDevice::RenderPrimitive)
VARIANT_ENUM_CAST(RenderingDevice::PolygonCullMode)
VARIANT_ENUM_CAST(RenderingDevice::PolygonFrontFace)
VARIANT_ENUM_CAST(RenderingDevice::StencilOperation)
VARIANT_ENUM_CAST(RenderingDevice::LogicOperation)
VARIANT_ENUM_CAST(RenderingDevice::BlendFactor)
VARIANT_ENUM_CAST(RenderingDevice::BlendOperation)
VARIANT_BITFIELD_CAST(RenderingDevice::PipelineDynamicStateFlags)
VARIANT_ENUM_CAST(RenderingDevice::PipelineSpecializationConstantType)
VARIANT_ENUM_CAST(RenderingDevice::Limit)
VARIANT_ENUM_CAST(RenderingDevice::MemoryType)
VARIANT_ENUM_CAST(RenderingDevice::Features)
VARIANT_ENUM_CAST(RenderingDevice::BreadcrumbMarker)
VARIANT_BITFIELD_CAST(RenderingDevice::DrawFlags);
#ifndef DISABLE_DEPRECATED
VARIANT_BITFIELD_CAST(RenderingDevice::BarrierMask);
VARIANT_ENUM_CAST(RenderingDevice::InitialAction)
VARIANT_ENUM_CAST(RenderingDevice::FinalAction)
#endif
typedef RenderingDevice RD;