GCC emits warnings because of the trailing backslashes. PR-URL: https://github.com/nodejs/node/pull/58070 Reviewed-By: Antoine du Hamel <duhamelantoine1995@gmail.com> Reviewed-By: Darshan Sen <raisinten@gmail.com> Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com> Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
1721 lines
69 KiB
C++
1721 lines
69 KiB
C++
// Copyright 2018 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef INCLUDE_V8_INTERNAL_H_
|
|
#define INCLUDE_V8_INTERNAL_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <atomic>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <type_traits>
|
|
|
|
#include "v8config.h" // NOLINT(build/include_directory)
|
|
|
|
// TODO(pkasting): Use <compare>/spaceship unconditionally after dropping
|
|
// support for old libstdc++ versions.
|
|
#if __has_include(<version>)
|
|
#include <version>
|
|
#endif
|
|
#if defined(__cpp_lib_three_way_comparison) && \
|
|
__cpp_lib_three_way_comparison >= 201711L && \
|
|
defined(__cpp_lib_concepts) && __cpp_lib_concepts >= 202002L
|
|
#include <compare>
|
|
#include <concepts>
|
|
|
|
#define V8_HAVE_SPACESHIP_OPERATOR 1
|
|
#else
|
|
#define V8_HAVE_SPACESHIP_OPERATOR 0
|
|
#endif
|
|
|
|
namespace v8 {
|
|
|
|
class Array;
|
|
class Context;
|
|
class Data;
|
|
class Isolate;
|
|
|
|
namespace internal {
|
|
|
|
class Heap;
|
|
class LocalHeap;
|
|
class Isolate;
|
|
class IsolateGroup;
|
|
class LocalIsolate;
|
|
|
|
typedef uintptr_t Address;
|
|
static constexpr Address kNullAddress = 0;
|
|
|
|
constexpr int KB = 1024;
|
|
constexpr int MB = KB * 1024;
|
|
constexpr int GB = MB * 1024;
|
|
#ifdef V8_TARGET_ARCH_X64
|
|
constexpr size_t TB = size_t{GB} * 1024;
|
|
#endif
|
|
|
|
/**
|
|
* Configuration of tagging scheme.
|
|
*/
|
|
const int kApiSystemPointerSize = sizeof(void*);
|
|
const int kApiDoubleSize = sizeof(double);
|
|
const int kApiInt32Size = sizeof(int32_t);
|
|
const int kApiInt64Size = sizeof(int64_t);
|
|
const int kApiSizetSize = sizeof(size_t);
|
|
|
|
// Tag information for HeapObject.
|
|
const int kHeapObjectTag = 1;
|
|
const int kWeakHeapObjectTag = 3;
|
|
const int kHeapObjectTagSize = 2;
|
|
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
|
|
const intptr_t kHeapObjectReferenceTagMask = 1 << (kHeapObjectTagSize - 1);
|
|
|
|
// Tag information for fowarding pointers stored in object headers.
|
|
// 0b00 at the lowest 2 bits in the header indicates that the map word is a
|
|
// forwarding pointer.
|
|
const int kForwardingTag = 0;
|
|
const int kForwardingTagSize = 2;
|
|
const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1;
|
|
|
|
// Tag information for Smi.
|
|
const int kSmiTag = 0;
|
|
const int kSmiTagSize = 1;
|
|
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
|
|
|
|
template <size_t tagged_ptr_size>
|
|
struct SmiTagging;
|
|
|
|
constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1};
|
|
constexpr uintptr_t kUintptrAllBitsSet =
|
|
static_cast<uintptr_t>(kIntptrAllBitsSet);
|
|
|
|
// Smi constants for systems where tagged pointer is a 32-bit value.
|
|
template <>
|
|
struct SmiTagging<4> {
|
|
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
|
|
|
|
static constexpr intptr_t kSmiMinValue =
|
|
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
|
|
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
|
|
|
|
V8_INLINE static constexpr int SmiToInt(Address value) {
|
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
// Truncate and shift down (requires >> to be sign extending).
|
|
return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits;
|
|
}
|
|
|
|
template <class T, typename std::enable_if_t<std::is_integral_v<T> &&
|
|
std::is_signed_v<T>>* = nullptr>
|
|
V8_INLINE static constexpr bool IsValidSmi(T value) {
|
|
// Is value in range [kSmiMinValue, kSmiMaxValue].
|
|
// Use unsigned operations in order to avoid undefined behaviour in case of
|
|
// signed integer overflow.
|
|
return (static_cast<uintptr_t>(value) -
|
|
static_cast<uintptr_t>(kSmiMinValue)) <=
|
|
(static_cast<uintptr_t>(kSmiMaxValue) -
|
|
static_cast<uintptr_t>(kSmiMinValue));
|
|
}
|
|
|
|
template <class T,
|
|
typename std::enable_if_t<std::is_integral_v<T> &&
|
|
std::is_unsigned_v<T>>* = nullptr>
|
|
V8_INLINE static constexpr bool IsValidSmi(T value) {
|
|
static_assert(kSmiMaxValue <= std::numeric_limits<uintptr_t>::max());
|
|
return value <= static_cast<uintptr_t>(kSmiMaxValue);
|
|
}
|
|
|
|
// Same as the `intptr_t` version but works with int64_t on 32-bit builds
|
|
// without slowing down anything else.
|
|
V8_INLINE static constexpr bool IsValidSmi(int64_t value) {
|
|
return (static_cast<uint64_t>(value) -
|
|
static_cast<uint64_t>(kSmiMinValue)) <=
|
|
(static_cast<uint64_t>(kSmiMaxValue) -
|
|
static_cast<uint64_t>(kSmiMinValue));
|
|
}
|
|
|
|
V8_INLINE static constexpr bool IsValidSmi(uint64_t value) {
|
|
static_assert(kSmiMaxValue <= std::numeric_limits<uint64_t>::max());
|
|
return value <= static_cast<uint64_t>(kSmiMaxValue);
|
|
}
|
|
};
|
|
|
|
// Smi constants for systems where tagged pointer is a 64-bit value.
|
|
template <>
|
|
struct SmiTagging<8> {
|
|
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
|
|
|
|
static constexpr intptr_t kSmiMinValue =
|
|
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
|
|
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
|
|
|
|
V8_INLINE static constexpr int SmiToInt(Address value) {
|
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
// Shift down and throw away top 32 bits.
|
|
return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
|
|
}
|
|
|
|
template <class T, typename std::enable_if_t<std::is_integral_v<T> &&
|
|
std::is_signed_v<T>>* = nullptr>
|
|
V8_INLINE static constexpr bool IsValidSmi(T value) {
|
|
// To be representable as a long smi, the value must be a 32-bit integer.
|
|
return std::numeric_limits<int32_t>::min() <= value &&
|
|
value <= std::numeric_limits<int32_t>::max();
|
|
}
|
|
|
|
template <class T,
|
|
typename std::enable_if_t<std::is_integral_v<T> &&
|
|
std::is_unsigned_v<T>>* = nullptr>
|
|
V8_INLINE static constexpr bool IsValidSmi(T value) {
|
|
return value <= std::numeric_limits<int32_t>::max();
|
|
}
|
|
};
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
// See v8:7703 or src/common/ptr-compr-inl.h for details about pointer
|
|
// compression.
|
|
constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32;
|
|
constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32;
|
|
|
|
static_assert(
|
|
kApiSystemPointerSize == kApiInt64Size,
|
|
"Pointer compression can be enabled only for 64-bit architectures");
|
|
const int kApiTaggedSize = kApiInt32Size;
|
|
#else
|
|
const int kApiTaggedSize = kApiSystemPointerSize;
|
|
#endif
|
|
|
|
constexpr bool PointerCompressionIsEnabled() {
|
|
return kApiTaggedSize != kApiSystemPointerSize;
|
|
}
|
|
|
|
#ifdef V8_31BIT_SMIS_ON_64BIT_ARCH
|
|
using PlatformSmiTagging = SmiTagging<kApiInt32Size>;
|
|
#else
|
|
using PlatformSmiTagging = SmiTagging<kApiTaggedSize>;
|
|
#endif
|
|
|
|
// TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize
|
|
// since it's used much more often than the inividual constants.
|
|
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
|
|
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
|
|
const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue);
|
|
const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue);
|
|
constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
|
|
constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
|
|
constexpr bool Is64() { return kApiSystemPointerSize == sizeof(int64_t); }
|
|
|
|
V8_INLINE static constexpr Address IntToSmi(int value) {
|
|
return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
|
|
kSmiTag;
|
|
}
|
|
|
|
/*
|
|
* Sandbox related types, constants, and functions.
|
|
*/
|
|
constexpr bool SandboxIsEnabled() {
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// SandboxedPointers are guaranteed to point into the sandbox. This is achieved
|
|
// for example by storing them as offset rather than as raw pointers.
|
|
using SandboxedPointer_t = Address;
|
|
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
|
|
// Size of the sandbox, excluding the guard regions surrounding it.
|
|
#if defined(V8_TARGET_OS_ANDROID)
|
|
// On Android, most 64-bit devices seem to be configured with only 39 bits of
|
|
// virtual address space for userspace. As such, limit the sandbox to 128GB (a
|
|
// quarter of the total available address space).
|
|
constexpr size_t kSandboxSizeLog2 = 37; // 128 GB
|
|
#else
|
|
// Everywhere else use a 1TB sandbox.
|
|
constexpr size_t kSandboxSizeLog2 = 40; // 1 TB
|
|
#endif // V8_TARGET_OS_ANDROID
|
|
constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2;
|
|
|
|
// Required alignment of the sandbox. For simplicity, we require the
|
|
// size of the guard regions to be a multiple of this, so that this specifies
|
|
// the alignment of the sandbox including and excluding surrounding guard
|
|
// regions. The alignment requirement is due to the pointer compression cage
|
|
// being located at the start of the sandbox.
|
|
constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment;
|
|
|
|
// Sandboxed pointers are stored inside the heap as offset from the sandbox
|
|
// base shifted to the left. This way, it is guaranteed that the offset is
|
|
// smaller than the sandbox size after shifting it to the right again. This
|
|
// constant specifies the shift amount.
|
|
constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2;
|
|
|
|
// Size of the guard regions surrounding the sandbox. This assumes a worst-case
|
|
// scenario of a 32-bit unsigned index used to access an array of 64-bit values
|
|
// with an additional 4GB (compressed pointer) offset. In particular, accesses
|
|
// to TypedArrays are effectively computed as
|
|
// `entry_pointer = array->base + array->offset + index * array->element_size`.
|
|
// See also https://crbug.com/40070746 for more details.
|
|
constexpr size_t kSandboxGuardRegionSize = 32ULL * GB + 4ULL * GB;
|
|
|
|
static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0,
|
|
"The size of the guard regions around the sandbox must be a "
|
|
"multiple of its required alignment.");
|
|
|
|
// On OSes where reserving virtual memory is too expensive to reserve the
|
|
// entire address space backing the sandbox, notably Windows pre 8.1, we create
|
|
// a partially reserved sandbox that doesn't actually reserve most of the
|
|
// memory, and so doesn't have the desired security properties as unrelated
|
|
// memory allocations could end up inside of it, but which still ensures that
|
|
// objects that should be located inside the sandbox are allocated within
|
|
// kSandboxSize bytes from the start of the sandbox. The minimum size of the
|
|
// region that is actually reserved for such a sandbox is specified by this
|
|
// constant and should be big enough to contain the pointer compression cage as
|
|
// well as the ArrayBuffer partition.
|
|
constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB;
|
|
|
|
static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize,
|
|
"The minimum reservation size for a sandbox must be larger than "
|
|
"the pointer compression cage contained within it.");
|
|
|
|
// The maximum buffer size allowed inside the sandbox. This is mostly dependent
|
|
// on the size of the guard regions around the sandbox: an attacker must not be
|
|
// able to construct a buffer that appears larger than the guard regions and
|
|
// thereby "reach out of" the sandbox.
|
|
constexpr size_t kMaxSafeBufferSizeForSandbox = 32ULL * GB - 1;
|
|
static_assert(kMaxSafeBufferSizeForSandbox <= kSandboxGuardRegionSize,
|
|
"The maximum allowed buffer size must not be larger than the "
|
|
"sandbox's guard regions");
|
|
|
|
constexpr size_t kBoundedSizeShift = 29;
|
|
static_assert(1ULL << (64 - kBoundedSizeShift) ==
|
|
kMaxSafeBufferSizeForSandbox + 1,
|
|
"The maximum size of a BoundedSize must be synchronized with the "
|
|
"kMaxSafeBufferSizeForSandbox");
|
|
|
|
#endif // V8_ENABLE_SANDBOX
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
|
|
#ifdef V8_TARGET_OS_ANDROID
|
|
// The size of the virtual memory reservation for an external pointer table.
|
|
// This determines the maximum number of entries in a table. Using a maximum
|
|
// size allows omitting bounds checks on table accesses if the indices are
|
|
// guaranteed (e.g. through shifting) to be below the maximum index. This
|
|
// value must be a power of two.
|
|
constexpr size_t kExternalPointerTableReservationSize = 256 * MB;
|
|
|
|
// The external pointer table indices stored in HeapObjects as external
|
|
// pointers are shifted to the left by this amount to guarantee that they are
|
|
// smaller than the maximum table size even after the C++ compiler multiplies
|
|
// them by 8 to be used as indexes into a table of 64 bit pointers.
|
|
constexpr uint32_t kExternalPointerIndexShift = 7;
|
|
#else
|
|
constexpr size_t kExternalPointerTableReservationSize = 512 * MB;
|
|
constexpr uint32_t kExternalPointerIndexShift = 6;
|
|
#endif // V8_TARGET_OS_ANDROID
|
|
|
|
// The maximum number of entries in an external pointer table.
|
|
constexpr int kExternalPointerTableEntrySize = 8;
|
|
constexpr int kExternalPointerTableEntrySizeLog2 = 3;
|
|
constexpr size_t kMaxExternalPointers =
|
|
kExternalPointerTableReservationSize / kExternalPointerTableEntrySize;
|
|
static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxExternalPointers,
|
|
"kExternalPointerTableReservationSize and "
|
|
"kExternalPointerIndexShift don't match");
|
|
|
|
#else // !V8_COMPRESS_POINTERS
|
|
|
|
// Needed for the V8.SandboxedExternalPointersCount histogram.
|
|
constexpr size_t kMaxExternalPointers = 0;
|
|
|
|
#endif // V8_COMPRESS_POINTERS
|
|
|
|
constexpr uint64_t kExternalPointerMarkBit = 1ULL << 48;
|
|
constexpr uint64_t kExternalPointerTagShift = 49;
|
|
constexpr uint64_t kExternalPointerTagMask = 0x00fe000000000000ULL;
|
|
constexpr uint64_t kExternalPointerShiftedTagMask =
|
|
kExternalPointerTagMask >> kExternalPointerTagShift;
|
|
static_assert(kExternalPointerShiftedTagMask << kExternalPointerTagShift ==
|
|
kExternalPointerTagMask);
|
|
constexpr uint64_t kExternalPointerTagAndMarkbitMask = 0x00ff000000000000ULL;
|
|
constexpr uint64_t kExternalPointerPayloadMask = 0xff00ffffffffffffULL;
|
|
|
|
// A ExternalPointerHandle represents a (opaque) reference to an external
|
|
// pointer that can be stored inside the sandbox. A ExternalPointerHandle has
|
|
// meaning only in combination with an (active) Isolate as it references an
|
|
// external pointer stored in the currently active Isolate's
|
|
// ExternalPointerTable. Internally, an ExternalPointerHandles is simply an
|
|
// index into an ExternalPointerTable that is shifted to the left to guarantee
|
|
// that it is smaller than the size of the table.
|
|
using ExternalPointerHandle = uint32_t;
|
|
|
|
// ExternalPointers point to objects located outside the sandbox. When the V8
|
|
// sandbox is enabled, these are stored on heap as ExternalPointerHandles,
|
|
// otherwise they are simply raw pointers.
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
using ExternalPointer_t = ExternalPointerHandle;
|
|
#else
|
|
using ExternalPointer_t = Address;
|
|
#endif
|
|
|
|
constexpr ExternalPointer_t kNullExternalPointer = 0;
|
|
constexpr ExternalPointerHandle kNullExternalPointerHandle = 0;
|
|
|
|
// See `ExternalPointerHandle` for the main documentation. The difference to
|
|
// `ExternalPointerHandle` is that the handle does not represent an arbitrary
|
|
// external pointer but always refers to an object managed by `CppHeap`. The
|
|
// handles are using in combination with a dedicated table for `CppHeap`
|
|
// references.
|
|
using CppHeapPointerHandle = uint32_t;
|
|
|
|
// The actual pointer to objects located on the `CppHeap`. When pointer
|
|
// compression is enabled these pointers are stored as `CppHeapPointerHandle`.
|
|
// In non-compressed configurations the pointers are simply stored as raw
|
|
// pointers.
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
using CppHeapPointer_t = CppHeapPointerHandle;
|
|
#else
|
|
using CppHeapPointer_t = Address;
|
|
#endif
|
|
|
|
constexpr CppHeapPointer_t kNullCppHeapPointer = 0;
|
|
constexpr CppHeapPointerHandle kNullCppHeapPointerHandle = 0;
|
|
|
|
constexpr uint64_t kCppHeapPointerMarkBit = 1ULL;
|
|
constexpr uint64_t kCppHeapPointerTagShift = 1;
|
|
constexpr uint64_t kCppHeapPointerPayloadShift = 16;
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
// CppHeapPointers use a dedicated pointer table. These constants control the
|
|
// size and layout of the table. See the corresponding constants for the
|
|
// external pointer table for further details.
|
|
constexpr size_t kCppHeapPointerTableReservationSize =
|
|
kExternalPointerTableReservationSize;
|
|
constexpr uint32_t kCppHeapPointerIndexShift = kExternalPointerIndexShift;
|
|
|
|
constexpr int kCppHeapPointerTableEntrySize = 8;
|
|
constexpr int kCppHeapPointerTableEntrySizeLog2 = 3;
|
|
constexpr size_t kMaxCppHeapPointers =
|
|
kCppHeapPointerTableReservationSize / kCppHeapPointerTableEntrySize;
|
|
static_assert((1 << (32 - kCppHeapPointerIndexShift)) == kMaxCppHeapPointers,
|
|
"kCppHeapPointerTableReservationSize and "
|
|
"kCppHeapPointerIndexShift don't match");
|
|
|
|
#else // !V8_COMPRESS_POINTERS
|
|
|
|
// Needed for the V8.SandboxedCppHeapPointersCount histogram.
|
|
constexpr size_t kMaxCppHeapPointers = 0;
|
|
|
|
#endif // V8_COMPRESS_POINTERS
|
|
|
|
// Generic tag range struct to represent ranges of type tags.
|
|
//
|
|
// When referencing external objects via pointer tables, type tags are
|
|
// frequently necessary to guarantee type safety for the external objects. When
|
|
// support for subtyping is necessary, range-based type checks are used in
|
|
// which all subtypes of a given supertype use contiguous tags. This struct can
|
|
// then be used to represent such a type range.
|
|
//
|
|
// In addition, there is an option for performance tweaks: if the size of the
|
|
// type range corresponding to a supertype is a power of two and starts at a
|
|
// power of two (e.g. [0x100, 0x13f]), then the compiler can often optimize
|
|
// the type check to use even fewer instructions (essentially replace a AND +
|
|
// SUB with a single AND).
|
|
//
|
|
template <typename Tag>
|
|
struct TagRange {
|
|
static_assert(std::is_enum_v<Tag> &&
|
|
std::is_same_v<std::underlying_type_t<Tag>, uint16_t>,
|
|
"Tag parameter must be an enum with base type uint16_t");
|
|
|
|
// Construct the inclusive tag range [first, last].
|
|
constexpr TagRange(Tag first, Tag last) : first(first), last(last) {}
|
|
|
|
// Construct a tag range consisting of a single tag.
|
|
//
|
|
// A single tag is always implicitly convertible to a tag range. This greatly
|
|
// increases readability as most of the time, the exact tag of a field is
|
|
// known and so no tag range needs to explicitly be created for it.
|
|
constexpr TagRange(Tag tag) // NOLINT(runtime/explicit)
|
|
: first(tag), last(tag) {}
|
|
|
|
// Construct an empty tag range.
|
|
constexpr TagRange() : TagRange(static_cast<Tag>(0)) {}
|
|
|
|
// A tag range is considered empty if it only contains the null tag.
|
|
constexpr bool IsEmpty() const { return first == 0 && last == 0; }
|
|
|
|
constexpr size_t Size() const {
|
|
if (IsEmpty()) {
|
|
return 0;
|
|
} else {
|
|
return last - first + 1;
|
|
}
|
|
}
|
|
|
|
constexpr bool Contains(Tag tag) const {
|
|
// Need to perform the math with uint32_t. Otherwise, the uint16_ts would
|
|
// be promoted to (signed) int, allowing the compiler to (wrongly) assume
|
|
// that an underflow cannot happen as that would be undefined behavior.
|
|
return static_cast<uint32_t>(tag) - first <=
|
|
static_cast<uint32_t>(last) - first;
|
|
}
|
|
|
|
constexpr bool Contains(TagRange tag_range) const {
|
|
return tag_range.first >= first && tag_range.last <= last;
|
|
}
|
|
|
|
constexpr bool operator==(const TagRange other) const {
|
|
return first == other.first && last == other.last;
|
|
}
|
|
|
|
constexpr size_t hash_value() const {
|
|
static_assert(std::is_same_v<std::underlying_type_t<Tag>, uint16_t>);
|
|
return (static_cast<size_t>(first) << 16) | last;
|
|
}
|
|
|
|
// Internally we represent tag ranges as half-open ranges [first, last).
|
|
const Tag first;
|
|
const Tag last;
|
|
};
|
|
|
|
//
|
|
// External Pointers.
|
|
//
|
|
// When the sandbox is enabled, external pointers are stored in an external
|
|
// pointer table and are referenced from HeapObjects through an index (a
|
|
// "handle"). When stored in the table, the pointers are tagged with per-type
|
|
// tags to prevent type confusion attacks between different external objects.
|
|
//
|
|
// When loading an external pointer, a range of allowed tags can be specified.
|
|
// This way, type hierarchies can be supported. The main requirement for that
|
|
// is that all (transitive) child classes of a given parent class have type ids
|
|
// in the same range, and that there are no unrelated types in that range. For
|
|
// more details about how to assign type tags to types, see the TagRange class.
|
|
//
|
|
// The external pointer sandboxing mechanism ensures that every access to an
|
|
// external pointer field will result in a valid pointer of the expected type
|
|
// even in the presence of an attacker able to corrupt memory inside the
|
|
// sandbox. However, if any data related to the external object is stored
|
|
// inside the sandbox it may still be corrupted and so must be validated before
|
|
// use or moved into the external object. Further, an attacker will always be
|
|
// able to substitute different external pointers of the same type for each
|
|
// other. Therefore, code using external pointers must be written in a
|
|
// "substitution-safe" way, i.e. it must always be possible to substitute
|
|
// external pointers of the same type without causing memory corruption outside
|
|
// of the sandbox. Generally this is achieved by referencing any group of
|
|
// related external objects through a single external pointer.
|
|
//
|
|
// Currently we use bit 62 for the marking bit which should always be unused as
|
|
// it's part of the non-canonical address range. When Arm's top-byte ignore
|
|
// (TBI) is enabled, this bit will be part of the ignored byte, and we assume
|
|
// that the Embedder is not using this byte (really only this one bit) for any
|
|
// other purpose. This bit also does not collide with the memory tagging
|
|
// extension (MTE) which would use bits [56, 60).
|
|
//
|
|
// External pointer tables are also available even when the sandbox is off but
|
|
// pointer compression is on. In that case, the mechanism can be used to ease
|
|
// alignment requirements as it turns unaligned 64-bit raw pointers into
|
|
// aligned 32-bit indices. To "opt-in" to the external pointer table mechanism
|
|
// for this purpose, instead of using the ExternalPointer accessors one needs to
|
|
// use ExternalPointerHandles directly and use them to access the pointers in an
|
|
// ExternalPointerTable.
|
|
//
|
|
// The tag is currently in practice limited to 15 bits since it needs to fit
|
|
// together with a marking bit into the unused parts of a pointer.
|
|
enum ExternalPointerTag : uint16_t {
|
|
kFirstExternalPointerTag = 0,
|
|
kExternalPointerNullTag = 0,
|
|
|
|
// When adding new tags, please ensure that the code using these tags is
|
|
// "substitution-safe", i.e. still operate safely if external pointers of the
|
|
// same type are swapped by an attacker. See comment above for more details.
|
|
|
|
// Shared external pointers are owned by the shared Isolate and stored in the
|
|
// shared external pointer table associated with that Isolate, where they can
|
|
// be accessed from multiple threads at the same time. The objects referenced
|
|
// in this way must therefore always be thread-safe.
|
|
kFirstSharedExternalPointerTag,
|
|
kWaiterQueueNodeTag = kFirstSharedExternalPointerTag,
|
|
kExternalStringResourceTag,
|
|
kExternalStringResourceDataTag,
|
|
kLastSharedExternalPointerTag = kExternalStringResourceDataTag,
|
|
|
|
// External pointers using these tags are kept in a per-Isolate external
|
|
// pointer table and can only be accessed when this Isolate is active.
|
|
kNativeContextMicrotaskQueueTag,
|
|
kEmbedderDataSlotPayloadTag,
|
|
// This tag essentially stands for a `void*` pointer in the V8 API, and it is
|
|
// the Embedder's responsibility to ensure type safety (against substitution)
|
|
// and lifetime validity of these objects.
|
|
kExternalObjectValueTag,
|
|
kFirstMaybeReadOnlyExternalPointerTag,
|
|
kFunctionTemplateInfoCallbackTag = kFirstMaybeReadOnlyExternalPointerTag,
|
|
kAccessorInfoGetterTag,
|
|
kAccessorInfoSetterTag,
|
|
kLastMaybeReadOnlyExternalPointerTag = kAccessorInfoSetterTag,
|
|
kWasmInternalFunctionCallTargetTag,
|
|
kWasmTypeInfoNativeTypeTag,
|
|
kWasmExportedFunctionDataSignatureTag,
|
|
kWasmStackMemoryTag,
|
|
kWasmIndirectFunctionTargetTag,
|
|
|
|
// Foreigns
|
|
kFirstForeignExternalPointerTag,
|
|
kGenericForeignTag = kFirstForeignExternalPointerTag,
|
|
kApiNamedPropertyQueryCallbackTag,
|
|
kApiNamedPropertyGetterCallbackTag,
|
|
kApiNamedPropertySetterCallbackTag,
|
|
kApiNamedPropertyDescriptorCallbackTag,
|
|
kApiNamedPropertyDefinerCallbackTag,
|
|
kApiNamedPropertyDeleterCallbackTag,
|
|
kApiIndexedPropertyQueryCallbackTag,
|
|
kApiIndexedPropertyGetterCallbackTag,
|
|
kApiIndexedPropertySetterCallbackTag,
|
|
kApiIndexedPropertyDescriptorCallbackTag,
|
|
kApiIndexedPropertyDefinerCallbackTag,
|
|
kApiIndexedPropertyDeleterCallbackTag,
|
|
kApiIndexedPropertyEnumeratorCallbackTag,
|
|
kApiAccessCheckCallbackTag,
|
|
kApiAbortScriptExecutionCallbackTag,
|
|
kSyntheticModuleTag,
|
|
kMicrotaskCallbackTag,
|
|
kMicrotaskCallbackDataTag,
|
|
kCFunctionTag,
|
|
kCFunctionInfoTag,
|
|
kMessageListenerTag,
|
|
kWaiterQueueForeignTag,
|
|
|
|
// Managed
|
|
kFirstManagedResourceTag,
|
|
kFirstManagedExternalPointerTag = kFirstManagedResourceTag,
|
|
kGenericManagedTag = kFirstManagedExternalPointerTag,
|
|
kWasmWasmStreamingTag,
|
|
kWasmFuncDataTag,
|
|
kWasmManagedDataTag,
|
|
kWasmNativeModuleTag,
|
|
kIcuBreakIteratorTag,
|
|
kIcuUnicodeStringTag,
|
|
kIcuListFormatterTag,
|
|
kIcuLocaleTag,
|
|
kIcuSimpleDateFormatTag,
|
|
kIcuDateIntervalFormatTag,
|
|
kIcuRelativeDateTimeFormatterTag,
|
|
kIcuLocalizedNumberFormatterTag,
|
|
kIcuPluralRulesTag,
|
|
kIcuCollatorTag,
|
|
kDisplayNamesInternalTag,
|
|
kD8WorkerTag,
|
|
kD8ModuleEmbedderDataTag,
|
|
kLastForeignExternalPointerTag = kD8ModuleEmbedderDataTag,
|
|
kLastManagedExternalPointerTag = kLastForeignExternalPointerTag,
|
|
// External resources whose lifetime is tied to their entry in the external
|
|
// pointer table but which are not referenced via a Managed
|
|
kArrayBufferExtensionTag,
|
|
kLastManagedResourceTag = kArrayBufferExtensionTag,
|
|
|
|
kExternalPointerZappedEntryTag = 0x7d,
|
|
kExternalPointerEvacuationEntryTag = 0x7e,
|
|
kExternalPointerFreeEntryTag = 0x7f,
|
|
// The tags are limited to 7 bits, so the last tag is 0x7f.
|
|
kLastExternalPointerTag = 0x7f,
|
|
};
|
|
|
|
using ExternalPointerTagRange = TagRange<ExternalPointerTag>;
|
|
|
|
constexpr ExternalPointerTagRange kAnyExternalPointerTagRange(
|
|
kFirstExternalPointerTag, kLastExternalPointerTag);
|
|
constexpr ExternalPointerTagRange kAnySharedExternalPointerTagRange(
|
|
kFirstSharedExternalPointerTag, kLastSharedExternalPointerTag);
|
|
constexpr ExternalPointerTagRange kAnyForeignExternalPointerTagRange(
|
|
kFirstForeignExternalPointerTag, kLastForeignExternalPointerTag);
|
|
constexpr ExternalPointerTagRange kAnyManagedExternalPointerTagRange(
|
|
kFirstManagedExternalPointerTag, kLastManagedExternalPointerTag);
|
|
constexpr ExternalPointerTagRange kAnyMaybeReadOnlyExternalPointerTagRange(
|
|
kFirstMaybeReadOnlyExternalPointerTag,
|
|
kLastMaybeReadOnlyExternalPointerTag);
|
|
constexpr ExternalPointerTagRange kAnyManagedResourceExternalPointerTag(
|
|
kFirstManagedResourceTag, kLastManagedResourceTag);
|
|
|
|
// True if the external pointer must be accessed from the shared isolate's
|
|
// external pointer table.
|
|
V8_INLINE static constexpr bool IsSharedExternalPointerType(
|
|
ExternalPointerTagRange tag_range) {
|
|
return kAnySharedExternalPointerTagRange.Contains(tag_range);
|
|
}
|
|
|
|
// True if the external pointer may live in a read-only object, in which case
|
|
// the table entry will be in the shared read-only segment of the external
|
|
// pointer table.
|
|
V8_INLINE static constexpr bool IsMaybeReadOnlyExternalPointerType(
|
|
ExternalPointerTagRange tag_range) {
|
|
return kAnyMaybeReadOnlyExternalPointerTagRange.Contains(tag_range);
|
|
}
|
|
|
|
// True if the external pointer references an external object whose lifetime is
|
|
// tied to the entry in the external pointer table.
|
|
// In this case, the entry in the ExternalPointerTable always points to an
|
|
// object derived from ExternalPointerTable::ManagedResource.
|
|
V8_INLINE static constexpr bool IsManagedExternalPointerType(
|
|
ExternalPointerTagRange tag_range) {
|
|
return kAnyManagedResourceExternalPointerTag.Contains(tag_range);
|
|
}
|
|
|
|
// When an external poiner field can contain the null external pointer handle,
|
|
// the type checking mechanism needs to also check for null.
|
|
// TODO(saelo): this is mostly a temporary workaround to introduce range-based
|
|
// type checks. In the future, we should either (a) change the type tagging
|
|
// scheme so that null always passes or (b) (more likely) introduce dedicated
|
|
// null entries for those tags that need them (similar to other well-known
|
|
// empty value constants such as the empty fixed array).
|
|
V8_INLINE static constexpr bool ExternalPointerCanBeEmpty(
|
|
ExternalPointerTagRange tag_range) {
|
|
return tag_range.Contains(kArrayBufferExtensionTag) ||
|
|
tag_range.Contains(kEmbedderDataSlotPayloadTag);
|
|
}
|
|
|
|
// Indirect Pointers.
|
|
//
|
|
// When the sandbox is enabled, indirect pointers are used to reference
|
|
// HeapObjects that live outside of the sandbox (but are still managed by V8's
|
|
// garbage collector). When object A references an object B through an indirect
|
|
// pointer, object A will contain a IndirectPointerHandle, i.e. a shifted
|
|
// 32-bit index, which identifies an entry in a pointer table (either the
|
|
// trusted pointer table for TrustedObjects, or the code pointer table if it is
|
|
// a Code object). This table entry then contains the actual pointer to object
|
|
// B. Further, object B owns this pointer table entry, and it is responsible
|
|
// for updating the "self-pointer" in the entry when it is relocated in memory.
|
|
// This way, in contrast to "normal" pointers, indirect pointers never need to
|
|
// be tracked by the GC (i.e. there is no remembered set for them).
|
|
// These pointers do not exist when the sandbox is disabled.
|
|
|
|
// An IndirectPointerHandle represents a 32-bit index into a pointer table.
|
|
using IndirectPointerHandle = uint32_t;
|
|
|
|
// A null handle always references an entry that contains nullptr.
|
|
constexpr IndirectPointerHandle kNullIndirectPointerHandle = 0;
|
|
|
|
// When the sandbox is enabled, indirect pointers are used to implement:
|
|
// - TrustedPointers: an indirect pointer using the trusted pointer table (TPT)
|
|
// and referencing a TrustedObject in one of the trusted heap spaces.
|
|
// - CodePointers, an indirect pointer using the code pointer table (CPT) and
|
|
// referencing a Code object together with its instruction stream.
|
|
|
|
//
|
|
// Trusted Pointers.
|
|
//
|
|
// A pointer to a TrustedObject.
|
|
// When the sandbox is enabled, these are indirect pointers using the trusted
|
|
// pointer table (TPT). They are used to reference trusted objects (located in
|
|
// one of V8's trusted heap spaces, outside of the sandbox) from inside the
|
|
// sandbox in a memory-safe way. When the sandbox is disabled, these are
|
|
// regular tagged pointers.
|
|
using TrustedPointerHandle = IndirectPointerHandle;
|
|
|
|
// The size of the virtual memory reservation for the trusted pointer table.
|
|
// As with the external pointer table, a maximum table size in combination with
|
|
// shifted indices allows omitting bounds checks.
|
|
constexpr size_t kTrustedPointerTableReservationSize = 64 * MB;
|
|
|
|
// The trusted pointer handles are stored shifted to the left by this amount
|
|
// to guarantee that they are smaller than the maximum table size.
|
|
constexpr uint32_t kTrustedPointerHandleShift = 9;
|
|
|
|
// A null handle always references an entry that contains nullptr.
|
|
constexpr TrustedPointerHandle kNullTrustedPointerHandle =
|
|
kNullIndirectPointerHandle;
|
|
|
|
// The maximum number of entries in an trusted pointer table.
|
|
constexpr int kTrustedPointerTableEntrySize = 8;
|
|
constexpr int kTrustedPointerTableEntrySizeLog2 = 3;
|
|
constexpr size_t kMaxTrustedPointers =
|
|
kTrustedPointerTableReservationSize / kTrustedPointerTableEntrySize;
|
|
static_assert((1 << (32 - kTrustedPointerHandleShift)) == kMaxTrustedPointers,
|
|
"kTrustedPointerTableReservationSize and "
|
|
"kTrustedPointerHandleShift don't match");
|
|
|
|
//
|
|
// Code Pointers.
|
|
//
|
|
// A pointer to a Code object.
|
|
// Essentially a specialized version of a trusted pointer that (when the
|
|
// sandbox is enabled) uses the code pointer table (CPT) instead of the TPT.
|
|
// Each entry in the CPT contains both a pointer to a Code object as well as a
|
|
// pointer to the Code's entrypoint. This allows calling/jumping into Code with
|
|
// one fewer memory access (compared to the case where the entrypoint pointer
|
|
// first needs to be loaded from the Code object). As such, a CodePointerHandle
|
|
// can be used both to obtain the referenced Code object and to directly load
|
|
// its entrypoint.
|
|
//
|
|
// When the sandbox is disabled, these are regular tagged pointers.
|
|
using CodePointerHandle = IndirectPointerHandle;
|
|
|
|
// The size of the virtual memory reservation for the code pointer table.
|
|
// As with the other tables, a maximum table size in combination with shifted
|
|
// indices allows omitting bounds checks.
|
|
constexpr size_t kCodePointerTableReservationSize = 128 * MB;
|
|
|
|
// Code pointer handles are shifted by a different amount than indirect pointer
|
|
// handles as the tables have a different maximum size.
|
|
constexpr uint32_t kCodePointerHandleShift = 9;
|
|
|
|
// A null handle always references an entry that contains nullptr.
|
|
constexpr CodePointerHandle kNullCodePointerHandle = kNullIndirectPointerHandle;
|
|
|
|
// It can sometimes be necessary to distinguish a code pointer handle from a
|
|
// trusted pointer handle. A typical example would be a union trusted pointer
|
|
// field that can refer to both Code objects and other trusted objects. To
|
|
// support these use-cases, we use a simple marking scheme where some of the
|
|
// low bits of a code pointer handle are set, while they will be unset on a
|
|
// trusted pointer handle. This way, the correct table to resolve the handle
|
|
// can be determined even in the absence of a type tag.
|
|
constexpr uint32_t kCodePointerHandleMarker = 0x1;
|
|
static_assert(kCodePointerHandleShift > 0);
|
|
static_assert(kTrustedPointerHandleShift > 0);
|
|
|
|
// The maximum number of entries in a code pointer table.
|
|
constexpr int kCodePointerTableEntrySize = 16;
|
|
constexpr int kCodePointerTableEntrySizeLog2 = 4;
|
|
constexpr size_t kMaxCodePointers =
|
|
kCodePointerTableReservationSize / kCodePointerTableEntrySize;
|
|
static_assert(
|
|
(1 << (32 - kCodePointerHandleShift)) == kMaxCodePointers,
|
|
"kCodePointerTableReservationSize and kCodePointerHandleShift don't match");
|
|
|
|
constexpr int kCodePointerTableEntryEntrypointOffset = 0;
|
|
constexpr int kCodePointerTableEntryCodeObjectOffset = 8;
|
|
|
|
// Constants that can be used to mark places that should be modified once
|
|
// certain types of objects are moved out of the sandbox and into trusted space.
|
|
constexpr bool kRuntimeGeneratedCodeObjectsLiveInTrustedSpace = true;
|
|
constexpr bool kBuiltinCodeObjectsLiveInTrustedSpace = false;
|
|
constexpr bool kAllCodeObjectsLiveInTrustedSpace =
|
|
kRuntimeGeneratedCodeObjectsLiveInTrustedSpace &&
|
|
kBuiltinCodeObjectsLiveInTrustedSpace;
|
|
|
|
// {obj} must be the raw tagged pointer representation of a HeapObject
|
|
// that's guaranteed to never be in ReadOnlySpace.
|
|
V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj);
|
|
|
|
// Returns if we need to throw when an error occurs. This infers the language
|
|
// mode based on the current context and the closure. This returns true if the
|
|
// language mode is strict.
|
|
V8_EXPORT bool ShouldThrowOnError(internal::Isolate* isolate);
|
|
/**
|
|
* This class exports constants and functionality from within v8 that
|
|
* is necessary to implement inline functions in the v8 api. Don't
|
|
* depend on functions and constants defined here.
|
|
*/
|
|
class Internals {
|
|
#ifdef V8_MAP_PACKING
|
|
V8_INLINE static constexpr Address UnpackMapWord(Address mapword) {
|
|
// TODO(wenyuzhao): Clear header metadata.
|
|
return mapword ^ kMapWordXorMask;
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
// These values match non-compiler-dependent values defined within
|
|
// the implementation of v8.
|
|
static const int kHeapObjectMapOffset = 0;
|
|
static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size;
|
|
static const int kStringResourceOffset =
|
|
1 * kApiTaggedSize + 2 * kApiInt32Size;
|
|
|
|
static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
|
|
static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
static const int kJSAPIObjectWithEmbedderSlotsHeaderSize =
|
|
kJSObjectHeaderSize + kApiInt32Size;
|
|
#else // !V8_COMPRESS_POINTERS
|
|
static const int kJSAPIObjectWithEmbedderSlotsHeaderSize =
|
|
kJSObjectHeaderSize + kApiTaggedSize;
|
|
#endif // !V8_COMPRESS_POINTERS
|
|
static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
|
|
static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
|
|
static const int kEmbedderDataSlotSize = kApiSystemPointerSize;
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
static const int kEmbedderDataSlotExternalPointerOffset = kApiTaggedSize;
|
|
#else
|
|
static const int kEmbedderDataSlotExternalPointerOffset = 0;
|
|
#endif
|
|
static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize;
|
|
static const int kStringRepresentationAndEncodingMask = 0x0f;
|
|
static const int kStringEncodingMask = 0x8;
|
|
static const int kExternalTwoByteRepresentationTag = 0x02;
|
|
static const int kExternalOneByteRepresentationTag = 0x0a;
|
|
|
|
static const uint32_t kNumIsolateDataSlots = 4;
|
|
static const int kStackGuardSize = 8 * kApiSystemPointerSize;
|
|
static const int kNumberOfBooleanFlags = 6;
|
|
static const int kErrorMessageParamSize = 1;
|
|
static const int kTablesAlignmentPaddingSize = 1;
|
|
static const int kRegExpStaticResultOffsetsVectorSize = kApiSystemPointerSize;
|
|
static const int kBuiltinTier0EntryTableSize = 7 * kApiSystemPointerSize;
|
|
static const int kBuiltinTier0TableSize = 7 * kApiSystemPointerSize;
|
|
static const int kLinearAllocationAreaSize = 3 * kApiSystemPointerSize;
|
|
static const int kThreadLocalTopSize = 30 * kApiSystemPointerSize;
|
|
static const int kHandleScopeDataSize =
|
|
2 * kApiSystemPointerSize + 2 * kApiInt32Size;
|
|
|
|
// ExternalPointerTable and TrustedPointerTable layout guarantees.
|
|
static const int kExternalPointerTableBasePointerOffset = 0;
|
|
static const int kExternalPointerTableSize = 2 * kApiSystemPointerSize;
|
|
static const int kTrustedPointerTableSize = 2 * kApiSystemPointerSize;
|
|
static const int kTrustedPointerTableBasePointerOffset = 0;
|
|
|
|
// IsolateData layout guarantees.
|
|
static const int kIsolateCageBaseOffset = 0;
|
|
static const int kIsolateStackGuardOffset =
|
|
kIsolateCageBaseOffset + kApiSystemPointerSize;
|
|
static const int kVariousBooleanFlagsOffset =
|
|
kIsolateStackGuardOffset + kStackGuardSize;
|
|
static const int kErrorMessageParamOffset =
|
|
kVariousBooleanFlagsOffset + kNumberOfBooleanFlags;
|
|
static const int kBuiltinTier0EntryTableOffset =
|
|
kErrorMessageParamOffset + kErrorMessageParamSize +
|
|
kTablesAlignmentPaddingSize + kRegExpStaticResultOffsetsVectorSize;
|
|
static const int kBuiltinTier0TableOffset =
|
|
kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize;
|
|
static const int kNewAllocationInfoOffset =
|
|
kBuiltinTier0TableOffset + kBuiltinTier0TableSize;
|
|
static const int kOldAllocationInfoOffset =
|
|
kNewAllocationInfoOffset + kLinearAllocationAreaSize;
|
|
|
|
static const int kFastCCallAlignmentPaddingSize =
|
|
kApiSystemPointerSize == 8 ? 5 * kApiSystemPointerSize
|
|
: 1 * kApiSystemPointerSize;
|
|
static const int kIsolateFastCCallCallerPcOffset =
|
|
kOldAllocationInfoOffset + kLinearAllocationAreaSize +
|
|
kFastCCallAlignmentPaddingSize;
|
|
static const int kIsolateFastCCallCallerFpOffset =
|
|
kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize;
|
|
static const int kIsolateFastApiCallTargetOffset =
|
|
kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize;
|
|
static const int kIsolateLongTaskStatsCounterOffset =
|
|
kIsolateFastApiCallTargetOffset + kApiSystemPointerSize;
|
|
static const int kIsolateThreadLocalTopOffset =
|
|
kIsolateLongTaskStatsCounterOffset + kApiSizetSize;
|
|
static const int kIsolateHandleScopeDataOffset =
|
|
kIsolateThreadLocalTopOffset + kThreadLocalTopSize;
|
|
static const int kIsolateEmbedderDataOffset =
|
|
kIsolateHandleScopeDataOffset + kHandleScopeDataSize;
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
static const int kIsolateExternalPointerTableOffset =
|
|
kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
|
|
static const int kIsolateSharedExternalPointerTableAddressOffset =
|
|
kIsolateExternalPointerTableOffset + kExternalPointerTableSize;
|
|
static const int kIsolateCppHeapPointerTableOffset =
|
|
kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize;
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
static const int kIsolateTrustedCageBaseOffset =
|
|
kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize;
|
|
static const int kIsolateTrustedPointerTableOffset =
|
|
kIsolateTrustedCageBaseOffset + kApiSystemPointerSize;
|
|
static const int kIsolateSharedTrustedPointerTableAddressOffset =
|
|
kIsolateTrustedPointerTableOffset + kTrustedPointerTableSize;
|
|
static const int kIsolateTrustedPointerPublishingScopeOffset =
|
|
kIsolateSharedTrustedPointerTableAddressOffset + kApiSystemPointerSize;
|
|
static const int kIsolateCodePointerTableBaseAddressOffset =
|
|
kIsolateTrustedPointerPublishingScopeOffset + kApiSystemPointerSize;
|
|
static const int kIsolateApiCallbackThunkArgumentOffset =
|
|
kIsolateCodePointerTableBaseAddressOffset + kApiSystemPointerSize;
|
|
#else
|
|
static const int kIsolateApiCallbackThunkArgumentOffset =
|
|
kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize;
|
|
#endif // V8_ENABLE_SANDBOX
|
|
#else
|
|
static const int kIsolateApiCallbackThunkArgumentOffset =
|
|
kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
|
|
#endif // V8_COMPRESS_POINTERS
|
|
static const int kIsolateRegexpExecVectorArgumentOffset =
|
|
kIsolateApiCallbackThunkArgumentOffset + kApiSystemPointerSize;
|
|
static const int kContinuationPreservedEmbedderDataOffset =
|
|
kIsolateRegexpExecVectorArgumentOffset + kApiSystemPointerSize;
|
|
static const int kIsolateRootsOffset =
|
|
kContinuationPreservedEmbedderDataOffset + kApiSystemPointerSize;
|
|
|
|
// Assert scopes
|
|
static const int kDisallowGarbageCollectionAlign = alignof(uint32_t);
|
|
static const int kDisallowGarbageCollectionSize = sizeof(uint32_t);
|
|
|
|
#if V8_STATIC_ROOTS_BOOL
|
|
|
|
// These constants are copied from static-roots.h and guarded by static asserts.
|
|
#define EXPORTED_STATIC_ROOTS_PTR_LIST(V) \
|
|
V(UndefinedValue, 0x11) \
|
|
V(NullValue, 0x2d) \
|
|
V(TrueValue, 0x71) \
|
|
V(FalseValue, 0x55) \
|
|
V(EmptyString, 0x49) \
|
|
V(TheHoleValue, 0x761)
|
|
|
|
using Tagged_t = uint32_t;
|
|
struct StaticReadOnlyRoot {
|
|
#define DEF_ROOT(name, value) static constexpr Tagged_t k##name = value;
|
|
EXPORTED_STATIC_ROOTS_PTR_LIST(DEF_ROOT)
|
|
#undef DEF_ROOT
|
|
|
|
// Use 0 for kStringMapLowerBound since string maps are the first maps.
|
|
static constexpr Tagged_t kStringMapLowerBound = 0;
|
|
static constexpr Tagged_t kStringMapUpperBound = 0x425;
|
|
|
|
#define PLUSONE(...) +1
|
|
static constexpr size_t kNumberOfExportedStaticRoots =
|
|
2 + EXPORTED_STATIC_ROOTS_PTR_LIST(PLUSONE);
|
|
#undef PLUSONE
|
|
};
|
|
|
|
#endif // V8_STATIC_ROOTS_BOOL
|
|
|
|
static const int kUndefinedValueRootIndex = 4;
|
|
static const int kTheHoleValueRootIndex = 5;
|
|
static const int kNullValueRootIndex = 6;
|
|
static const int kTrueValueRootIndex = 7;
|
|
static const int kFalseValueRootIndex = 8;
|
|
static const int kEmptyStringRootIndex = 9;
|
|
|
|
static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize;
|
|
static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3;
|
|
static const int kNodeStateMask = 0x3;
|
|
static const int kNodeStateIsWeakValue = 2;
|
|
|
|
static const int kFirstNonstringType = 0x80;
|
|
static const int kOddballType = 0x83;
|
|
static const int kForeignType = 0xcc;
|
|
static const int kJSSpecialApiObjectType = 0x410;
|
|
static const int kJSObjectType = 0x421;
|
|
static const int kFirstJSApiObjectType = 0x422;
|
|
static const int kLastJSApiObjectType = 0x80A;
|
|
// Defines a range [kFirstEmbedderJSApiObjectType, kJSApiObjectTypesCount]
|
|
// of JSApiObject instance type values that an embedder can use.
|
|
static const int kFirstEmbedderJSApiObjectType = 0;
|
|
static const int kLastEmbedderJSApiObjectType =
|
|
kLastJSApiObjectType - kFirstJSApiObjectType;
|
|
|
|
static const int kUndefinedOddballKind = 4;
|
|
static const int kNullOddballKind = 3;
|
|
|
|
// Constants used by PropertyCallbackInfo to check if we should throw when an
|
|
// error occurs.
|
|
static const int kDontThrow = 0;
|
|
static const int kThrowOnError = 1;
|
|
static const int kInferShouldThrowMode = 2;
|
|
|
|
// Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
|
|
// incremental GC once the external memory reaches this limit.
|
|
static constexpr size_t kExternalAllocationSoftLimit = 64 * 1024 * 1024;
|
|
|
|
#ifdef V8_MAP_PACKING
|
|
static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48;
|
|
// The lowest two bits of mapwords are always `0b10`
|
|
static const uintptr_t kMapWordSignature = 0b10;
|
|
// XORing a (non-compressed) map with this mask ensures that the two
|
|
// low-order bits are 0b10. The 0 at the end makes this look like a Smi,
|
|
// although real Smis have all lower 32 bits unset. We only rely on these
|
|
// values passing as Smis in very few places.
|
|
static const int kMapWordXorMask = 0b11;
|
|
#endif
|
|
|
|
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
|
|
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckInitializedImpl(isolate);
|
|
#endif
|
|
}
|
|
|
|
V8_INLINE static constexpr bool HasHeapObjectTag(Address value) {
|
|
return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
|
|
}
|
|
|
|
V8_INLINE static constexpr int SmiValue(Address value) {
|
|
return PlatformSmiTagging::SmiToInt(value);
|
|
}
|
|
|
|
V8_INLINE static constexpr Address AddressToSmi(Address value) {
|
|
return (value << (kSmiTagSize + PlatformSmiTagging::kSmiShiftSize)) |
|
|
kSmiTag;
|
|
}
|
|
|
|
V8_INLINE static constexpr Address IntToSmi(int value) {
|
|
return AddressToSmi(static_cast<Address>(value));
|
|
}
|
|
|
|
template <typename T,
|
|
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
|
|
V8_INLINE static constexpr Address IntegralToSmi(T value) {
|
|
return AddressToSmi(static_cast<Address>(value));
|
|
}
|
|
|
|
template <typename T,
|
|
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
|
|
V8_INLINE static constexpr bool IsValidSmi(T value) {
|
|
return PlatformSmiTagging::IsValidSmi(value);
|
|
}
|
|
|
|
template <typename T,
|
|
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
|
|
static constexpr std::optional<Address> TryIntegralToSmi(T value) {
|
|
if (V8_LIKELY(PlatformSmiTagging::IsValidSmi(value))) {
|
|
return {AddressToSmi(static_cast<Address>(value))};
|
|
}
|
|
return {};
|
|
}
|
|
|
|
#if V8_STATIC_ROOTS_BOOL
|
|
V8_INLINE static bool is_identical(Address obj, Tagged_t constant) {
|
|
return static_cast<Tagged_t>(obj) == constant;
|
|
}
|
|
|
|
V8_INLINE static bool CheckInstanceMapRange(Address obj, Tagged_t first_map,
|
|
Tagged_t last_map) {
|
|
auto map = ReadRawField<Tagged_t>(obj, kHeapObjectMapOffset);
|
|
#ifdef V8_MAP_PACKING
|
|
map = UnpackMapWord(map);
|
|
#endif
|
|
return map >= first_map && map <= last_map;
|
|
}
|
|
#endif
|
|
|
|
V8_INLINE static int GetInstanceType(Address obj) {
|
|
Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
|
|
#ifdef V8_MAP_PACKING
|
|
map = UnpackMapWord(map);
|
|
#endif
|
|
return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
|
|
}
|
|
|
|
V8_INLINE static Address LoadMap(Address obj) {
|
|
if (!HasHeapObjectTag(obj)) return kNullAddress;
|
|
Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
|
|
#ifdef V8_MAP_PACKING
|
|
map = UnpackMapWord(map);
|
|
#endif
|
|
return map;
|
|
}
|
|
|
|
V8_INLINE static int GetOddballKind(Address obj) {
|
|
return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
|
|
}
|
|
|
|
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
|
|
int representation = (instance_type & kStringRepresentationAndEncodingMask);
|
|
return representation == kExternalTwoByteRepresentationTag;
|
|
}
|
|
|
|
V8_INLINE static constexpr bool CanHaveInternalField(int instance_type) {
|
|
static_assert(kJSObjectType + 1 == kFirstJSApiObjectType);
|
|
static_assert(kJSObjectType < kLastJSApiObjectType);
|
|
static_assert(kFirstJSApiObjectType < kLastJSApiObjectType);
|
|
// Check for IsJSObject() || IsJSSpecialApiObject() || IsJSApiObject()
|
|
return instance_type == kJSSpecialApiObjectType ||
|
|
// inlined version of base::IsInRange
|
|
(static_cast<unsigned>(static_cast<unsigned>(instance_type) -
|
|
static_cast<unsigned>(kJSObjectType)) <=
|
|
static_cast<unsigned>(kLastJSApiObjectType - kJSObjectType));
|
|
}
|
|
|
|
V8_INLINE static uint8_t GetNodeFlag(Address* obj, int shift) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
return *addr & static_cast<uint8_t>(1U << shift);
|
|
}
|
|
|
|
V8_INLINE static void UpdateNodeFlag(Address* obj, bool value, int shift) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
uint8_t mask = static_cast<uint8_t>(1U << shift);
|
|
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
|
|
}
|
|
|
|
V8_INLINE static uint8_t GetNodeState(Address* obj) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
return *addr & kNodeStateMask;
|
|
}
|
|
|
|
V8_INLINE static void UpdateNodeState(Address* obj, uint8_t value) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
|
|
}
|
|
|
|
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
|
|
void* data) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
|
|
*reinterpret_cast<void**>(addr) = data;
|
|
}
|
|
|
|
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
|
|
uint32_t slot) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
|
|
return *reinterpret_cast<void* const*>(addr);
|
|
}
|
|
|
|
V8_INLINE static void IncrementLongTasksStatsCounter(v8::Isolate* isolate) {
|
|
Address addr =
|
|
reinterpret_cast<Address>(isolate) + kIsolateLongTaskStatsCounterOffset;
|
|
++(*reinterpret_cast<size_t*>(addr));
|
|
}
|
|
|
|
V8_INLINE static Address* GetRootSlot(v8::Isolate* isolate, int index) {
|
|
Address addr = reinterpret_cast<Address>(isolate) + kIsolateRootsOffset +
|
|
index * kApiSystemPointerSize;
|
|
return reinterpret_cast<Address*>(addr);
|
|
}
|
|
|
|
V8_INLINE static Address GetRoot(v8::Isolate* isolate, int index) {
|
|
#if V8_STATIC_ROOTS_BOOL
|
|
Address base = *reinterpret_cast<Address*>(
|
|
reinterpret_cast<uintptr_t>(isolate) + kIsolateCageBaseOffset);
|
|
switch (index) {
|
|
#define DECOMPRESS_ROOT(name, ...) \
|
|
case k##name##RootIndex: \
|
|
return base + StaticReadOnlyRoot::k##name;
|
|
EXPORTED_STATIC_ROOTS_PTR_LIST(DECOMPRESS_ROOT)
|
|
#undef DECOMPRESS_ROOT
|
|
#undef EXPORTED_STATIC_ROOTS_PTR_LIST
|
|
default:
|
|
break;
|
|
}
|
|
#endif // V8_STATIC_ROOTS_BOOL
|
|
return *GetRootSlot(isolate, index);
|
|
}
|
|
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
V8_INLINE static Address* GetExternalPointerTableBase(v8::Isolate* isolate) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateExternalPointerTableOffset +
|
|
kExternalPointerTableBasePointerOffset;
|
|
return *reinterpret_cast<Address**>(addr);
|
|
}
|
|
|
|
V8_INLINE static Address* GetSharedExternalPointerTableBase(
|
|
v8::Isolate* isolate) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateSharedExternalPointerTableAddressOffset;
|
|
addr = *reinterpret_cast<Address*>(addr);
|
|
addr += kExternalPointerTableBasePointerOffset;
|
|
return *reinterpret_cast<Address**>(addr);
|
|
}
|
|
#endif
|
|
|
|
template <typename T>
|
|
V8_INLINE static T ReadRawField(Address heap_object_ptr, int offset) {
|
|
Address addr = heap_object_ptr + offset - kHeapObjectTag;
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
if (sizeof(T) > kApiTaggedSize) {
|
|
// TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
|
|
// fields (external pointers, doubles and BigInt data) are only
|
|
// kTaggedSize aligned so we have to use unaligned pointer friendly way of
|
|
// accessing them in order to avoid undefined behavior in C++ code.
|
|
T r;
|
|
memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T));
|
|
return r;
|
|
}
|
|
#endif
|
|
return *reinterpret_cast<const T*>(addr);
|
|
}
|
|
|
|
V8_INLINE static Address ReadTaggedPointerField(Address heap_object_ptr,
|
|
int offset) {
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
|
|
Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
|
|
return base + static_cast<Address>(static_cast<uintptr_t>(value));
|
|
#else
|
|
return ReadRawField<Address>(heap_object_ptr, offset);
|
|
#endif
|
|
}
|
|
|
|
V8_INLINE static Address ReadTaggedSignedField(Address heap_object_ptr,
|
|
int offset) {
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
|
|
return static_cast<Address>(static_cast<uintptr_t>(value));
|
|
#else
|
|
return ReadRawField<Address>(heap_object_ptr, offset);
|
|
#endif
|
|
}
|
|
|
|
V8_INLINE static v8::Isolate* GetIsolateForSandbox(Address obj) {
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
return reinterpret_cast<v8::Isolate*>(
|
|
internal::IsolateFromNeverReadOnlySpaceObject(obj));
|
|
#else
|
|
// Not used in non-sandbox mode.
|
|
return nullptr;
|
|
#endif
|
|
}
|
|
|
|
template <ExternalPointerTagRange tag_range>
|
|
V8_INLINE static Address ReadExternalPointerField(v8::Isolate* isolate,
|
|
Address heap_object_ptr,
|
|
int offset) {
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
static_assert(!tag_range.IsEmpty());
|
|
// See src/sandbox/external-pointer-table.h. Logic duplicated here so
|
|
// it can be inlined and doesn't require an additional call.
|
|
Address* table = IsSharedExternalPointerType(tag_range)
|
|
? GetSharedExternalPointerTableBase(isolate)
|
|
: GetExternalPointerTableBase(isolate);
|
|
internal::ExternalPointerHandle handle =
|
|
ReadRawField<ExternalPointerHandle>(heap_object_ptr, offset);
|
|
uint32_t index = handle >> kExternalPointerIndexShift;
|
|
std::atomic<Address>* ptr =
|
|
reinterpret_cast<std::atomic<Address>*>(&table[index]);
|
|
Address entry = std::atomic_load_explicit(ptr, std::memory_order_relaxed);
|
|
ExternalPointerTag actual_tag = static_cast<ExternalPointerTag>(
|
|
(entry & kExternalPointerTagMask) >> kExternalPointerTagShift);
|
|
if (V8_LIKELY(tag_range.Contains(actual_tag))) {
|
|
return entry & kExternalPointerPayloadMask;
|
|
} else {
|
|
return 0;
|
|
}
|
|
return entry;
|
|
#else
|
|
return ReadRawField<Address>(heap_object_ptr, offset);
|
|
#endif // V8_ENABLE_SANDBOX
|
|
}
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
V8_INLINE static Address GetPtrComprCageBaseFromOnHeapAddress(Address addr) {
|
|
return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment);
|
|
}
|
|
|
|
V8_INLINE static uint32_t CompressTagged(Address value) {
|
|
return static_cast<uint32_t>(value);
|
|
}
|
|
|
|
V8_INLINE static Address DecompressTaggedField(Address heap_object_ptr,
|
|
uint32_t value) {
|
|
Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
|
|
return base + static_cast<Address>(static_cast<uintptr_t>(value));
|
|
}
|
|
|
|
#endif // V8_COMPRESS_POINTERS
|
|
};
|
|
|
|
// Only perform cast check for types derived from v8::Data since
|
|
// other types do not implement the Cast method.
|
|
template <bool PerformCheck>
|
|
struct CastCheck {
|
|
template <class T>
|
|
static void Perform(T* data);
|
|
};
|
|
|
|
template <>
|
|
template <class T>
|
|
void CastCheck<true>::Perform(T* data) {
|
|
T::Cast(data);
|
|
}
|
|
|
|
template <>
|
|
template <class T>
|
|
void CastCheck<false>::Perform(T* data) {}
|
|
|
|
template <class T>
|
|
V8_INLINE void PerformCastCheck(T* data) {
|
|
CastCheck<std::is_base_of<Data, T>::value &&
|
|
!std::is_same<Data, std::remove_cv_t<T>>::value>::Perform(data);
|
|
}
|
|
|
|
// A base class for backing stores, which is needed due to vagaries of
|
|
// how static casts work with std::shared_ptr.
|
|
class BackingStoreBase {};
|
|
|
|
// The maximum value in enum GarbageCollectionReason, defined in heap.h.
|
|
// This is needed for histograms sampling garbage collection reasons.
|
|
constexpr int kGarbageCollectionReasonMaxValue = 29;
|
|
|
|
// Base class for the address block allocator compatible with standard
|
|
// containers, which registers its allocated range as strong roots.
|
|
class V8_EXPORT StrongRootAllocatorBase {
|
|
public:
|
|
Heap* heap() const { return heap_; }
|
|
|
|
friend bool operator==(const StrongRootAllocatorBase& a,
|
|
const StrongRootAllocatorBase& b) {
|
|
// TODO(pkasting): Replace this body with `= default` after dropping support
|
|
// for old gcc versions.
|
|
return a.heap_ == b.heap_;
|
|
}
|
|
|
|
protected:
|
|
explicit StrongRootAllocatorBase(Heap* heap) : heap_(heap) {}
|
|
explicit StrongRootAllocatorBase(LocalHeap* heap);
|
|
explicit StrongRootAllocatorBase(Isolate* isolate);
|
|
explicit StrongRootAllocatorBase(v8::Isolate* isolate);
|
|
explicit StrongRootAllocatorBase(LocalIsolate* isolate);
|
|
|
|
// Allocate/deallocate a range of n elements of type internal::Address.
|
|
Address* allocate_impl(size_t n);
|
|
void deallocate_impl(Address* p, size_t n) noexcept;
|
|
|
|
private:
|
|
Heap* heap_;
|
|
};
|
|
|
|
// The general version of this template behaves just as std::allocator, with
|
|
// the exception that the constructor takes the isolate as parameter. Only
|
|
// specialized versions, e.g., internal::StrongRootAllocator<internal::Address>
|
|
// and internal::StrongRootAllocator<v8::Local<T>> register the allocated range
|
|
// as strong roots.
|
|
template <typename T>
|
|
class StrongRootAllocator : private std::allocator<T> {
|
|
public:
|
|
using value_type = T;
|
|
|
|
template <typename HeapOrIsolateT>
|
|
explicit StrongRootAllocator(HeapOrIsolateT*) {}
|
|
template <typename U>
|
|
StrongRootAllocator(const StrongRootAllocator<U>& other) noexcept {}
|
|
|
|
using std::allocator<T>::allocate;
|
|
using std::allocator<T>::deallocate;
|
|
};
|
|
|
|
// TODO(pkasting): Replace with `requires` clauses after dropping support for
|
|
// old gcc versions.
|
|
template <typename Iterator, typename = void>
|
|
inline constexpr bool kHaveIteratorConcept = false;
|
|
template <typename Iterator>
|
|
inline constexpr bool kHaveIteratorConcept<
|
|
Iterator, std::void_t<typename Iterator::iterator_concept>> = true;
|
|
|
|
template <typename Iterator, typename = void>
|
|
inline constexpr bool kHaveIteratorCategory = false;
|
|
template <typename Iterator>
|
|
inline constexpr bool kHaveIteratorCategory<
|
|
Iterator, std::void_t<typename Iterator::iterator_category>> = true;
|
|
|
|
// Helper struct that contains an `iterator_concept` type alias only when either
|
|
// `Iterator` or `std::iterator_traits<Iterator>` do.
|
|
// Default: no alias.
|
|
template <typename Iterator, typename = void>
|
|
struct MaybeDefineIteratorConcept {};
|
|
// Use `Iterator::iterator_concept` if available.
|
|
template <typename Iterator>
|
|
struct MaybeDefineIteratorConcept<
|
|
Iterator, std::enable_if_t<kHaveIteratorConcept<Iterator>>> {
|
|
using iterator_concept = typename Iterator::iterator_concept;
|
|
};
|
|
// Otherwise fall back to `std::iterator_traits<Iterator>` if possible.
|
|
template <typename Iterator>
|
|
struct MaybeDefineIteratorConcept<
|
|
Iterator, std::enable_if_t<kHaveIteratorCategory<Iterator> &&
|
|
!kHaveIteratorConcept<Iterator>>> {
|
|
// There seems to be no feature-test macro covering this, so use the
|
|
// presence of `<ranges>` as a crude proxy, since it was added to the
|
|
// standard as part of the Ranges papers.
|
|
// TODO(pkasting): Add this unconditionally after dropping support for old
|
|
// libstdc++ versions.
|
|
#if __has_include(<ranges>)
|
|
using iterator_concept =
|
|
typename std::iterator_traits<Iterator>::iterator_concept;
|
|
#endif
|
|
};
|
|
|
|
// A class of iterators that wrap some different iterator type.
|
|
// If specified, ElementType is the type of element accessed by the wrapper
|
|
// iterator; in this case, the actual reference and pointer types of Iterator
|
|
// must be convertible to ElementType& and ElementType*, respectively.
|
|
template <typename Iterator, typename ElementType = void>
|
|
class WrappedIterator : public MaybeDefineIteratorConcept<Iterator> {
|
|
public:
|
|
static_assert(
|
|
std::is_void_v<ElementType> ||
|
|
(std::is_convertible_v<typename std::iterator_traits<Iterator>::pointer,
|
|
std::add_pointer_t<ElementType>> &&
|
|
std::is_convertible_v<typename std::iterator_traits<Iterator>::reference,
|
|
std::add_lvalue_reference_t<ElementType>>));
|
|
|
|
using difference_type =
|
|
typename std::iterator_traits<Iterator>::difference_type;
|
|
using value_type =
|
|
std::conditional_t<std::is_void_v<ElementType>,
|
|
typename std::iterator_traits<Iterator>::value_type,
|
|
ElementType>;
|
|
using pointer =
|
|
std::conditional_t<std::is_void_v<ElementType>,
|
|
typename std::iterator_traits<Iterator>::pointer,
|
|
std::add_pointer_t<ElementType>>;
|
|
using reference =
|
|
std::conditional_t<std::is_void_v<ElementType>,
|
|
typename std::iterator_traits<Iterator>::reference,
|
|
std::add_lvalue_reference_t<ElementType>>;
|
|
using iterator_category =
|
|
typename std::iterator_traits<Iterator>::iterator_category;
|
|
|
|
constexpr WrappedIterator() noexcept = default;
|
|
constexpr explicit WrappedIterator(Iterator it) noexcept : it_(it) {}
|
|
|
|
// TODO(pkasting): Switch to `requires` and concepts after dropping support
|
|
// for old gcc and libstdc++ versions.
|
|
template <typename OtherIterator, typename OtherElementType,
|
|
typename = std::enable_if_t<
|
|
std::is_convertible_v<OtherIterator, Iterator>>>
|
|
constexpr WrappedIterator(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other) noexcept
|
|
: it_(other.base()) {}
|
|
|
|
[[nodiscard]] constexpr reference operator*() const noexcept { return *it_; }
|
|
[[nodiscard]] constexpr pointer operator->() const noexcept {
|
|
if constexpr (std::is_pointer_v<Iterator>) {
|
|
return it_;
|
|
} else {
|
|
return it_.operator->();
|
|
}
|
|
}
|
|
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr bool operator==(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ == other.base();
|
|
}
|
|
#if V8_HAVE_SPACESHIP_OPERATOR
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr auto operator<=>(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
if constexpr (std::three_way_comparable_with<Iterator, OtherIterator>) {
|
|
return it_ <=> other.base();
|
|
} else if constexpr (std::totally_ordered_with<Iterator, OtherIterator>) {
|
|
if (it_ < other.base()) {
|
|
return std::strong_ordering::less;
|
|
}
|
|
return (it_ > other.base()) ? std::strong_ordering::greater
|
|
: std::strong_ordering::equal;
|
|
} else {
|
|
if (it_ < other.base()) {
|
|
return std::partial_ordering::less;
|
|
}
|
|
if (other.base() < it_) {
|
|
return std::partial_ordering::greater;
|
|
}
|
|
return (it_ == other.base()) ? std::partial_ordering::equivalent
|
|
: std::partial_ordering::unordered;
|
|
}
|
|
}
|
|
#else
|
|
// Assume that if spaceship isn't present, operator rewriting might not be
|
|
// either.
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr bool operator!=(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ != other.base();
|
|
}
|
|
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr bool operator<(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ < other.base();
|
|
}
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr bool operator<=(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ <= other.base();
|
|
}
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr bool operator>(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ > other.base();
|
|
}
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr bool operator>=(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ >= other.base();
|
|
}
|
|
#endif
|
|
|
|
constexpr WrappedIterator& operator++() noexcept {
|
|
++it_;
|
|
return *this;
|
|
}
|
|
constexpr WrappedIterator operator++(int) noexcept {
|
|
WrappedIterator result(*this);
|
|
++(*this);
|
|
return result;
|
|
}
|
|
|
|
constexpr WrappedIterator& operator--() noexcept {
|
|
--it_;
|
|
return *this;
|
|
}
|
|
constexpr WrappedIterator operator--(int) noexcept {
|
|
WrappedIterator result(*this);
|
|
--(*this);
|
|
return result;
|
|
}
|
|
[[nodiscard]] constexpr WrappedIterator operator+(
|
|
difference_type n) const noexcept {
|
|
WrappedIterator result(*this);
|
|
result += n;
|
|
return result;
|
|
}
|
|
[[nodiscard]] friend constexpr WrappedIterator operator+(
|
|
difference_type n, const WrappedIterator& x) noexcept {
|
|
return x + n;
|
|
}
|
|
constexpr WrappedIterator& operator+=(difference_type n) noexcept {
|
|
it_ += n;
|
|
return *this;
|
|
}
|
|
[[nodiscard]] constexpr WrappedIterator operator-(
|
|
difference_type n) const noexcept {
|
|
return *this + -n;
|
|
}
|
|
constexpr WrappedIterator& operator-=(difference_type n) noexcept {
|
|
return *this += -n;
|
|
}
|
|
template <typename OtherIterator, typename OtherElementType>
|
|
[[nodiscard]] constexpr auto operator-(
|
|
const WrappedIterator<OtherIterator, OtherElementType>& other)
|
|
const noexcept {
|
|
return it_ - other.base();
|
|
}
|
|
[[nodiscard]] constexpr reference operator[](
|
|
difference_type n) const noexcept {
|
|
return it_[n];
|
|
}
|
|
|
|
[[nodiscard]] constexpr const Iterator& base() const noexcept { return it_; }
|
|
|
|
private:
|
|
Iterator it_;
|
|
};
|
|
|
|
// Helper functions about values contained in handles.
|
|
// A value is either an indirect pointer or a direct pointer, depending on
|
|
// whether direct local support is enabled.
|
|
class ValueHelper final {
|
|
public:
|
|
// ValueHelper::InternalRepresentationType is an abstract type that
|
|
// corresponds to the internal representation of v8::Local and essentially
|
|
// to what T* really is (these two are always in sync). This type is used in
|
|
// methods like GetDataFromSnapshotOnce that need access to a handle's
|
|
// internal representation. In particular, if `x` is a `v8::Local<T>`, then
|
|
// `v8::Local<T>::FromRepr(x.repr())` gives exactly the same handle as `x`.
|
|
#ifdef V8_ENABLE_DIRECT_HANDLE
|
|
static constexpr Address kTaggedNullAddress = 1;
|
|
|
|
using InternalRepresentationType = internal::Address;
|
|
static constexpr InternalRepresentationType kEmpty = kTaggedNullAddress;
|
|
#else
|
|
using InternalRepresentationType = internal::Address*;
|
|
static constexpr InternalRepresentationType kEmpty = nullptr;
|
|
#endif // V8_ENABLE_DIRECT_HANDLE
|
|
|
|
template <typename T>
|
|
V8_INLINE static bool IsEmpty(T* value) {
|
|
return ValueAsRepr(value) == kEmpty;
|
|
}
|
|
|
|
// Returns a handle's "value" for all kinds of abstract handles. For Local,
|
|
// it is equivalent to `*handle`. The variadic parameters support handle
|
|
// types with extra type parameters, like `Persistent<T, M>`.
|
|
template <template <typename T, typename... Ms> typename H, typename T,
|
|
typename... Ms>
|
|
V8_INLINE static T* HandleAsValue(const H<T, Ms...>& handle) {
|
|
return handle.template value<T>();
|
|
}
|
|
|
|
#ifdef V8_ENABLE_DIRECT_HANDLE
|
|
|
|
template <typename T>
|
|
V8_INLINE static Address ValueAsAddress(const T* value) {
|
|
return reinterpret_cast<Address>(value);
|
|
}
|
|
|
|
template <typename T, bool check_null = true, typename S>
|
|
V8_INLINE static T* SlotAsValue(S* slot) {
|
|
if (check_null && slot == nullptr) {
|
|
return reinterpret_cast<T*>(kTaggedNullAddress);
|
|
}
|
|
return *reinterpret_cast<T**>(slot);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) {
|
|
return reinterpret_cast<InternalRepresentationType>(value);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static T* ReprAsValue(InternalRepresentationType repr) {
|
|
return reinterpret_cast<T*>(repr);
|
|
}
|
|
|
|
#else // !V8_ENABLE_DIRECT_HANDLE
|
|
|
|
template <typename T>
|
|
V8_INLINE static Address ValueAsAddress(const T* value) {
|
|
return *reinterpret_cast<const Address*>(value);
|
|
}
|
|
|
|
template <typename T, bool check_null = true, typename S>
|
|
V8_INLINE static T* SlotAsValue(S* slot) {
|
|
return reinterpret_cast<T*>(slot);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) {
|
|
return const_cast<InternalRepresentationType>(
|
|
reinterpret_cast<const Address*>(value));
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static T* ReprAsValue(InternalRepresentationType repr) {
|
|
return reinterpret_cast<T*>(repr);
|
|
}
|
|
|
|
#endif // V8_ENABLE_DIRECT_HANDLE
|
|
};
|
|
|
|
/**
|
|
* Helper functions about handles.
|
|
*/
|
|
class HandleHelper final {
|
|
public:
|
|
/**
|
|
* Checks whether two handles are equal.
|
|
* They are equal iff they are both empty or they are both non-empty and the
|
|
* objects to which they refer are physically equal.
|
|
*
|
|
* If both handles refer to JS objects, this is the same as strict equality.
|
|
* For primitives, such as numbers or strings, a `false` return value does not
|
|
* indicate that the values aren't equal in the JavaScript sense.
|
|
* Use `Value::StrictEquals()` to check primitives for equality.
|
|
*/
|
|
template <typename T1, typename T2>
|
|
V8_INLINE static bool EqualHandles(const T1& lhs, const T2& rhs) {
|
|
if (lhs.IsEmpty()) return rhs.IsEmpty();
|
|
if (rhs.IsEmpty()) return false;
|
|
return lhs.ptr() == rhs.ptr();
|
|
}
|
|
};
|
|
|
|
V8_EXPORT void VerifyHandleIsNonEmpty(bool is_empty);
|
|
|
|
// These functions are here just to match friend declarations in
|
|
// XxxCallbackInfo classes allowing these functions to access the internals
|
|
// of the info objects. These functions are supposed to be called by debugger
|
|
// macros.
|
|
void PrintFunctionCallbackInfo(void* function_callback_info);
|
|
void PrintPropertyCallbackInfo(void* property_callback_info);
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // INCLUDE_V8_INTERNAL_H_
|