nodejs/deps/v8/test/cctest/test-shared-strings.cc
Michaël Zasso 918fe04351
deps: update V8 to 13.6.233.8
PR-URL: https://github.com/nodejs/node/pull/58070
Reviewed-By: Antoine du Hamel <duhamelantoine1995@gmail.com>
Reviewed-By: Darshan Sen <raisinten@gmail.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
2025-05-02 15:06:53 +02:00

2707 lines
99 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "include/v8-initialization.h"
#include "src/api/api-inl.h"
#include "src/api/api.h"
#include "src/base/strings.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-layout-inl.h"
#include "src/heap/heap.h"
#include "src/heap/memory-chunk-layout.h"
#include "src/heap/mutable-page-metadata.h"
#include "src/heap/parked-scope-inl.h"
#include "src/heap/remembered-set.h"
#include "src/heap/safepoint.h"
#include "src/objects/fixed-array.h"
#include "src/objects/heap-object.h"
#include "src/objects/js-weak-refs.h"
#include "src/objects/objects-inl.h"
#include "src/objects/string-forwarding-table-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-utils.h"
// In multi-cage mode we create one cage per isolate
// and we don't share objects between cages.
#if V8_CAN_CREATE_SHARED_HEAP_BOOL && !COMPRESS_POINTERS_IN_MULTIPLE_CAGES_BOOL
namespace v8 {
namespace internal {
namespace test_shared_strings {
struct V8_NODISCARD IsolateWrapper {
explicit IsolateWrapper(v8::Isolate* isolate) : isolate(isolate) {}
~IsolateWrapper() { isolate->Dispose(); }
v8::Isolate* const isolate;
};
// Some tests in this file allocate two Isolates in the same thread to directly
// test shared string behavior. Because both are considered running, when
// disposing these Isolates, one must be parked to not cause a deadlock in the
// shared heap verification that happens on client Isolate disposal.
struct V8_NODISCARD IsolateParkOnDisposeWrapper {
IsolateParkOnDisposeWrapper(v8::Isolate* isolate,
v8::Isolate* isolate_to_park)
: isolate(isolate), isolate_to_park(isolate_to_park) {}
~IsolateParkOnDisposeWrapper() {
auto main_isolate = reinterpret_cast<Isolate*>(isolate_to_park)
->main_thread_local_isolate();
main_isolate->ExecuteMainThreadWhileParked(
[this]() { isolate->Dispose(); });
}
v8::Isolate* const isolate;
v8::Isolate* const isolate_to_park;
};
class MultiClientIsolateTest {
public:
MultiClientIsolateTest() {
std::unique_ptr<v8::ArrayBuffer::Allocator> allocator(
v8::ArrayBuffer::Allocator::NewDefaultAllocator());
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = allocator.get();
main_isolate_ = v8::Isolate::New(create_params);
i_main_isolate()->Enter();
}
~MultiClientIsolateTest() {
i_main_isolate()->Exit();
main_isolate_->Dispose();
}
v8::Isolate* main_isolate() const { return main_isolate_; }
Isolate* i_main_isolate() const {
return reinterpret_cast<Isolate*>(main_isolate_);
}
int& main_isolate_wakeup_counter() { return main_isolate_wakeup_counter_; }
v8::Isolate* NewClientIsolate() {
CHECK_NOT_NULL(main_isolate_);
std::unique_ptr<v8::ArrayBuffer::Allocator> allocator(
v8::ArrayBuffer::Allocator::NewDefaultAllocator());
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = allocator.get();
return v8::Isolate::New(create_params);
}
private:
v8::Isolate* main_isolate_;
int main_isolate_wakeup_counter_ = 0;
};
UNINITIALIZED_TEST(InPlaceInternalizableStringsAreShared) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Old generation 1- and 2-byte seq strings are in-place internalizable.
DirectHandle<String> old_one_byte_seq =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
CHECK(HeapLayout::InAnySharedSpace(*old_one_byte_seq));
DirectHandle<String> old_two_byte_seq =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(HeapLayout::InAnySharedSpace(*old_two_byte_seq));
// Young generation are not internalizable and not shared when sharing the
// string table.
DirectHandle<String> young_one_byte_seq =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
CHECK(!HeapLayout::InAnySharedSpace(*young_one_byte_seq));
DirectHandle<String> young_two_byte_seq =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
CHECK(!HeapLayout::InAnySharedSpace(*young_two_byte_seq));
// Internalized strings are shared.
uint64_t seed = HashSeed(i_isolate1);
DirectHandle<String> one_byte_intern = factory1->NewOneByteInternalizedString(
base::OneByteVector(raw_one_byte),
StringHasher::HashSequentialString<char>(raw_one_byte, 3, seed));
CHECK(HeapLayout::InAnySharedSpace(*one_byte_intern));
DirectHandle<String> two_byte_intern = factory1->NewTwoByteInternalizedString(
two_byte,
StringHasher::HashSequentialString<uint16_t>(raw_two_byte, 3, seed));
CHECK(HeapLayout::InAnySharedSpace(*two_byte_intern));
}
UNINITIALIZED_TEST(InPlaceInternalization) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
ManualGCScope manual_gc_scope(test.i_main_isolate());
IsolateParkOnDisposeWrapper isolate_wrapper(test.NewClientIsolate(),
test.main_isolate());
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope scope1(i_isolate1);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Allocate two in-place internalizable strings in isolate1 then intern
// them.
DirectHandle<String> old_one_byte_seq1 =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
DirectHandle<String> old_two_byte_seq1 =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
DirectHandle<String> one_byte_intern1 =
factory1->InternalizeString(old_one_byte_seq1);
DirectHandle<String> two_byte_intern1 =
factory1->InternalizeString(old_two_byte_seq1);
CHECK(HeapLayout::InAnySharedSpace(*old_one_byte_seq1));
CHECK(HeapLayout::InAnySharedSpace(*old_two_byte_seq1));
CHECK(HeapLayout::InAnySharedSpace(*one_byte_intern1));
CHECK(HeapLayout::InAnySharedSpace(*two_byte_intern1));
CHECK(old_one_byte_seq1.equals(one_byte_intern1));
CHECK(old_two_byte_seq1.equals(two_byte_intern1));
CHECK_EQ(*old_one_byte_seq1, *one_byte_intern1);
CHECK_EQ(*old_two_byte_seq1, *two_byte_intern1);
// Allocate two in-place internalizable strings with the same contents in
// isolate2 then intern them. They should be the same as the interned strings
// from isolate1.
v8::Isolate::Scope isolate2_scope(isolate_wrapper.isolate);
Isolate* i_isolate2 = reinterpret_cast<Isolate*>(isolate_wrapper.isolate);
Factory* factory2 = i_isolate2->factory();
HandleScope scope2(i_isolate2);
DirectHandle<String> old_one_byte_seq2 =
factory2->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
DirectHandle<String> old_two_byte_seq2 =
factory2->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
DirectHandle<String> one_byte_intern2 =
factory2->InternalizeString(old_one_byte_seq2);
DirectHandle<String> two_byte_intern2 =
factory2->InternalizeString(old_two_byte_seq2);
CHECK(HeapLayout::InAnySharedSpace(*old_one_byte_seq2));
CHECK(HeapLayout::InAnySharedSpace(*old_two_byte_seq2));
CHECK(HeapLayout::InAnySharedSpace(*one_byte_intern2));
CHECK(HeapLayout::InAnySharedSpace(*two_byte_intern2));
CHECK(!old_one_byte_seq2.equals(one_byte_intern2));
CHECK(!old_two_byte_seq2.equals(two_byte_intern2));
CHECK_NE(*old_one_byte_seq2, *one_byte_intern2);
CHECK_NE(*old_two_byte_seq2, *two_byte_intern2);
CHECK_EQ(*one_byte_intern1, *one_byte_intern2);
CHECK_EQ(*two_byte_intern1, *two_byte_intern2);
}
UNINITIALIZED_TEST(YoungInternalization) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
IsolateParkOnDisposeWrapper isolate_wrapper(test.NewClientIsolate(),
test.main_isolate());
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
Isolate* i_isolate2 = reinterpret_cast<Isolate*>(isolate_wrapper.isolate);
Factory* factory2 = i_isolate2->factory();
HandleScope scope1(i_isolate1);
HandleScope scope2(i_isolate2);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Allocate two young strings in isolate1 then intern them. Young strings
// aren't in-place internalizable and are copied when internalized.
Handle<String> young_one_byte_seq1;
Handle<String> young_two_byte_seq1;
Handle<String> one_byte_intern1;
Handle<String> two_byte_intern1;
i_isolate2->main_thread_local_isolate()->ExecuteMainThreadWhileParked([&]() {
young_one_byte_seq1 = factory1->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
young_two_byte_seq1 =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
one_byte_intern1 = factory1->InternalizeString(young_one_byte_seq1);
two_byte_intern1 = factory1->InternalizeString(young_two_byte_seq1);
CHECK(!HeapLayout::InAnySharedSpace(*young_one_byte_seq1));
CHECK(!HeapLayout::InAnySharedSpace(*young_two_byte_seq1));
CHECK(HeapLayout::InAnySharedSpace(*one_byte_intern1));
CHECK(HeapLayout::InAnySharedSpace(*two_byte_intern1));
CHECK(!young_one_byte_seq1.equals(one_byte_intern1));
CHECK(!young_two_byte_seq1.equals(two_byte_intern1));
CHECK_NE(*young_one_byte_seq1, *one_byte_intern1);
CHECK_NE(*young_two_byte_seq1, *two_byte_intern1);
});
// Allocate two young strings with the same contents in isolate2 then intern
// them. They should be the same as the interned strings from isolate1.
Handle<String> young_one_byte_seq2;
Handle<String> young_two_byte_seq2;
Handle<String> one_byte_intern2;
Handle<String> two_byte_intern2;
{
v8::Isolate::Scope isolate_scope(isolate_wrapper.isolate);
young_one_byte_seq2 = factory2->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
young_two_byte_seq2 =
factory2->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
one_byte_intern2 = factory2->InternalizeString(young_one_byte_seq2);
two_byte_intern2 = factory2->InternalizeString(young_two_byte_seq2);
CHECK(!young_one_byte_seq2.equals(one_byte_intern2));
CHECK(!young_two_byte_seq2.equals(two_byte_intern2));
CHECK_NE(*young_one_byte_seq2, *one_byte_intern2);
CHECK_NE(*young_two_byte_seq2, *two_byte_intern2);
CHECK_EQ(*one_byte_intern1, *one_byte_intern2);
CHECK_EQ(*two_byte_intern1, *two_byte_intern2);
}
}
class ConcurrentStringThreadBase : public ParkingThread {
public:
ConcurrentStringThreadBase(const char* name, MultiClientIsolateTest* test,
IndirectHandle<FixedArray> shared_strings,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: ParkingThread(base::Thread::Options(name)),
test_(test),
shared_strings_(shared_strings),
sema_ready_(sema_ready),
sema_execute_start_(sema_execute_start),
sema_execute_complete_(sema_execute_complete) {}
virtual void Setup() {}
virtual void RunForString(Handle<String> string, int counter) = 0;
virtual void Teardown() {}
void Run() override {
IsolateWrapper isolate_wrapper(test_->NewClientIsolate());
i_isolate = reinterpret_cast<Isolate*>(isolate_wrapper.isolate);
Setup();
sema_ready_->Signal();
sema_execute_start_->ParkedWait(i_isolate->main_thread_local_isolate());
{
v8::Isolate::Scope isolate_scope(isolate_wrapper.isolate);
HandleScope scope(i_isolate);
for (int i = 0; i < shared_strings_->length(); i++) {
Handle<String> input_string(Cast<String>(shared_strings_->get(i)),
i_isolate);
RunForString(input_string, i);
}
}
sema_execute_complete_->Signal();
Teardown();
i_isolate = nullptr;
}
protected:
Isolate* i_isolate;
MultiClientIsolateTest* test_;
IndirectHandle<FixedArray> shared_strings_;
ParkingSemaphore* sema_ready_;
ParkingSemaphore* sema_execute_start_;
ParkingSemaphore* sema_execute_complete_;
};
enum TestHitOrMiss { kTestMiss, kTestHit };
class ConcurrentInternalizationThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentInternalizationThread(MultiClientIsolateTest* test,
IndirectHandle<FixedArray> shared_strings,
TestHitOrMiss hit_or_miss,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentInternalizationThread", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete),
hit_or_miss_(hit_or_miss) {}
void Setup() override { factory = i_isolate->factory(); }
void RunForString(Handle<String> input_string, int counter) override {
CHECK(input_string->IsShared());
DirectHandle<String> interned = factory->InternalizeString(input_string);
CHECK(interned->IsShared());
CHECK(IsInternalizedString(*interned));
if (hit_or_miss_ == kTestMiss) {
CHECK_EQ(*input_string, *interned);
} else {
CHECK(input_string->HasForwardingIndex(kAcquireLoad));
CHECK(String::Equals(i_isolate, input_string, interned));
}
}
private:
TestHitOrMiss hit_or_miss_;
Factory* factory;
};
namespace {
std::pair<DirectHandle<String>, MaybeDirectHandle<String>>
CreateSharedOneByteString(Isolate* isolate, Factory* factory, int length,
bool internalize) {
char* ascii = new char[length + 1];
// Don't make single character strings, which will end up deduplicating to
// an RO string and mess up the string table hit test.
CHECK_GT(length, 1);
for (int j = 0; j < length; j++) ascii[j] = 'a';
ascii[length] = '\0';
MaybeHandle<String> internalized;
if (internalize) {
// When testing concurrent string table hits, pre-internalize a string
// of the same contents so all subsequent internalizations are hits.
internalized =
factory->InternalizeString(factory->NewStringFromAsciiChecked(ascii));
CHECK(IsInternalizedString(*internalized.ToHandleChecked()));
}
Handle<String> string = String::Share(
isolate, factory->NewStringFromAsciiChecked(ascii, AllocationType::kOld));
delete[] ascii;
CHECK(string->IsShared());
string->EnsureHash();
return std::make_pair(string, internalized);
}
IndirectHandle<FixedArray> CreateSharedOneByteStrings(
Isolate* isolate, Factory* factory, int count, int lo_count,
int min_length = 2, bool internalize = false) {
IndirectHandle<FixedArray> shared_strings =
factory->NewFixedArray(count + lo_count, AllocationType::kSharedOld);
// Buffer to keep internalized strings alive in the current scope.
DirectHandle<FixedArray> internalized_handles;
if (internalize) {
internalized_handles =
factory->NewFixedArray(count + lo_count, AllocationType::kOld);
}
{
// Create strings in their own scope to be able to delete and GC them.
HandleScope scope(isolate);
for (int i = 0; i < count; i++) {
int length = i + min_length + 1;
auto strings =
CreateSharedOneByteString(isolate, factory, length, internalize);
shared_strings->set(i, *strings.first);
if (internalize) {
internalized_handles->set(i, *strings.second.ToHandleChecked());
}
}
int min_lo_length =
isolate->heap()->MaxRegularHeapObjectSize(AllocationType::kOld) + 1;
for (int i = 0; i < lo_count; i++) {
int length = i + min_lo_length + 1;
auto strings =
CreateSharedOneByteString(isolate, factory, length, internalize);
shared_strings->set(count + i, *strings.first);
if (internalize) {
internalized_handles->set(count + i, *strings.second.ToHandleChecked());
}
}
}
return shared_strings;
}
void TestConcurrentInternalization(TestHitOrMiss hit_or_miss) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
constexpr int kThreads = 4;
constexpr int kStrings = 4096;
constexpr int kLOStrings = 16;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> shared_strings =
CreateSharedOneByteStrings(i_isolate, factory, kStrings - kLOStrings,
kLOStrings, 2, hit_or_miss == kTestHit);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentInternalizationThread>> threads;
for (int i = 0; i < kThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, hit_or_miss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
ParkingThread::ParkedJoinAll(local_isolate, threads);
}
} // namespace
UNINITIALIZED_TEST(ConcurrentInternalizationMiss) {
TestConcurrentInternalization(kTestMiss);
}
UNINITIALIZED_TEST(ConcurrentInternalizationHit) {
TestConcurrentInternalization(kTestHit);
}
class ConcurrentStringTableLookupThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentStringTableLookupThread(MultiClientIsolateTest* test,
IndirectHandle<FixedArray> shared_strings,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentStringTableLookup", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete) {}
void RunForString(Handle<String> input_string, int counter) override {
CHECK(input_string->IsShared());
Tagged<Object> result =
Tagged<Object>(StringTable::TryStringToIndexOrLookupExisting(
i_isolate, input_string->ptr()));
if (IsString(result)) {
Tagged<String> internalized = Cast<String>(result);
CHECK(IsInternalizedString(internalized));
CHECK_IMPLIES(IsInternalizedString(*input_string),
*input_string == internalized);
} else {
CHECK_EQ(Cast<Smi>(result).value(), ResultSentinel::kNotFound);
}
}
};
UNINITIALIZED_TEST(ConcurrentStringTableLookup) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
constexpr int kTotalThreads = 4;
constexpr int kInternalizationThreads = 1;
constexpr int kStrings = 4096;
constexpr int kLOStrings = 16;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings - kLOStrings, kLOStrings, 2, false);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentStringThreadBase>> threads;
for (int i = 0; i < kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, kTestMiss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
for (int i = 0; i < kTotalThreads - kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentStringTableLookupThread>(
&test, shared_strings, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kTotalThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kTotalThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kTotalThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
ParkingThread::ParkedJoinAll(local_isolate, threads);
}
namespace {
void CheckSharedStringIsEqualCopy(DirectHandle<String> shared,
DirectHandle<String> original) {
CHECK(shared->IsShared());
CHECK(shared->Equals(*original));
CHECK_NE(*shared, *original);
}
Handle<String> ShareAndVerify(Isolate* isolate, Handle<String> string) {
Handle<String> shared = String::Share(isolate, string);
CHECK(shared->IsShared());
#ifdef VERIFY_HEAP
Object::ObjectVerify(*shared, isolate);
Object::ObjectVerify(*string, isolate);
#endif // VERIFY_HEAP
return shared;
}
class OneByteResource : public v8::String::ExternalOneByteStringResource {
public:
OneByteResource(const char* data, size_t length)
: data_(data), length_(length) {}
const char* data() const override { return data_; }
size_t length() const override { return length_; }
void Dispose() override {
CHECK(!IsDisposed());
i::DeleteArray(data_);
data_ = nullptr;
}
bool IsDisposed() const { return data_ == nullptr; }
private:
const char* data_;
size_t length_;
};
class TwoByteResource : public v8::String::ExternalStringResource {
public:
TwoByteResource(const uint16_t* data, size_t length)
: data_(data), length_(length) {}
const uint16_t* data() const override { return data_; }
size_t length() const override { return length_; }
void Dispose() override {
i::DeleteArray(data_);
data_ = nullptr;
}
bool IsDisposed() const { return data_ == nullptr; }
private:
const uint16_t* data_;
size_t length_;
};
class ExternalResourceFactory {
public:
~ExternalResourceFactory() {
for (auto* res : one_byte_resources_) {
CHECK(res->IsDisposed());
delete res;
}
for (auto* res : two_byte_resources_) {
CHECK(res->IsDisposed());
delete res;
}
}
OneByteResource* CreateOneByte(const char* data, size_t length,
bool copy = true) {
OneByteResource* res =
new OneByteResource(copy ? i::StrDup(data) : data, length);
Register(res);
return res;
}
OneByteResource* CreateOneByte(const char* data, bool copy = true) {
return CreateOneByte(data, strlen(data), copy);
}
TwoByteResource* CreateTwoByte(const uint16_t* data, size_t length,
bool copy = true) {
TwoByteResource* res = new TwoByteResource(data, length);
Register(res);
return res;
}
TwoByteResource* CreateTwoByte(base::Vector<base::uc16> vector,
bool copy = true) {
auto vec = copy ? vector.Clone() : vector;
return CreateTwoByte(vec.begin(), vec.size(), copy);
}
void Register(OneByteResource* res) { one_byte_resources_.push_back(res); }
void Register(TwoByteResource* res) { two_byte_resources_.push_back(res); }
private:
std::vector<OneByteResource*> one_byte_resources_;
std::vector<TwoByteResource*> two_byte_resources_;
};
} // namespace
UNINITIALIZED_TEST(StringShare) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
// A longer string so that concatenated to itself, the result is >
// ConsString::kMinLength.
const char raw_one_byte[] =
"Lorem ipsum dolor sit amet, consectetur adipiscing elit";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<base::uc16> two_byte(raw_two_byte, 3);
{
// Old-generation sequential strings are shared in-place.
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(!one_byte_seq->IsShared());
CHECK(!two_byte_seq->IsShared());
DirectHandle<String> shared_one_byte =
ShareAndVerify(i_isolate, one_byte_seq);
DirectHandle<String> shared_two_byte =
ShareAndVerify(i_isolate, two_byte_seq);
CHECK_EQ(*one_byte_seq, *shared_one_byte);
CHECK_EQ(*two_byte_seq, *shared_two_byte);
}
{
// Internalized strings are always shared.
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(!one_byte_seq->IsShared());
CHECK(!two_byte_seq->IsShared());
Handle<String> one_byte_intern = factory->InternalizeString(one_byte_seq);
Handle<String> two_byte_intern = factory->InternalizeString(two_byte_seq);
CHECK(one_byte_intern->IsShared());
CHECK(two_byte_intern->IsShared());
DirectHandle<String> shared_one_byte_intern =
ShareAndVerify(i_isolate, one_byte_intern);
DirectHandle<String> shared_two_byte_intern =
ShareAndVerify(i_isolate, two_byte_intern);
CHECK_EQ(*one_byte_intern, *shared_one_byte_intern);
CHECK_EQ(*two_byte_intern, *shared_two_byte_intern);
}
{
// Old-generation external strings are shared in-place.
Handle<String> one_byte_ext =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_ext =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
OneByteResource* one_byte_res =
resource_factory.CreateOneByte(raw_one_byte);
TwoByteResource* two_byte_res = resource_factory.CreateTwoByte(two_byte);
CHECK(one_byte_ext->MakeExternal(i_isolate, one_byte_res));
CHECK(two_byte_ext->MakeExternal(i_isolate, two_byte_res));
if (v8_flags.always_use_string_forwarding_table) {
i_isolate->heap()->CollectGarbageShared(
i_isolate->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
}
CHECK(IsExternalString(*one_byte_ext));
CHECK(IsExternalString(*two_byte_ext));
CHECK(!one_byte_ext->IsShared());
CHECK(!two_byte_ext->IsShared());
DirectHandle<String> shared_one_byte =
ShareAndVerify(i_isolate, one_byte_ext);
DirectHandle<String> shared_two_byte =
ShareAndVerify(i_isolate, two_byte_ext);
CHECK_EQ(*one_byte_ext, *shared_one_byte);
CHECK_EQ(*two_byte_ext, *shared_two_byte);
}
// All other strings are flattened then copied if the flatten didn't already
// create a new copy.
if (!v8_flags.single_generation) {
// Young strings
Handle<String> young_one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
CHECK(HeapLayout::InYoungGeneration(*young_one_byte_seq));
CHECK(HeapLayout::InYoungGeneration(*young_two_byte_seq));
CHECK(!young_one_byte_seq->IsShared());
CHECK(!young_two_byte_seq->IsShared());
DirectHandle<String> shared_one_byte =
ShareAndVerify(i_isolate, young_one_byte_seq);
DirectHandle<String> shared_two_byte =
ShareAndVerify(i_isolate, young_two_byte_seq);
CheckSharedStringIsEqualCopy(shared_one_byte, young_one_byte_seq);
CheckSharedStringIsEqualCopy(shared_two_byte, young_two_byte_seq);
}
if (!v8_flags.always_use_string_forwarding_table) {
// Thin strings
Handle<String> one_byte_seq1 =
factory->NewStringFromAsciiChecked(raw_one_byte);
Handle<String> one_byte_seq2 =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq1->IsShared());
CHECK(!one_byte_seq2->IsShared());
factory->InternalizeString(one_byte_seq1);
factory->InternalizeString(one_byte_seq2);
CHECK(StringShape(*one_byte_seq2).IsThin());
DirectHandle<String> shared = ShareAndVerify(i_isolate, one_byte_seq2);
CheckSharedStringIsEqualCopy(shared, one_byte_seq2);
}
{
// Cons strings
Handle<String> one_byte_seq1 =
factory->NewStringFromAsciiChecked(raw_one_byte);
Handle<String> one_byte_seq2 =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq1->IsShared());
CHECK(!one_byte_seq2->IsShared());
Handle<String> cons =
factory->NewConsString(one_byte_seq1, one_byte_seq2).ToHandleChecked();
CHECK(!cons->IsShared());
CHECK(IsConsString(*cons));
DirectHandle<String> shared = ShareAndVerify(i_isolate, cons);
CheckSharedStringIsEqualCopy(shared, cons);
}
{
// Sliced strings
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq->IsShared());
Handle<String> sliced =
factory->NewSubString(one_byte_seq, 1, one_byte_seq->length());
CHECK(!sliced->IsShared());
CHECK(IsSlicedString(*sliced));
DirectHandle<String> shared = ShareAndVerify(i_isolate, sliced);
CheckSharedStringIsEqualCopy(shared, sliced);
}
}
UNINITIALIZED_TEST(PromotionMarkCompact) {
if (v8_flags.single_generation) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
MultiClientIsolateTest test;
v8::Isolate* isolate = test.main_isolate();
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
// Heap* shared_heap = test.i_shared_isolate()->heap();
const char raw_one_byte[] = "foo";
{
Global<v8::String> one_byte_seq_global;
ObjectSlot slot;
{
HandleScope scope(i_isolate);
IndirectHandle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(heap->InSpace(*one_byte_seq, NEW_SPACE));
// 1st GC moves `one_byte_seq` to old space and 2nd GC evacuates it within
// old space.
heap::InvokeMajorGC(heap);
heap::ForceEvacuationCandidate(
i::PageMetadata::FromHeapObject(*one_byte_seq));
one_byte_seq_global.Reset(isolate, v8::Utils::ToLocal(one_byte_seq));
}
{
// We need to invoke GC without stack, otherwise no compaction is
// performed.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
heap::InvokeMajorGC(heap);
}
{
v8::HandleScope nested_scope(isolate);
IndirectHandle<String> one_byte_seq =
v8::Utils::OpenHandle(*one_byte_seq_global.Get(isolate));
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
}
}
UNINITIALIZED_TEST(PromotionScavenge) {
if (v8_flags.minor_ms) return;
if (v8_flags.single_generation) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
v8_flags.shared_string_table = true;
v8_flags.scavenger_precise_object_pinning = false;
v8_flags.precise_object_pinning = false;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
// Heap* shared_heap = test.i_shared_isolate()->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
// heap::SealCurrentObjects(heap);
// heap::SealCurrentObjects(shared_heap);
IndirectHandle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(heap->InSpace(*one_byte_seq, NEW_SPACE));
{
// CSS prevents moving the string to shared space.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
for (int i = 0; i < 2; i++) {
heap::InvokeMinorGC(heap);
}
}
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
}
UNINITIALIZED_TEST(PromotionScavengeOldToShared) {
if (v8_flags.minor_ms) {
// Promoting from new space directly to shared heap is not implemented in
// MinorMS.
return;
}
if (v8_flags.single_generation) return;
if (v8_flags.stress_concurrent_allocation) return;
v8_flags.shared_string_table = true;
v8_flags.scavenger_precise_object_pinning = false;
v8_flags.precise_object_pinning = false;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
ManualGCScope manual_gc(i_isolate);
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> old_object =
factory->NewFixedArray(1, AllocationType::kOld);
MemoryChunk* old_object_chunk = MemoryChunk::FromHeapObject(*old_object);
CHECK(!old_object_chunk->InYoungGeneration());
IndirectHandle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(MemoryChunk::FromHeapObject(*one_byte_seq)->InYoungGeneration());
old_object->set(0, *one_byte_seq);
ObjectSlot slot = old_object->RawFieldOfFirstElement();
CHECK(RememberedSet<OLD_TO_NEW>::Contains(
MutablePageMetadata::cast(
MutablePageMetadata::cast(old_object_chunk->Metadata())),
slot.address()));
{
// CSS prevents moving the string to shared space.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
for (int i = 0; i < 2; i++) {
heap::InvokeMinorGC(heap);
}
}
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(heap->SharedHeapContains(*one_byte_seq));
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(
MutablePageMetadata::cast(old_object_chunk->Metadata()),
slot.address()));
}
}
UNINITIALIZED_TEST(PromotionMarkCompactNewToShared) {
if (v8_flags.single_generation) return;
if (v8_flags.stress_concurrent_allocation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
v8_flags.page_promotion = false;
MultiClientIsolateTest test;
v8::Isolate* isolate = test.main_isolate();
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> old_object =
factory->NewFixedArray(1, AllocationType::kOld);
MemoryChunk* old_object_chunk = MemoryChunk::FromHeapObject(*old_object);
CHECK(!old_object_chunk->InYoungGeneration());
Global<v8::String> one_byte_seq_global;
{
HandleScope nested_scope(i_isolate);
IndirectHandle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(MemoryChunk::FromHeapObject(*one_byte_seq)->InYoungGeneration());
old_object->set(0, *one_byte_seq);
one_byte_seq_global.Reset(isolate, v8::Utils::ToLocal(one_byte_seq));
}
ObjectSlot slot = old_object->RawFieldOfFirstElement();
CHECK(RememberedSet<OLD_TO_NEW>::Contains(
MutablePageMetadata::cast(old_object_chunk->Metadata()),
slot.address()));
{
// We need to invoke GC without stack, otherwise no compaction is
// performed.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
heap::InvokeMajorGC(heap);
}
{
v8::HandleScope nested_scope(isolate);
IndirectHandle<String> one_byte_seq =
v8::Utils::OpenHandle(*one_byte_seq_global.Get(isolate));
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(
MutablePageMetadata::cast(old_object_chunk->Metadata()),
slot.address()));
}
}
UNINITIALIZED_TEST(PromotionMarkCompactOldToShared) {
if (v8_flags.stress_concurrent_allocation) return;
if (!v8_flags.page_promotion) return;
if (v8_flags.single_generation) {
// String allocated in old space may be "pretenured" to the shared heap.
return;
}
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
MultiClientIsolateTest test;
v8::Isolate* isolate = test.main_isolate();
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> old_object =
factory->NewFixedArray(1, AllocationType::kOld);
MemoryChunk* old_object_chunk = MemoryChunk::FromHeapObject(*old_object);
CHECK(!old_object_chunk->InYoungGeneration());
Global<v8::String> one_byte_seq_global;
ObjectSlot slot;
{
HandleScope nested_scope(i_isolate);
IndirectHandle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(MemoryChunk::FromHeapObject(*one_byte_seq)->InYoungGeneration());
DirectHandleVector<FixedArray> handles(i_isolate);
// Fill the page and do a full GC. Page promotion should kick in and
// promote the page as is to old space.
heap::FillCurrentPage(heap->new_space(), &handles);
heap::InvokeMajorGC(heap);
// Make sure 'one_byte_seq' is in old space.
CHECK(!MemoryChunk::FromHeapObject(*one_byte_seq)->InYoungGeneration());
CHECK(heap->Contains(*one_byte_seq));
old_object->set(0, *one_byte_seq);
slot = old_object->RawFieldOfFirstElement();
CHECK(!RememberedSet<OLD_TO_NEW>::Contains(
MutablePageMetadata::cast(old_object_chunk->Metadata()),
slot.address()));
heap::ForceEvacuationCandidate(
PageMetadata::FromHeapObject(*one_byte_seq));
one_byte_seq_global.Reset(isolate, v8::Utils::ToLocal(one_byte_seq));
}
{
// We need to invoke GC without stack, otherwise no compaction is
// performed.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
heap::InvokeMajorGC(heap);
}
{
v8::HandleScope nested_scope(isolate);
IndirectHandle<String> one_byte_seq =
v8::Utils::OpenHandle(*one_byte_seq_global.Get(isolate));
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(
MutablePageMetadata::cast(old_object_chunk->Metadata()),
slot.address()));
}
}
UNINITIALIZED_TEST(PagePromotionRecordingOldToShared) {
if (v8_flags.single_generation) return;
if (v8_flags.stress_concurrent_allocation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
DirectHandle<FixedArray> young_object =
factory->NewFixedArray(1, AllocationType::kYoung);
CHECK(HeapLayout::InYoungGeneration(*young_object));
Address young_object_address = young_object->address();
DirectHandleVector<FixedArray> handles(i_isolate);
// Make the whole page transition from new->old, getting the buffers
// processed in the sweeper (relying on marking information) instead of
// processing during newspace evacuation.
heap::FillCurrentPage(heap->new_space(), &handles);
DirectHandle<String> shared_string = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kSharedOld);
CHECK(HeapLayout::InWritableSharedSpace(*shared_string));
young_object->set(0, *shared_string);
heap::EmptyNewSpaceUsingGC(heap);
// Object should get promoted using page promotion, so address should remain
// the same.
CHECK(!HeapLayout::InYoungGeneration(*shared_string));
CHECK_EQ(young_object_address, young_object->address());
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
ObjectSlot slot = young_object->RawFieldOfFirstElement();
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(
MutablePageMetadata::FromHeapObject(*young_object), slot.address()));
}
}
namespace {
void TriggerGCWithTransitions(Heap* heap) {
v8_flags.transition_strings_during_gc_with_stack = true;
heap::CollectSharedGarbage(heap);
v8_flags.transition_strings_during_gc_with_stack = false;
}
} // namespace
UNINITIALIZED_TEST(InternalizedSharedStringsTransitionDuringGC) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
constexpr int kStrings = 4096;
constexpr int kLOStrings = 16;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
// Run two times to test that everything is reset correctly during GC.
for (int run = 0; run < 2; run++) {
DirectHandle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings - kLOStrings, kLOStrings, 2, run == 0);
// Check strings are in the forwarding table after internalization.
for (int i = 0; i < shared_strings->length(); i++) {
Handle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
DirectHandle<String> interned = factory->InternalizeString(input_string);
CHECK(input_string->IsShared());
CHECK(!IsThinString(*input_string));
CHECK(input_string->HasForwardingIndex(kAcquireLoad));
CHECK(String::Equals(i_isolate, input_string, interned));
}
// Trigger garbage collection on the shared isolate.
TriggerGCWithTransitions(i_isolate->heap());
// Check that GC cleared the forwarding table.
CHECK_EQ(i_isolate->string_forwarding_table()->size(), 0);
// Check all strings are transitioned to ThinStrings
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
CHECK(IsThinString(*input_string));
}
}
}
UNINITIALIZED_TEST(ShareExternalString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
// External strings in old space can be shared in-place.
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
CHECK(!one_byte->IsShared());
OneByteResource* resource = resource_factory.CreateOneByte(raw_one_byte);
one_byte->MakeExternal(i_isolate1, resource);
if (v8_flags.always_use_string_forwarding_table) {
i_isolate1->heap()->CollectGarbageShared(
i_isolate1->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
}
CHECK(IsExternalString(*one_byte));
Handle<ExternalOneByteString> one_byte_external =
Cast<ExternalOneByteString>(one_byte);
DirectHandle<String> shared_one_byte =
ShareAndVerify(i_isolate1, one_byte_external);
CHECK_EQ(*shared_one_byte, *one_byte);
}
namespace {
void CheckExternalStringResource(
DirectHandle<String> string,
v8::String::ExternalStringResourceBase* resource) {
const bool is_one_byte = string->IsOneByteRepresentation();
Local<v8::String> api_string = Utils::ToLocal(string);
v8::String::Encoding encoding;
CHECK_EQ(resource, api_string->GetExternalStringResourceBase(&encoding));
if (is_one_byte) {
CHECK_EQ(encoding, v8::String::Encoding::ONE_BYTE_ENCODING);
CHECK_EQ(resource, api_string->GetExternalOneByteStringResource());
} else {
CHECK(string->IsTwoByteRepresentation());
CHECK_EQ(encoding, v8::String::Encoding::TWO_BYTE_ENCODING);
CHECK_EQ(resource, api_string->GetExternalStringResource());
}
}
} // namespace
UNINITIALIZED_TEST(ExternalizeSharedString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<base::uc16> two_byte_vec(raw_two_byte, 3);
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte =
factory1->NewStringFromTwoByte(two_byte_vec, AllocationType::kOld)
.ToHandleChecked();
CHECK(one_byte->IsOneByteRepresentation());
CHECK(two_byte->IsTwoByteRepresentation());
CHECK(!one_byte->IsShared());
CHECK(!two_byte->IsShared());
DirectHandle<String> shared_one_byte = ShareAndVerify(i_isolate1, one_byte);
DirectHandle<String> shared_two_byte = ShareAndVerify(i_isolate1, two_byte);
OneByteResource* one_byte_res = resource_factory.CreateOneByte(raw_one_byte);
TwoByteResource* two_byte_res = resource_factory.CreateTwoByte(two_byte_vec);
shared_one_byte->MakeExternal(i_isolate1, one_byte_res);
shared_two_byte->MakeExternal(i_isolate1, two_byte_res);
CHECK(!IsExternalString(*shared_one_byte));
CHECK(!IsExternalString(*shared_two_byte));
CHECK(shared_one_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(shared_two_byte->HasExternalForwardingIndex(kAcquireLoad));
// Check that API calls return the resource from the forwarding table.
CheckExternalStringResource(shared_one_byte, one_byte_res);
CheckExternalStringResource(shared_two_byte, two_byte_res);
}
UNINITIALIZED_TEST(ExternalizedSharedStringsTransitionDuringGC) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
constexpr int kStrings = 4096;
constexpr int kLOStrings = 16;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
// Run two times to test that everything is reset correctly during GC.
for (int run = 0; run < 2; run++) {
DirectHandle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings - kLOStrings, kLOStrings,
sizeof(UncachedExternalString), run == 0);
// Check strings are in the forwarding table after internalization.
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
const int length = input_string->length();
char* buffer = new char[length + 1];
String::WriteToFlat(*input_string, reinterpret_cast<uint8_t*>(buffer), 0,
length);
OneByteResource* resource =
resource_factory.CreateOneByte(buffer, length, false);
CHECK(input_string->MakeExternal(i_isolate, resource));
CHECK(input_string->IsShared());
CHECK(!IsExternalString(*input_string));
CHECK(input_string->HasExternalForwardingIndex(kAcquireLoad));
}
// Trigger garbage collection on the shared isolate.
TriggerGCWithTransitions(i_isolate->heap());
// Check that GC cleared the forwarding table.
CHECK_EQ(i_isolate->string_forwarding_table()->size(), 0);
// Check all strings are transitioned to ExternalStrings
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
CHECK(IsExternalString(*input_string));
}
}
}
UNINITIALIZED_TEST(ExternalizeInternalizedString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<base::uc16> two_byte_vec(raw_two_byte, 3);
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte =
factory1->NewStringFromTwoByte(two_byte_vec, AllocationType::kOld)
.ToHandleChecked();
// Internalize copies, s.t. internalizing the original strings creates a
// forwarding entry.
factory1->InternalizeString(
factory1->NewStringFromAsciiChecked(raw_one_byte));
factory1->InternalizeString(
factory1->NewStringFromTwoByte(two_byte_vec).ToHandleChecked());
DirectHandle<String> one_byte_intern = factory1->InternalizeString(one_byte);
DirectHandle<String> two_byte_intern = factory1->InternalizeString(two_byte);
if (v8_flags.always_use_string_forwarding_table) {
i_isolate1->heap()->CollectGarbageShared(
i_isolate1->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
}
CHECK(IsThinString(*one_byte));
CHECK(IsThinString(*two_byte));
CHECK(one_byte_intern->IsOneByteRepresentation());
CHECK(two_byte_intern->IsTwoByteRepresentation());
CHECK(one_byte_intern->IsShared());
CHECK(two_byte_intern->IsShared());
uint32_t one_byte_hash = one_byte_intern->hash();
uint32_t two_byte_hash = two_byte_intern->hash();
OneByteResource* one_byte_res = resource_factory.CreateOneByte(raw_one_byte);
TwoByteResource* two_byte_res = resource_factory.CreateTwoByte(two_byte_vec);
CHECK(one_byte_intern->MakeExternal(i_isolate1, one_byte_res));
CHECK(two_byte_intern->MakeExternal(i_isolate1, two_byte_res));
CHECK(!IsExternalString(*one_byte_intern));
CHECK(!IsExternalString(*two_byte_intern));
CHECK(one_byte_intern->HasExternalForwardingIndex(kAcquireLoad));
CHECK(two_byte_intern->HasExternalForwardingIndex(kAcquireLoad));
// The hash of internalized strings is stored in the forwarding table.
CHECK_EQ(one_byte_intern->hash(), one_byte_hash);
CHECK_EQ(two_byte_intern->hash(), two_byte_hash);
// Check that API calls return the resource from the forwarding table.
CheckExternalStringResource(one_byte_intern, one_byte_res);
CheckExternalStringResource(two_byte_intern, two_byte_res);
}
UNINITIALIZED_TEST(InternalizeSharedExternalString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<base::uc16> two_byte_vec(raw_two_byte, 3);
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte =
factory1->NewStringFromTwoByte(two_byte_vec, AllocationType::kOld)
.ToHandleChecked();
Handle<String> shared_one_byte = ShareAndVerify(i_isolate1, one_byte);
DirectHandle<String> shared_two_byte = ShareAndVerify(i_isolate1, two_byte);
OneByteResource* one_byte_res = resource_factory.CreateOneByte(raw_one_byte);
TwoByteResource* two_byte_res = resource_factory.CreateTwoByte(two_byte_vec);
CHECK(shared_one_byte->MakeExternal(i_isolate1, one_byte_res));
CHECK(shared_two_byte->MakeExternal(i_isolate1, two_byte_res));
CHECK(shared_one_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(shared_two_byte->HasExternalForwardingIndex(kAcquireLoad));
// Trigger GC to externalize the shared string.
TriggerGCWithTransitions(i_isolate1->heap());
CHECK(shared_one_byte->IsShared());
CHECK(IsExternalString(*shared_one_byte));
CHECK(shared_two_byte->IsShared());
CHECK(IsExternalString(*shared_two_byte));
// Shared cached external strings are in-place internalizable.
DirectHandle<String> one_byte_intern =
factory1->InternalizeString(shared_one_byte);
CHECK_EQ(*one_byte_intern, *shared_one_byte);
CHECK(IsExternalString(*shared_one_byte));
CHECK(IsInternalizedString(*shared_one_byte));
// Depending on the architecture/build options the two byte string might be
// cached or uncached.
const bool is_uncached =
two_byte->Size() < static_cast<int>(sizeof(ExternalString));
if (is_uncached) {
// Shared uncached external strings are not internalizable. A new internal
// copy will be created.
DirectHandle<String> two_byte_intern =
factory1->InternalizeString(two_byte);
CHECK_NE(*two_byte_intern, *shared_two_byte);
CHECK(shared_two_byte->HasInternalizedForwardingIndex(kAcquireLoad));
CHECK(IsInternalizedString(*two_byte_intern));
CHECK(!IsExternalString(*two_byte_intern));
} else {
DirectHandle<String> two_byte_intern =
factory1->InternalizeString(two_byte);
CHECK_EQ(*two_byte_intern, *shared_two_byte);
CHECK(IsExternalString(*shared_two_byte));
CHECK(IsInternalizedString(*shared_two_byte));
}
// Another GC should create an externalized internalized string of the cached
// (one byte) string and turn the uncached (two byte) string into a
// ThinString, disposing the external resource.
TriggerGCWithTransitions(i_isolate1->heap());
CHECK_EQ(shared_one_byte->map()->instance_type(),
InstanceType::EXTERNAL_INTERNALIZED_ONE_BYTE_STRING_TYPE);
if (is_uncached) {
CHECK(IsThinString(*shared_two_byte));
CHECK(two_byte_res->IsDisposed());
} else {
CHECK_EQ(shared_two_byte->map()->instance_type(),
InstanceType::EXTERNAL_INTERNALIZED_TWO_BYTE_STRING_TYPE);
}
}
UNINITIALIZED_TEST(ExternalizeAndInternalizeMissSharedString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
uint32_t one_byte_hash = one_byte->EnsureHash();
Handle<String> shared_one_byte = ShareAndVerify(i_isolate1, one_byte);
OneByteResource* one_byte_res = resource_factory.CreateOneByte(raw_one_byte);
CHECK(shared_one_byte->MakeExternal(i_isolate1, one_byte_res));
CHECK(shared_one_byte->HasExternalForwardingIndex(kAcquireLoad));
DirectHandle<String> one_byte_intern =
factory1->InternalizeString(shared_one_byte);
CHECK_EQ(*one_byte_intern, *shared_one_byte);
CHECK(IsInternalizedString(*shared_one_byte));
// Check that we have both, a forwarding index and an accessible hash.
CHECK(shared_one_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(shared_one_byte->HasHashCode());
CHECK_EQ(shared_one_byte->hash(), one_byte_hash);
}
UNINITIALIZED_TEST(InternalizeHitAndExternalizeSharedString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<base::uc16> two_byte_vec(raw_two_byte, 3);
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte =
factory1->NewStringFromTwoByte(two_byte_vec, AllocationType::kOld)
.ToHandleChecked();
Handle<String> shared_one_byte = ShareAndVerify(i_isolate1, one_byte);
Handle<String> shared_two_byte = ShareAndVerify(i_isolate1, two_byte);
// Internalize copies, s.t. internalizing the original strings creates a
// forwarding entry.
factory1->InternalizeString(
factory1->NewStringFromAsciiChecked(raw_one_byte));
factory1->InternalizeString(
factory1->NewStringFromTwoByte(two_byte_vec).ToHandleChecked());
DirectHandle<String> one_byte_intern =
factory1->InternalizeString(shared_one_byte);
DirectHandle<String> two_byte_intern =
factory1->InternalizeString(shared_two_byte);
CHECK_NE(*one_byte_intern, *shared_one_byte);
CHECK_NE(*two_byte_intern, *shared_two_byte);
CHECK(String::IsHashFieldComputed(one_byte_intern->raw_hash_field()));
CHECK(String::IsHashFieldComputed(two_byte_intern->raw_hash_field()));
CHECK(shared_one_byte->HasInternalizedForwardingIndex(kAcquireLoad));
CHECK(shared_two_byte->HasInternalizedForwardingIndex(kAcquireLoad));
OneByteResource* one_byte_res = resource_factory.CreateOneByte(raw_one_byte);
TwoByteResource* two_byte_res = resource_factory.CreateTwoByte(two_byte_vec);
CHECK(shared_one_byte->MakeExternal(i_isolate1, one_byte_res));
CHECK(shared_two_byte->MakeExternal(i_isolate1, two_byte_res));
CHECK(shared_one_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(shared_two_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(shared_one_byte->HasInternalizedForwardingIndex(kAcquireLoad));
CHECK(shared_two_byte->HasInternalizedForwardingIndex(kAcquireLoad));
// Check that API calls return the resource from the forwarding table.
CheckExternalStringResource(shared_one_byte, one_byte_res);
CheckExternalStringResource(shared_two_byte, two_byte_res);
}
UNINITIALIZED_TEST(InternalizeMissAndExternalizeSharedString) {
if (v8_flags.single_generation) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "external string";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<base::uc16> two_byte_vec(raw_two_byte, 3);
Handle<String> one_byte =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte =
factory1->NewStringFromTwoByte(two_byte_vec, AllocationType::kOld)
.ToHandleChecked();
Handle<String> shared_one_byte = ShareAndVerify(i_isolate1, one_byte);
Handle<String> shared_two_byte = ShareAndVerify(i_isolate1, two_byte);
DirectHandle<String> one_byte_intern =
factory1->InternalizeString(shared_one_byte);
DirectHandle<String> two_byte_intern =
factory1->InternalizeString(shared_two_byte);
CHECK_EQ(*one_byte_intern, *shared_one_byte);
CHECK_EQ(*two_byte_intern, *shared_two_byte);
CHECK(!shared_one_byte->HasInternalizedForwardingIndex(kAcquireLoad));
CHECK(!shared_two_byte->HasInternalizedForwardingIndex(kAcquireLoad));
OneByteResource* one_byte_res = resource_factory.CreateOneByte(raw_one_byte);
TwoByteResource* two_byte_res = resource_factory.CreateTwoByte(two_byte_vec);
CHECK(shared_one_byte->MakeExternal(i_isolate1, one_byte_res));
CHECK(shared_two_byte->MakeExternal(i_isolate1, two_byte_res));
CHECK(shared_one_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(shared_two_byte->HasExternalForwardingIndex(kAcquireLoad));
CHECK(one_byte_intern->HasExternalForwardingIndex(kAcquireLoad));
CHECK(two_byte_intern->HasExternalForwardingIndex(kAcquireLoad));
// Check that API calls return the resource from the forwarding table.
CheckExternalStringResource(shared_one_byte, one_byte_res);
CheckExternalStringResource(shared_two_byte, two_byte_res);
}
class ConcurrentExternalizationThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentExternalizationThread(MultiClientIsolateTest* test,
IndirectHandle<FixedArray> shared_strings,
std::vector<OneByteResource*> resources,
bool share_resources,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentExternalizationThread", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete),
resources_(resources),
share_resources_(share_resources) {}
void RunForString(Handle<String> input_string, int counter) override {
CHECK(input_string->IsShared());
OneByteResource* resource = Resource(counter);
if (!input_string->MakeExternal(i_isolate, resource)) {
if (!share_resources_) {
resource->Unaccount(reinterpret_cast<v8::Isolate*>(i_isolate));
resource->Dispose();
}
}
CHECK(input_string->HasForwardingIndex(kAcquireLoad));
}
OneByteResource* Resource(int index) const { return resources_[index]; }
private:
std::vector<OneByteResource*> resources_;
const bool share_resources_;
};
namespace {
void CreateExternalResources(Isolate* i_isolate,
DirectHandle<FixedArray> strings,
std::vector<OneByteResource*>& resources,
ExternalResourceFactory& resource_factory) {
HandleScope scope(i_isolate);
resources.reserve(strings->length());
for (int i = 0; i < strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(strings->get(i)), i_isolate);
CHECK(Utils::ToLocal(input_string)
->CanMakeExternal(v8::String::Encoding::ONE_BYTE_ENCODING));
const int length = input_string->length();
char* buffer = new char[length + 1];
String::WriteToFlat(*input_string, reinterpret_cast<uint8_t*>(buffer), 0,
length);
resources.push_back(resource_factory.CreateOneByte(buffer, length, false));
}
}
void CheckStringAndResource(
Tagged<String> string, int index, bool should_be_alive,
Tagged<String> deleted_string, bool check_transition, bool shared_resources,
const std::vector<std::unique_ptr<ConcurrentExternalizationThread>>&
threads) {
if (check_transition) {
if (should_be_alive) {
CHECK(IsExternalString(string));
} else {
CHECK_EQ(string, deleted_string);
}
}
int alive_resources = 0;
for (size_t t = 0; t < threads.size(); t++) {
ConcurrentExternalizationThread* thread = threads[t].get();
if (!thread->Resource(index)->IsDisposed()) {
alive_resources++;
}
}
// Check exact alive resources only if the string has transitioned, otherwise
// there can still be multiple resource instances in the forwarding table.
// Only check no resource is alive if the string is dead.
const bool check_alive = check_transition || !should_be_alive;
if (check_alive) {
size_t expected_alive;
if (should_be_alive) {
if (shared_resources) {
// Since we share the same resource for all threads, we accounted for it
// in every thread.
expected_alive = threads.size();
} else {
// Check that exactly one resource is alive.
expected_alive = 1;
}
} else {
expected_alive = 0;
}
CHECK_EQ(alive_resources, expected_alive);
}
}
} // namespace
void TestConcurrentExternalization(bool share_resources) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
constexpr int kThreads = 4;
constexpr int kStrings = 4096;
constexpr int kLOStrings = 16;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings - kLOStrings, kLOStrings,
sizeof(UncachedExternalString), false);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentExternalizationThread>> threads;
std::vector<OneByteResource*> shared_resources;
if (share_resources) {
CreateExternalResources(i_isolate, shared_strings, shared_resources,
resource_factory);
}
for (int i = 0; i < kThreads; i++) {
std::vector<OneByteResource*> local_resources;
if (share_resources) {
local_resources = shared_resources;
} else {
CreateExternalResources(i_isolate, shared_strings, local_resources,
resource_factory);
}
auto thread = std::make_unique<ConcurrentExternalizationThread>(
&test, shared_strings, local_resources, share_resources, &sema_ready,
&sema_execute_start, &sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
TriggerGCWithTransitions(i_isolate->heap());
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
Tagged<String> string = *input_string;
CheckStringAndResource(string, i, true, {}, true, share_resources, threads);
}
ParkingThread::ParkedJoinAll(local_isolate, threads);
}
UNINITIALIZED_TEST(ConcurrentExternalizationWithUniqueResources) {
TestConcurrentExternalization(false);
}
UNINITIALIZED_TEST(ConcurrentExternalizationWithSharedResources) {
TestConcurrentExternalization(true);
}
void TestConcurrentExternalizationWithDeadStrings(bool share_resources,
bool transition_with_stack) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
constexpr int kThreads = 4;
constexpr int kStrings = 12;
constexpr int kLOStrings = 2;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
ManualGCScope manual_gc_scope(i_isolate);
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings - kLOStrings, kLOStrings,
sizeof(UncachedExternalString), false);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentExternalizationThread>> threads;
std::vector<OneByteResource*> shared_resources;
if (share_resources) {
CreateExternalResources(i_isolate, shared_strings, shared_resources,
resource_factory);
}
for (int i = 0; i < kThreads; i++) {
std::vector<OneByteResource*> local_resources;
if (share_resources) {
local_resources = shared_resources;
} else {
CreateExternalResources(i_isolate, shared_strings, local_resources,
resource_factory);
}
auto thread = std::make_unique<ConcurrentExternalizationThread>(
&test, shared_strings, local_resources, share_resources, &sema_ready,
&sema_execute_start, &sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
DirectHandle<String> empty_string(
ReadOnlyRoots(i_isolate->heap()).empty_string(), i_isolate);
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
// Patch every third string to empty. The next GC will dispose the external
// resources.
if (i % 3 == 0) {
input_string.SetValue(*empty_string);
shared_strings->set(i, *input_string);
}
}
v8_flags.transition_strings_during_gc_with_stack = transition_with_stack;
i_isolate->heap()->CollectGarbageShared(i_isolate->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
const bool should_be_alive = i % 3 != 0;
Tagged<String> string = *input_string;
CheckStringAndResource(string, i, should_be_alive, *empty_string,
transition_with_stack, share_resources, threads);
}
// If we didn't test transitions during GC with stack, trigger another GC
// (allowing transitions with stack) to ensure everything is handled
// correctly.
if (!transition_with_stack) {
v8_flags.transition_strings_during_gc_with_stack = true;
i_isolate->heap()->CollectGarbageShared(i_isolate->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
const bool should_be_alive = i % 3 != 0;
Tagged<String> string = *input_string;
CheckStringAndResource(string, i, should_be_alive, *empty_string, true,
share_resources, threads);
}
}
ParkingThread::ParkedJoinAll(local_isolate, threads);
}
UNINITIALIZED_TEST(
ExternalizationWithDeadStringsAndUniqueResourcesTransitionWithStack) {
TestConcurrentExternalizationWithDeadStrings(false, true);
}
UNINITIALIZED_TEST(
ExternalizationWithDeadStringsAndSharedResourcesTransitionWithStack) {
TestConcurrentExternalizationWithDeadStrings(true, true);
}
UNINITIALIZED_TEST(ExternalizationWithDeadStringsAndUniqueResources) {
TestConcurrentExternalizationWithDeadStrings(false, false);
}
UNINITIALIZED_TEST(ExternalizationWithDeadStringsAndSharedResources) {
TestConcurrentExternalizationWithDeadStrings(true, false);
}
void TestConcurrentExternalizationAndInternalization(
TestHitOrMiss hit_or_miss) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ExternalResourceFactory resource_factory;
MultiClientIsolateTest test;
constexpr int kInternalizationThreads = 4;
constexpr int kExternalizationThreads = 4;
constexpr int kTotalThreads =
kInternalizationThreads + kExternalizationThreads;
constexpr int kStrings = 4096;
constexpr int kLOStrings = 16;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
IndirectHandle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings - kLOStrings, kLOStrings,
sizeof(UncachedExternalString), hit_or_miss == kTestHit);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentStringThreadBase>> threads;
for (int i = 0; i < kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, hit_or_miss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
for (int i = 0; i < kExternalizationThreads; i++) {
std::vector<OneByteResource*> resources;
CreateExternalResources(i_isolate, shared_strings, resources,
resource_factory);
auto thread = std::make_unique<ConcurrentExternalizationThread>(
&test, shared_strings, resources, false, &sema_ready,
&sema_execute_start, &sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kTotalThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kTotalThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kTotalThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
TriggerGCWithTransitions(i_isolate->heap());
for (int i = 0; i < shared_strings->length(); i++) {
DirectHandle<String> input_string(Cast<String>(shared_strings->get(i)),
i_isolate);
Tagged<String> string = *input_string;
if (hit_or_miss == kTestHit) {
CHECK(IsThinString(string));
string = Cast<ThinString>(string)->actual();
}
int alive_resources = 0;
for (int t = kInternalizationThreads; t < kTotalThreads; t++) {
ConcurrentExternalizationThread* thread =
reinterpret_cast<ConcurrentExternalizationThread*>(threads[t].get());
if (!thread->Resource(i)->IsDisposed()) {
alive_resources++;
}
}
StringShape shape(string);
CHECK(shape.IsInternalized());
// Check at most one external resource is alive.
// If internalization happens on an external string and we already have an
// internalized string with the same content, we turn it into a ThinString
// and dispose the resource.
CHECK_LE(alive_resources, 1);
CHECK_EQ(shape.IsExternal(), alive_resources);
CHECK(string->HasHashCode());
}
ParkingThread::ParkedJoinAll(local_isolate, threads);
}
UNINITIALIZED_TEST(ConcurrentExternalizationAndInternalizationMiss) {
TestConcurrentExternalizationAndInternalization(kTestMiss);
}
UNINITIALIZED_TEST(ConcurrentExternalizationAndInternalizationHit) {
TestConcurrentExternalizationAndInternalization(kTestHit);
}
UNINITIALIZED_TEST(SharedStringInGlobalHandle) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope handle_scope(i_isolate);
DirectHandle<String> shared_string =
factory->NewStringFromAsciiChecked("foobar", AllocationType::kSharedOld);
CHECK(HeapLayout::InWritableSharedSpace(*shared_string));
v8::Local<v8::String> lh_shared_string = Utils::ToLocal(shared_string);
v8::Global<v8::String> gh_shared_string(test.main_isolate(),
lh_shared_string);
gh_shared_string.SetWeak();
heap::InvokeMajorGC(i_isolate->heap());
CHECK(!gh_shared_string.IsEmpty());
}
class WakeupTask : public CancelableTask {
public:
explicit WakeupTask(Isolate* isolate, int& wakeup_counter)
: CancelableTask(isolate), wakeup_counter_(wakeup_counter) {}
private:
// v8::internal::CancelableTask overrides.
void RunInternal() override { (wakeup_counter_)++; }
int& wakeup_counter_;
};
class WorkerIsolateThread : public v8::base::Thread {
public:
WorkerIsolateThread(const char* name, MultiClientIsolateTest* test)
: v8::base::Thread(base::Thread::Options(name)), test_(test) {}
void Run() override {
v8::Isolate* client = test_->NewClientIsolate();
Isolate* i_client = reinterpret_cast<Isolate*>(client);
Factory* factory = i_client->factory();
v8::Global<v8::String> gh_shared_string;
{
v8::Isolate::Scope isolate_scope(client);
HandleScope handle_scope(i_client);
DirectHandle<String> shared_string = factory->NewStringFromAsciiChecked(
"foobar", AllocationType::kSharedOld);
CHECK(HeapLayout::InWritableSharedSpace(*shared_string));
v8::Local<v8::String> lh_shared_string = Utils::ToLocal(shared_string);
gh_shared_string.Reset(test_->main_isolate(), lh_shared_string);
gh_shared_string.SetWeak();
}
{
// We need to invoke GC without stack, otherwise some objects may survive.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(
i_client->heap());
i_client->heap()->CollectGarbageShared(i_client->main_thread_local_heap(),
GarbageCollectionReason::kTesting);
}
CHECK(gh_shared_string.IsEmpty());
client->Dispose();
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
}
private:
MultiClientIsolateTest* test_;
};
UNINITIALIZED_TEST(SharedStringInClientGlobalHandle) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
MultiClientIsolateTest test;
ManualGCScope manual_gc_scope(test.i_main_isolate());
WorkerIsolateThread thread("worker", &test);
CHECK(thread.Start());
while (test.main_isolate_wakeup_counter() < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
thread.Join();
}
class ClientIsolateThreadForPagePromotions : public v8::base::Thread {
public:
// Expects a ManualGCScope to be in scope while `Run()` is executed.
ClientIsolateThreadForPagePromotions(const char* name,
MultiClientIsolateTest* test,
Handle<String>* shared_string,
const ManualGCScope& witness)
: v8::base::Thread(base::Thread::Options(name)),
test_(test),
shared_string_(shared_string) {}
void Run() override {
CHECK(v8_flags.minor_ms);
v8::Isolate* client = test_->NewClientIsolate();
Isolate* i_client = reinterpret_cast<Isolate*>(client);
Factory* factory = i_client->factory();
Heap* heap = i_client->heap();
{
v8::Isolate::Scope isolate_scope(client);
HandleScope handle_scope(i_client);
DirectHandle<FixedArray> young_object =
factory->NewFixedArray(1, AllocationType::kYoung);
CHECK(HeapLayout::InYoungGeneration(*young_object));
Address young_object_address = young_object->address();
DirectHandleVector<FixedArray> handles(i_client);
// Make the whole page transition from new->old, getting the buffers
// processed in the sweeper (relying on marking information) instead of
// processing during newspace evacuation.
heap::FillCurrentPage(heap->new_space(), &handles);
CHECK(!heap->Contains(**shared_string_));
CHECK(heap->SharedHeapContains(**shared_string_));
young_object->set(0, **shared_string_);
heap::EmptyNewSpaceUsingGC(heap);
heap->CompleteSweepingFull();
// Object should get promoted using page promotion, so address should
// remain the same.
CHECK(!HeapLayout::InYoungGeneration(*young_object));
CHECK(heap->Contains(*young_object));
CHECK_EQ(young_object_address, young_object->address());
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
ObjectSlot slot = young_object->RawFieldOfFirstElement();
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(
MutablePageMetadata::FromHeapObject(*young_object), slot.address()));
}
client->Dispose();
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
}
private:
MultiClientIsolateTest* test_;
Handle<String>* shared_string_;
};
UNINITIALIZED_TEST(RegisterOldToSharedForPromotedPageFromClient) {
if (v8_flags.single_generation) return;
if (!v8_flags.minor_ms) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Isolate* shared_isolate = i_isolate->shared_space_isolate();
Heap* shared_heap = shared_isolate->heap();
HandleScope scope(i_isolate);
const char raw_one_byte[] = "foo";
Handle<String> shared_string =
i_isolate->factory()->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kSharedOld);
CHECK(shared_heap->Contains(*shared_string));
ClientIsolateThreadForPagePromotions thread("worker", &test, &shared_string,
manual_gc_scope);
CHECK(thread.Start());
while (test.main_isolate_wakeup_counter() < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
thread.Join();
}
UNINITIALIZED_TEST(
RegisterOldToSharedForPromotedPageFromClientDuringIncrementalMarking) {
if (v8_flags.single_generation) return;
if (!v8_flags.minor_ms) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
v8_flags.incremental_marking_task =
false; // Prevent the incremental GC from finishing and finalizing in a
// task.
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Isolate* shared_isolate = i_isolate->shared_space_isolate();
Heap* shared_heap = shared_isolate->heap();
HandleScope scope(i_isolate);
const char raw_one_byte[] = "foo";
Handle<String> shared_string =
i_isolate->factory()->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kSharedOld);
CHECK(shared_heap->Contains(*shared_string));
// Start an incremental shared GC such that shared_string resides on an
// evacuation candidate.
heap::ForceEvacuationCandidate(PageMetadata::FromHeapObject(*shared_string));
i::IncrementalMarking* marking = shared_heap->incremental_marking();
CHECK(marking->IsStopped());
{
SafepointScope safepoint_scope(shared_isolate,
kGlobalSafepointForSharedSpaceIsolate);
shared_heap->tracer()->StartCycle(
GarbageCollector::MARK_COMPACTOR, GarbageCollectionReason::kTesting,
"collector cctest", GCTracer::MarkingType::kIncremental);
marking->Start(GarbageCollector::MARK_COMPACTOR,
i::GarbageCollectionReason::kTesting);
}
ClientIsolateThreadForPagePromotions thread("worker", &test, &shared_string,
manual_gc_scope);
CHECK(thread.Start());
while (test.main_isolate_wakeup_counter() < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
thread.Join();
}
class ClientIsolateThreadForRetainingByRememberedSet : public v8::base::Thread {
public:
// Expects a ManualGCScope to be in scope while `Run()` is executed.
ClientIsolateThreadForRetainingByRememberedSet(
const char* name, MultiClientIsolateTest* test,
Persistent<v8::String>* weak_ref, const ManualGCScope& witness)
: v8::base::Thread(base::Thread::Options(name)),
test_(test),
weak_ref_(weak_ref) {}
void Run() override {
CHECK(v8_flags.minor_ms);
client_isolate_ = test_->NewClientIsolate();
Isolate* i_client = reinterpret_cast<Isolate*>(client_isolate_);
Factory* factory = i_client->factory();
Heap* heap = i_client->heap();
{
v8::Isolate::Scope isolate_scope(client_isolate_);
HandleScope scope(i_client);
IndirectHandle<FixedArray> young_object =
factory->NewFixedArray(1, AllocationType::kYoung);
CHECK(HeapLayout::InYoungGeneration(*young_object));
Address young_object_address = young_object->address();
DirectHandleVector<FixedArray> handles(i_client);
// Make the whole page transition from new->old, getting the buffers
// processed in the sweeper (relying on marking information) instead of
// processing during newspace evacuation.
heap::FillCurrentPage(heap->new_space(), &handles);
// Create a new to shared reference.
CHECK(!weak_ref_->IsEmpty());
IndirectHandle<String> shared_string =
Utils::OpenHandle<v8::String, String>(
weak_ref_->Get(client_isolate_));
CHECK(!heap->Contains(*shared_string));
CHECK(heap->SharedHeapContains(*shared_string));
young_object->set(0, *shared_string);
heap::EmptyNewSpaceUsingGC(heap);
// Object should get promoted using page promotion, so address should
// remain the same.
CHECK(!HeapLayout::InYoungGeneration(*young_object));
CHECK(heap->Contains(*young_object));
CHECK_EQ(young_object_address, young_object->address());
// GC should still be in progress (unless heap verification is enabled).
CHECK_IMPLIES(!v8_flags.verify_heap, heap->sweeping_in_progress());
// Inform main thread that the client is set up and is doing a GC.
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
// We need to ensure that the shared GC does not scan the stack for this
// client, otherwise some objects may survive.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
// Wait for main thread to do a shared GC.
while (wakeup_counter_ < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
ObjectSlot slot = young_object->RawFieldOfFirstElement();
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(
MutablePageMetadata::FromHeapObject(*young_object), slot.address()));
}
client_isolate_->Dispose();
// Inform main thread that client is finished.
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
}
v8::Isolate* isolate() const {
DCHECK_NOT_NULL(client_isolate_);
return client_isolate_;
}
int& wakeup_counter() { return wakeup_counter_; }
private:
MultiClientIsolateTest* test_;
Persistent<v8::String>* weak_ref_;
v8::Isolate* client_isolate_;
int wakeup_counter_ = 0;
};
UNINITIALIZED_TEST(SharedObjectRetainedByClientRememberedSet) {
if (v8_flags.single_generation) return;
if (!v8_flags.minor_ms) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
heap::ManualEvacuationCandidatesSelectionScope
manual_evacuation_candidate_selection_scope(manual_gc_scope);
MultiClientIsolateTest test;
v8::Isolate* isolate = test.main_isolate();
Isolate* i_isolate = test.i_main_isolate();
Isolate* shared_isolate = i_isolate->shared_space_isolate();
Heap* shared_heap = shared_isolate->heap();
// We need to invoke GC without stack, otherwise some objects may survive.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(
shared_heap);
// Create two weak references to Strings. One should die, the other should be
// kept alive by the client isolate.
Persistent<v8::String> live_weak_ref;
Persistent<v8::String> dead_weak_ref;
{
HandleScope scope(i_isolate);
const char raw_one_byte[] = "foo";
DirectHandle<String> live_shared_string =
i_isolate->factory()->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kSharedOld);
CHECK(shared_heap->Contains(*live_shared_string));
live_weak_ref.Reset(isolate, Utils::ToLocal(live_shared_string));
live_weak_ref.SetWeak();
DirectHandle<String> dead_shared_string =
i_isolate->factory()->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kSharedOld);
CHECK(shared_heap->Contains(*dead_shared_string));
dead_weak_ref.Reset(isolate, Utils::ToLocal(dead_shared_string));
dead_weak_ref.SetWeak();
}
ClientIsolateThreadForRetainingByRememberedSet thread(
"worker", &test, &live_weak_ref, manual_gc_scope);
CHECK(thread.Start());
// Wait for client isolate to allocate objects and start a GC.
while (test.main_isolate_wakeup_counter() < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
// Do shared GC. The live weak ref should be kept alive via an OLD_TO_SHARED
// slot in the client isolate.
CHECK(!live_weak_ref.IsEmpty());
CHECK(!dead_weak_ref.IsEmpty());
heap::CollectSharedGarbage(i_isolate->heap());
CHECK(!live_weak_ref.IsEmpty());
CHECK(dead_weak_ref.IsEmpty());
// Inform client that shared GC is finished.
auto thread_wakeup_task = std::make_unique<WakeupTask>(
reinterpret_cast<Isolate*>(thread.isolate()), thread.wakeup_counter());
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(thread.isolate())
->PostTask(std::move(thread_wakeup_task));
while (test.main_isolate_wakeup_counter() < 2) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
thread.Join();
}
class Regress1424955ClientIsolateThread : public v8::base::Thread {
public:
Regress1424955ClientIsolateThread(const char* name,
MultiClientIsolateTest* test)
: v8::base::Thread(base::Thread::Options(name)), test_(test) {}
void Run() override {
client_isolate_ = test_->NewClientIsolate();
Isolate* i_client = reinterpret_cast<Isolate*>(client_isolate_);
Heap* i_client_heap = i_client->heap();
Factory* factory = i_client->factory();
{
// Allocate an object so that there is work for the sweeper. Otherwise,
// starting a minor GC after a full GC may finalize sweeping since it is
// out of work.
v8::Isolate::Scope isolate_scope(client_isolate_);
HandleScope handle_scope(i_client);
Handle<FixedArray> array =
factory->NewFixedArray(64, AllocationType::kOld);
USE(array);
// Start sweeping.
heap::InvokeMajorGC(i_client_heap);
CHECK(i_client_heap->sweeping_in_progress());
// Inform the initiator thread it's time to request a global safepoint.
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
// Wait for the initiator thread to request a global safepoint.
while (!i_client->shared_space_isolate()
->global_safepoint()
->IsRequestedForTesting()) {
v8::base::OS::Sleep(v8::base::TimeDelta::FromMilliseconds(1));
}
// Start a minor GC. This will cause this client isolate to join the
// global safepoint. At which point, the initiator isolate will try to
// finalize sweeping on behalf of this client isolate.
heap::InvokeMinorGC(i_client_heap);
}
// Wait for the initiator isolate to finish the shared GC.
while (wakeup_counter_ < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), client_isolate_,
v8::platform::MessageLoopBehavior::kWaitForWork);
}
client_isolate_->Dispose();
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
}
v8::Isolate* isolate() const {
DCHECK_NOT_NULL(client_isolate_);
return client_isolate_;
}
int& wakeup_counter() { return wakeup_counter_; }
private:
MultiClientIsolateTest* test_;
v8::Isolate* client_isolate_;
int wakeup_counter_ = 0;
};
UNINITIALIZED_TEST(Regress1424955) {
if (v8_flags.single_generation) return;
// When heap verification is enabled, sweeping is finalized in the atomic
// pause. This issue requires that sweeping is still in progress after the
// atomic pause is finished.
if (v8_flags.verify_heap) return;
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
MultiClientIsolateTest test;
Regress1424955ClientIsolateThread thread("worker", &test);
CHECK(thread.Start());
// Wait for client thread to start sweeping.
while (test.main_isolate_wakeup_counter() < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
// Client isolate waits for this isolate to request a global safepoint and
// then triggers a minor GC.
heap::CollectSharedGarbage(test.i_main_isolate()->heap());
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(thread.isolate())
->PostTask(std::make_unique<WakeupTask>(
reinterpret_cast<Isolate*>(thread.isolate()),
thread.wakeup_counter()));
// Wait for client isolate to finish the minor GC and dispose of its isolate.
while (test.main_isolate_wakeup_counter() < 2) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
thread.Join();
}
class ProtectExternalStringTableAddStringClientIsolateThread
: public v8::base::Thread {
public:
ProtectExternalStringTableAddStringClientIsolateThread(
const char* name, MultiClientIsolateTest* test, v8::Isolate* isolate)
: v8::base::Thread(base::Thread::Options(name)),
test_(test),
isolate_(isolate),
i_isolate_(reinterpret_cast<Isolate*>(isolate)) {}
void Run() override {
const char* text = "worker_external_string";
{
v8::Isolate::Scope isolate_scope(isolate_);
for (int i = 0; i < 1'000; i++) {
HandleScope scope(i_isolate_);
DirectHandle<String> string =
i_isolate_->factory()->NewStringFromAsciiChecked(
text, AllocationType::kOld);
CHECK(HeapLayout::InWritableSharedSpace(*string));
CHECK(!string->IsShared());
CHECK(
string->MakeExternal(i_isolate_, new StaticOneByteResource(text)));
CHECK(IsExternalOneByteString(*string));
}
}
isolate_->Dispose();
V8::GetCurrentPlatform()
->GetForegroundTaskRunner(test_->main_isolate())
->PostTask(std::make_unique<WakeupTask>(
test_->i_main_isolate(), test_->main_isolate_wakeup_counter()));
}
private:
MultiClientIsolateTest* test_;
v8::Isolate* isolate_;
Isolate* i_isolate_;
};
UNINITIALIZED_TEST(ProtectExternalStringTableAddString) {
v8_flags.shared_string_table = true;
i::FlagList::EnforceFlagImplications();
ManualGCScope manual_gc_scope;
MultiClientIsolateTest test;
v8::Isolate* client = test.NewClientIsolate();
ProtectExternalStringTableAddStringClientIsolateThread thread("worker", &test,
client);
CHECK(thread.Start());
Isolate* isolate = test.i_main_isolate();
HandleScope scope(isolate);
for (int i = 0; i < 1'000; i++) {
isolate->factory()
->NewExternalStringFromOneByte(
new StaticOneByteResource("main_external_string"))
.Check();
}
// Wait for client isolate to finish the minor GC and dispose of its isolate.
while (test.main_isolate_wakeup_counter() < 1) {
v8::platform::PumpMessageLoop(
i::V8::GetCurrentPlatform(), test.main_isolate(),
v8::platform::MessageLoopBehavior::kWaitForWork);
}
thread.Join();
}
} // namespace test_shared_strings
} // namespace internal
} // namespace v8
#endif // V8_CAN_CREATE_SHARED_HEAP_BOOL &&
// !COMPRESS_POINTERS_IN_MULTIPLE_CAGES_BOOL