nodejs/deps/v8/test/unittests/heap/heap-unittest.cc
Michaël Zasso 918fe04351
deps: update V8 to 13.6.233.8
PR-URL: https://github.com/nodejs/node/pull/58070
Reviewed-By: Antoine du Hamel <duhamelantoine1995@gmail.com>
Reviewed-By: Darshan Sen <raisinten@gmail.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
2025-05-02 15:06:53 +02:00

965 lines
34 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/heap.h"
#include <cmath>
#include <iostream>
#include <limits>
#include <utility>
#include "include/v8-isolate.h"
#include "include/v8-object.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/handles/handles-inl.h"
#include "src/heap/gc-tracer-inl.h"
#include "src/heap/gc-tracer.h"
#include "src/heap/heap-controller.h"
#include "src/heap/heap-layout-inl.h"
#include "src/heap/heap-layout.h"
#include "src/heap/marking-state-inl.h"
#include "src/heap/minor-mark-sweep.h"
#include "src/heap/mutable-page-metadata.h"
#include "src/heap/remembered-set.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/trusted-range.h"
#include "src/objects/fixed-array.h"
#include "src/objects/free-space-inl.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/sandbox/external-pointer-table.h"
#include "test/unittests/heap/heap-utils.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
using HeapTest = TestWithHeapInternalsAndContext;
TEST(Heap, YoungGenerationSizeFromOldGenerationSize) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
// Low memory
ASSERT_EQ((v8_flags.minor_ms ? 4 : 3) * 512u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(128u * hlm * MB));
// High memory
ASSERT_EQ((i::Heap::DefaultMaxSemiSpaceSize() / 4) *
(v8_flags.minor_ms ? (2 * 4) : 3),
i::Heap::YoungGenerationSizeFromOldGenerationSize(
V8HeapTrait::kMaxSize / 4));
ASSERT_EQ((i::Heap::DefaultMaxSemiSpaceSize() / 2) *
(v8_flags.minor_ms ? (2 * 2) : 3),
i::Heap::YoungGenerationSizeFromOldGenerationSize(
V8HeapTrait::kMaxSize / 2));
ASSERT_EQ(
i::Heap::DefaultMaxSemiSpaceSize() * (v8_flags.minor_ms ? 2 : 3),
i::Heap::YoungGenerationSizeFromOldGenerationSize(V8HeapTrait::kMaxSize));
}
TEST(Heap, GenerationSizesFromHeapSize) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
size_t old, young;
// Low memory
i::Heap::GenerationSizesFromHeapSize(1 * KB, &young, &old);
ASSERT_EQ(0u, old);
ASSERT_EQ(0u, young);
// On tiny heap max semi space capacity is set to the default capacity which
// MinorMS does not double.
i::Heap::GenerationSizesFromHeapSize(
1 * KB + (v8_flags.minor_ms ? 2 : 3) * 512u * pm * KB, &young, &old);
ASSERT_EQ(1u * KB, old);
ASSERT_EQ((v8_flags.minor_ms ? 2 : 3) * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(
128 * hlm * MB + (v8_flags.minor_ms ? 4 : 3) * 512 * pm * KB, &young,
&old);
ASSERT_EQ(128u * hlm * MB, old);
ASSERT_EQ((v8_flags.minor_ms ? 4 : 3) * 512u * pm * KB, young);
// High memory
i::Heap::GenerationSizesFromHeapSize(
V8HeapTrait::kMaxSize / 4 + (i::Heap::DefaultMaxSemiSpaceSize() / 4) *
(v8_flags.minor_ms ? (2 * 4) : 3),
&young, &old);
ASSERT_EQ(V8HeapTrait::kMaxSize / 4, old);
ASSERT_EQ((i::Heap::DefaultMaxSemiSpaceSize() / 4) *
(v8_flags.minor_ms ? (2 * 4) : 3),
young);
i::Heap::GenerationSizesFromHeapSize(
V8HeapTrait::kMaxSize / 2 + (i::Heap::DefaultMaxSemiSpaceSize() / 2) *
(v8_flags.minor_ms ? (2 * 2) : 3),
&young, &old);
ASSERT_EQ(V8HeapTrait::kMaxSize / 2, old);
ASSERT_EQ((i::Heap::DefaultMaxSemiSpaceSize() / 2) *
(v8_flags.minor_ms ? (2 * 2) : 3),
young);
i::Heap::GenerationSizesFromHeapSize(
V8HeapTrait::kMaxSize +
i::Heap::DefaultMaxSemiSpaceSize() * (v8_flags.minor_ms ? 2 : 3),
&young, &old);
ASSERT_EQ(V8HeapTrait::kMaxSize, old);
ASSERT_EQ(i::Heap::DefaultMaxSemiSpaceSize() * (v8_flags.minor_ms ? 2 : 3),
young);
}
TEST(Heap, HeapSizeFromPhysicalMemory) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
// The expected value is old_generation_size + semi_space_multiplier *
// semi_space_size.
// Low memory
ASSERT_EQ(128 * hlm * MB + (v8_flags.minor_ms ? 4 : 3) * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(0u));
ASSERT_EQ(128 * hlm * MB + (v8_flags.minor_ms ? 4 : 3) * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(512u * MB));
// High memory
ASSERT_EQ(
V8HeapTrait::kMaxSize / 4 + (i::Heap::DefaultMaxSemiSpaceSize() / 4) *
(v8_flags.minor_ms ? (2 * 4) : 3),
i::Heap::HeapSizeFromPhysicalMemory(1u * GB));
ASSERT_EQ(
V8HeapTrait::kMaxSize / 2 + (i::Heap::DefaultMaxSemiSpaceSize() / 2) *
(v8_flags.minor_ms ? (2 * 2) : 3),
i::Heap::HeapSizeFromPhysicalMemory(2u * GB));
ASSERT_EQ(
V8HeapTrait::kMaxSize +
i::Heap::DefaultMaxSemiSpaceSize() * (v8_flags.minor_ms ? 2 : 3),
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(4u) * GB));
ASSERT_EQ(
V8HeapTrait::kMaxSize +
i::Heap::DefaultMaxSemiSpaceSize() * (v8_flags.minor_ms ? 2 : 3),
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(8u) * GB));
}
TEST_F(HeapTest, ASLR) {
#if V8_TARGET_ARCH_X64
#if V8_OS_DARWIN
Heap* heap = i_isolate()->heap();
std::set<void*> hints;
for (int i = 0; i < 1000; i++) {
hints.insert(heap->GetRandomMmapAddr());
}
if (hints.size() == 1) {
EXPECT_TRUE((*hints.begin()) == nullptr);
EXPECT_TRUE(i::GetRandomMmapAddr() == nullptr);
} else {
// It is unlikely that 1000 random samples will collide to less then 500
// values.
EXPECT_GT(hints.size(), 500u);
const uintptr_t kRegionMask = 0xFFFFFFFFu;
void* first = *hints.begin();
for (void* hint : hints) {
uintptr_t diff = reinterpret_cast<uintptr_t>(first) ^
reinterpret_cast<uintptr_t>(hint);
EXPECT_LE(diff, kRegionMask);
}
}
#endif // V8_OS_DARWIN
#endif // V8_TARGET_ARCH_X64
}
TEST_F(HeapTest, ExternalLimitDefault) {
Heap* heap = i_isolate()->heap();
EXPECT_EQ(kExternalAllocationSoftLimit, heap->external_memory_soft_limit());
}
TEST_F(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling) {
v8::ExternalMemoryAccounter accounter;
accounter.Increase(v8_isolate(), 10 * MB);
accounter.Decrease(v8_isolate(), 10 * MB);
Heap* heap = i_isolate()->heap();
EXPECT_GE(heap->external_memory_soft_limit(), kExternalAllocationSoftLimit);
}
#ifdef V8_COMPRESS_POINTERS
TEST_F(HeapTest, HeapLayout) {
// Produce some garbage.
RunJS(
"let ar = [];"
"for (let i = 0; i < 100; i++) {"
" ar.push(Array(i));"
"}"
"ar.push(Array(32 * 1024 * 1024));");
Address cage_base = i_isolate()->cage_base();
EXPECT_TRUE(IsAligned(cage_base, size_t{4} * GB));
Address code_cage_base = i_isolate()->code_cage_base();
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
EXPECT_TRUE(IsAligned(code_cage_base, kMinExpectedOSPageSize));
} else {
EXPECT_TRUE(IsAligned(code_cage_base, size_t{4} * GB));
}
#if V8_ENABLE_SANDBOX
Address trusted_space_base =
TrustedRange::GetProcessWideTrustedRange()->base();
EXPECT_TRUE(IsAligned(trusted_space_base, size_t{4} * GB));
base::AddressRegion trusted_reservation(trusted_space_base, size_t{4} * GB);
#endif
// Check that all memory chunks belong this region.
base::AddressRegion heap_reservation(cage_base, size_t{4} * GB);
base::AddressRegion code_reservation(code_cage_base, size_t{4} * GB);
IsolateSafepointScope scope(i_isolate()->heap());
OldGenerationMemoryChunkIterator iter(i_isolate()->heap());
while (MutablePageMetadata* chunk = iter.next()) {
Address address = chunk->ChunkAddress();
size_t size = chunk->area_end() - address;
AllocationSpace owner_id = chunk->owner_identity();
if (V8_EXTERNAL_CODE_SPACE_BOOL && IsAnyCodeSpace(owner_id)) {
EXPECT_TRUE(code_reservation.contains(address, size));
#if V8_ENABLE_SANDBOX
} else if (IsAnyTrustedSpace(owner_id)) {
EXPECT_TRUE(trusted_reservation.contains(address, size));
#endif
} else {
EXPECT_TRUE(heap_reservation.contains(address, size));
}
}
}
#endif // V8_COMPRESS_POINTERS
namespace {
void ShrinkNewSpace(NewSpace* new_space) {
if (!v8_flags.minor_ms) {
new_space->heap()->ReduceNewSpaceSizeForTesting();
return;
}
// MinorMS shrinks the space as part of sweeping. Here we fake a GC cycle, in
// which we just shrink without marking or sweeping.
PagedNewSpace* paged_new_space = PagedNewSpace::From(new_space);
Heap* heap = paged_new_space->heap();
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kUnifiedHeap);
GCTracer* tracer = heap->tracer();
tracer->StartObservablePause(base::TimeTicks::Now());
tracer->StartCycle(GarbageCollector::MARK_COMPACTOR,
GarbageCollectionReason::kTesting, "heap unittest",
GCTracer::MarkingType::kAtomic);
tracer->StartAtomicPause();
paged_new_space->StartShrinking(paged_new_space->MinimumCapacity());
for (auto it = paged_new_space->begin();
it != paged_new_space->end() &&
(paged_new_space->ShouldReleaseEmptyPage());) {
PageMetadata* page = *it++;
if (page->allocated_bytes() == 0) {
paged_new_space->ReleasePage(page);
} else {
// The number of live bytes should be zero, because at this point we're
// after a GC.
DCHECK_EQ(0, page->live_bytes());
// We set it to the number of allocated bytes, because FinishShrinking
// below expects that all pages have been swept and those that remain
// contain live bytes.
page->SetLiveBytes(page->allocated_bytes());
}
}
paged_new_space->FinishShrinking();
for (PageMetadata* page : *paged_new_space) {
// We reset the number of live bytes to zero, as is expected after a GC.
page->SetLiveBytes(0);
}
tracer->StopAtomicPause();
tracer->StopObservablePause(GarbageCollector::MARK_COMPACTOR,
base::TimeTicks::Now());
if (heap->cpp_heap()) {
using namespace cppgc::internal;
StatsCollector* stats_collector =
CppHeap::From(heap->cpp_heap())->stats_collector();
stats_collector->NotifyMarkingStarted(
CollectionType::kMajor, cppgc::Heap::MarkingType::kAtomic,
MarkingConfig::IsForcedGC::kNotForced);
stats_collector->NotifyMarkingCompleted(0);
stats_collector->NotifySweepingCompleted(
cppgc::Heap::SweepingType::kAtomic);
}
tracer->NotifyFullSweepingCompleted();
}
} // namespace
TEST_F(HeapTest, GrowAndShrinkNewSpace) {
if (v8_flags.single_generation) return;
{
ManualGCScope manual_gc_scope(i_isolate());
// Avoid shrinking new space in GC epilogue. This can happen if allocation
// throughput samples have been taken while executing the benchmark.
v8_flags.predictable = true;
v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace.
}
NewSpace* new_space = heap()->new_space();
if (heap()->MaxSemiSpaceSize() == heap()->InitialSemiSpaceSize()) {
return;
}
// Make sure we're in a consistent state to start out.
InvokeMajorGC();
InvokeMajorGC();
ShrinkNewSpace(new_space);
// Explicitly growing should double the space capacity.
size_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
GrowNewSpace();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(2 * old_capacity, new_capacity);
old_capacity = new_space->TotalCapacity();
{
v8::HandleScope temporary_scope(reinterpret_cast<v8::Isolate*>(isolate()));
SimulateFullSpace(new_space);
}
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
// Explicitly shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
ShrinkNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
// Let the scavenger empty the new space.
EmptyNewSpaceUsingGC();
CHECK_LE(new_space->Size(), old_capacity);
// Explicitly shrinking should halve the space capacity.
old_capacity = new_space->TotalCapacity();
ShrinkNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
if (v8_flags.minor_ms) {
// Shrinking may not be able to remove any pages if all contain live
// objects.
CHECK_GE(old_capacity, new_capacity);
} else {
CHECK_EQ(old_capacity, 2 * new_capacity);
}
// Consecutive shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
ShrinkNewSpace(new_space);
ShrinkNewSpace(new_space);
ShrinkNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
}
TEST_F(HeapTest, CollectingAllAvailableGarbageShrinksNewSpace) {
if (v8_flags.single_generation) return;
v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace.
if (heap()->MaxSemiSpaceSize() == heap()->InitialSemiSpaceSize()) {
return;
}
v8::Isolate* iso = reinterpret_cast<v8::Isolate*>(isolate());
v8::HandleScope scope(iso);
NewSpace* new_space = heap()->new_space();
size_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
GrowNewSpace();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(2 * old_capacity, new_capacity);
{
v8::HandleScope temporary_scope(iso);
SimulateFullSpace(new_space);
}
InvokeMemoryReducingMajorGCs();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
}
// Test that HAllocateObject will always return an object in new-space.
TEST_F(HeapTest, OptimizedAllocationAlwaysInNewSpace) {
if (v8_flags.single_generation) return;
v8_flags.allow_natives_syntax = true;
v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace.
if (!isolate()->use_optimizer() || v8_flags.always_turbofan) return;
if (v8_flags.gc_global || v8_flags.stress_compaction ||
v8_flags.stress_incremental_marking)
return;
v8::Isolate* iso = reinterpret_cast<v8::Isolate*>(isolate());
ManualGCScope manual_gc_scope(isolate());
v8::HandleScope scope(iso);
v8::Local<v8::Context> ctx = iso->GetCurrentContext();
SimulateFullSpace(heap()->new_space());
AlwaysAllocateScopeForTesting always_allocate(heap());
v8::Local<v8::Value> res = WithIsolateScopeMixin::RunJS(
"function c(x) {"
" this.x = x;"
" for (var i = 0; i < 32; i++) {"
" this['x' + i] = x;"
" }"
"}"
"function f(x) { return new c(x); };"
"%PrepareFunctionForOptimization(f);"
"f(1); f(2); f(3);"
"%OptimizeFunctionOnNextCall(f);"
"f(4);");
CHECK_EQ(4, res.As<v8::Object>()
->GetRealNamedProperty(ctx, NewString("x"))
.ToLocalChecked()
->Int32Value(ctx)
.FromJust());
i::DirectHandle<JSReceiver> o =
v8::Utils::OpenDirectHandle(*v8::Local<v8::Object>::Cast(res));
CHECK(HeapLayout::InYoungGeneration(*o));
}
namespace {
template <RememberedSetType direction>
static size_t GetRememberedSetSize(Tagged<HeapObject> obj) {
size_t count = 0;
auto chunk = MutablePageMetadata::FromHeapObject(obj);
RememberedSet<direction>::Iterate(
chunk,
[&count](MaybeObjectSlot slot) {
count++;
return KEEP_SLOT;
},
SlotSet::KEEP_EMPTY_BUCKETS);
return count;
}
} // namespace
TEST_F(HeapTest, RememberedSet_InsertOnPromotingObjectToOld) {
if (v8_flags.single_generation || v8_flags.stress_incremental_marking) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
v8_flags.scavenger_precise_object_pinning = false;
ManualGCScope manual_gc_scope(isolate());
Factory* factory = isolate()->factory();
Heap* heap = isolate()->heap();
SealCurrentObjects();
HandleScope handle_scope(isolate());
// Create a young object and age it one generation inside the new space.
IndirectHandle<FixedArray> arr = factory->NewFixedArray(1);
std::vector<Handle<FixedArray>> handles;
if (v8_flags.minor_ms) {
NewSpace* new_space = heap->new_space();
CHECK_NE(new_space->TotalCapacity(), new_space->MaximumCapacity());
// Fill current pages to force MinorMS to promote them.
SimulateFullSpace(new_space, &handles);
IsolateSafepointScope scope(heap);
// New empty pages should remain in new space.
heap->ExpandNewSpaceSizeForTesting();
CHECK(new_space->EnsureCurrentCapacity());
}
InvokeMinorGC();
CHECK(HeapLayout::InYoungGeneration(*arr));
// Add into 'arr' a reference to an object one generation younger.
{
HandleScope scope_inner(isolate());
DirectHandle<Object> number = factory->NewHeapNumber(42);
arr->set(0, *number);
}
// Promote 'arr' into old, its element is still in new, the old to new
// refs are inserted into the remembered sets during GC.
{
// CSS prevents promoting objects to old space.
DisableConservativeStackScanningScopeForTesting no_stack_scanning(heap);
InvokeMinorGC();
}
heap->EnsureSweepingCompleted(Heap::SweepingForcedFinalizationMode::kV8Only);
CHECK(heap->InOldSpace(*arr));
CHECK(HeapLayout::InYoungGeneration(arr->get(0)));
if (v8_flags.minor_ms) {
CHECK_EQ(1, GetRememberedSetSize<OLD_TO_NEW_BACKGROUND>(*arr));
} else {
CHECK_EQ(1, GetRememberedSetSize<OLD_TO_NEW>(*arr));
}
}
TEST_F(HeapTest, Regress978156) {
if (!v8_flags.incremental_marking) return;
if (v8_flags.single_generation) return;
ManualGCScope manual_gc_scope(isolate());
HandleScope handle_scope(isolate());
Heap* heap = isolate()->heap();
// 1. Ensure that the new space is empty.
EmptyNewSpaceUsingGC();
// 2. Fill the new space with FixedArrays.
std::vector<Handle<FixedArray>> arrays;
SimulateFullSpace(heap->new_space(), &arrays);
// 3. Trim the last array by one word thus creating a one-word filler.
DirectHandle<FixedArray> last = arrays.back();
CHECK_GT(last->length(), 0);
heap->RightTrimArray(*last, last->length() - 1, last->length());
// 4. Get the last filler on the page.
Tagged<HeapObject> filler = HeapObject::FromAddress(
MutablePageMetadata::FromHeapObject(*last)->area_end() - kTaggedSize);
HeapObject::FromAddress(last->address() + last->Size());
CHECK(IsFiller(filler));
// 5. Start incremental marking.
i::IncrementalMarking* marking = heap->incremental_marking();
if (marking->IsStopped()) {
IsolateSafepointScope scope(heap);
heap->tracer()->StartCycle(
GarbageCollector::MARK_COMPACTOR, GarbageCollectionReason::kTesting,
"collector cctest", GCTracer::MarkingType::kIncremental);
marking->Start(GarbageCollector::MARK_COMPACTOR,
i::GarbageCollectionReason::kTesting);
}
// 6. Mark the filler black to access its two markbits. This triggers
// an out-of-bounds access of the marking bitmap in a bad case.
heap->marking_state()->TryMarkAndAccountLiveBytes(filler);
}
TEST_F(HeapTest, SemiSpaceNewSpaceGrowsDuringFullGCIncrementalMarking) {
if (!v8_flags.incremental_marking) return;
if (v8_flags.single_generation) return;
if (v8_flags.minor_ms) return;
v8_flags.separate_gc_phases = true;
ManualGCScope manual_gc_scope(isolate());
HandleScope handle_scope(isolate());
Heap* heap = isolate()->heap();
// 1. Record gc_count and last scavenger epoch.
auto gc_count = heap->gc_count();
auto last_scavenger_epoch =
heap->tracer()->CurrentEpoch(GCTracer::Scope::ScopeId::SCAVENGER);
// 2. Fill the new space with FixedArrays.
std::vector<Handle<FixedArray>> arrays;
SimulateFullSpace(heap->new_space(), &arrays);
CHECK_EQ(0, heap->new_space()->Available());
AllocationResult failed_allocation = heap->allocator()->AllocateRaw(
2 * kTaggedSize, AllocationType::kYoung, AllocationOrigin::kRuntime);
EXPECT_TRUE(failed_allocation.IsFailure());
// 3. Start incremental marking.
i::IncrementalMarking* marking = heap->incremental_marking();
CHECK(marking->IsStopped());
{
IsolateSafepointScope scope(heap);
heap->tracer()->StartCycle(GarbageCollector::MARK_COMPACTOR,
GarbageCollectionReason::kTesting, "tesing",
GCTracer::MarkingType::kIncremental);
marking->Start(GarbageCollector::MARK_COMPACTOR,
i::GarbageCollectionReason::kTesting);
}
// 4. Allocate in new space.
AllocationResult allocation = heap->allocator()->AllocateRaw(
2 * kTaggedSize, AllocationType::kYoung, AllocationOrigin::kRuntime);
EXPECT_FALSE(allocation.IsFailure());
// 5. Allocation should succeed without triggering a GC.
EXPECT_EQ(gc_count, heap->gc_count());
EXPECT_EQ(last_scavenger_epoch,
heap->tracer()->CurrentEpoch(GCTracer::Scope::ScopeId::SCAVENGER));
}
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
namespace {
struct RandomGCIntervalTestSetter {
RandomGCIntervalTestSetter() {
static constexpr int kInterval = 87;
v8_flags.random_gc_interval = kInterval;
}
~RandomGCIntervalTestSetter() { v8_flags.random_gc_interval = 0; }
};
struct HeapTestWithRandomGCInterval : RandomGCIntervalTestSetter, HeapTest {};
} // namespace
TEST_F(HeapTestWithRandomGCInterval, AllocationTimeout) {
if (v8_flags.stress_incremental_marking) return;
if (v8_flags.stress_concurrent_allocation) return;
auto* allocator = heap()->allocator();
// Invoke major GC to cause the timeout to be updated.
InvokeMajorGC();
const int initial_allocation_timeout =
allocator->get_allocation_timeout_for_testing().value_or(0);
ASSERT_GT(initial_allocation_timeout, 0);
for (int i = 0; i < initial_allocation_timeout - 1; ++i) {
AllocationResult allocation = allocator->AllocateRaw(
2 * kTaggedSize, AllocationType::kYoung, AllocationOrigin::kRuntime);
EXPECT_FALSE(allocation.IsFailure());
}
// The last allocation must fail.
AllocationResult allocation = allocator->AllocateRaw(
2 * kTaggedSize, AllocationType::kYoung, AllocationOrigin::kRuntime);
EXPECT_TRUE(allocation.IsFailure());
}
#endif // V8_ENABLE_ALLOCATION_TIMEOUT
namespace {
struct CompactionDisabler {
CompactionDisabler() : was_enabled_(v8_flags.compact) {
v8_flags.compact = false;
}
~CompactionDisabler() {
if (was_enabled_) {
v8_flags.compact = true;
}
}
const bool was_enabled_;
};
} // namespace
TEST_F(HeapTest, BlackAllocatedPages) {
if (!v8_flags.black_allocated_pages) return;
if (!v8_flags.incremental_marking) return;
// Disable compaction to test that the FreeListCategories of black allocated
// pages are not reset.
CompactionDisabler disable_compaction;
Isolate* iso = isolate();
ManualGCScope manual_gc_scope(iso);
auto in_free_list = [](PageMetadata* page, Address address) {
bool found = false;
page->ForAllFreeListCategories(
[address, &found](FreeListCategory* category) {
category->IterateNodesForTesting(
[address, &found](Tagged<FreeSpace> node) {
if (!found) found = node.address() == address;
});
});
return found;
};
Heap* heap = iso->heap();
SimulateFullSpace(heap->old_space());
// Allocate an object on a new page.
HandleScope scope(iso);
DirectHandle<FixedArray> arr =
iso->factory()->NewFixedArray(1, AllocationType::kOld);
Address next = arr->address() + arr->Size();
// Assert that the next address is in the lab.
const Address lab_top = heap->allocator()->old_space_allocator()->top();
ASSERT_EQ(lab_top, next);
auto* page = PageMetadata::FromAddress(next);
const size_t wasted_before_incremental_marking_start = page->wasted_memory();
heap->StartIncrementalMarking(
GCFlag::kNoFlags, GarbageCollectionReason::kTesting,
GCCallbackFlags::kNoGCCallbackFlags, GarbageCollector::MARK_COMPACTOR);
// Expect the free-space object is created.
auto freed = HeapObject::FromAddress(next);
EXPECT_TRUE(IsFreeSpaceOrFiller(freed));
// The free-space object must be accounted as wasted.
EXPECT_EQ(wasted_before_incremental_marking_start + freed->Size(),
page->wasted_memory());
// Check that the free-space object is not in freelist.
EXPECT_FALSE(in_free_list(page, next));
// The page allocated before incremental marking is not black.
EXPECT_FALSE(page->Chunk()->IsFlagSet(MemoryChunk::BLACK_ALLOCATED));
// Allocate a new object on a BLACK_ALLOCATED page.
arr = iso->factory()->NewFixedArray(1, AllocationType::kOld);
next = arr->address() + arr->Size();
// Expect the page to be black.
page = PageMetadata::FromHeapObject(*arr);
EXPECT_TRUE(page->Chunk()->IsFlagSet(MemoryChunk::BLACK_ALLOCATED));
// Invoke GC.
InvokeMajorGC();
// The page is not black now.
EXPECT_FALSE(page->Chunk()->IsFlagSet(MemoryChunk::BLACK_ALLOCATED));
// After the GC the next free-space object must be in freelist.
EXPECT_TRUE(in_free_list(page, next));
}
TEST_F(HeapTest, ContainsSlow) {
Isolate* iso = isolate();
ManualGCScope manual_gc_scope(iso);
Heap* heap = iso->heap();
SimulateFullSpace(heap->old_space());
// Allocate an object on a new page.
HandleScope scope(iso);
DirectHandle<FixedArray> arr =
iso->factory()->NewFixedArray(1, AllocationType::kOld);
CHECK(heap->old_space()->ContainsSlow(arr->address()));
CHECK(heap->old_space()->ContainsSlow(
MemoryChunk::FromAddress(arr->address())->address()));
CHECK(!heap->old_space()->ContainsSlow(0));
DirectHandle<FixedArray> large_arr = iso->factory()->NewFixedArray(
kMaxRegularHeapObjectSize + 1, AllocationType::kOld);
CHECK(heap->lo_space()->ContainsSlow(large_arr->address()));
CHECK(heap->lo_space()->ContainsSlow(
MemoryChunk::FromAddress(large_arr->address())->address()));
CHECK(!heap->lo_space()->ContainsSlow(0));
}
#if defined(V8_COMPRESS_POINTERS) && defined(V8_ENABLE_SANDBOX)
TEST_F(HeapTest, Regress364396306) {
if (v8_flags.single_generation) return;
if (v8_flags.separate_gc_phases) return;
if (v8_flags.minor_ms) return;
auto* iso = i_isolate();
auto* heap = iso->heap();
auto* space = heap->young_external_pointer_space();
ManualGCScope manual_gc_scope(iso);
int* external_int = new int;
{
{
// Almost fill a segment with unreachable entries. Leave behind one unused
// entry.
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(iso));
do {
iso->factory()->NewExternal(external_int);
} while (space->freelist_length() > 1);
}
{
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(iso));
// Allocate one reachable entry on the same segment to prevent discarding
// the segment.
iso->factory()->NewExternal(external_int);
CHECK_EQ(1, space->NumSegmentsForTesting());
// Allocate an entry on a new segment that will later be evacuated.
DirectHandle<JSObject> to_be_evacuated =
iso->factory()->NewExternal(external_int);
CHECK_EQ(2, space->NumSegmentsForTesting());
CHECK(HeapLayout::InYoungGeneration(*to_be_evacuated));
// Unmark to-be-evacuated entry and populate the freelist.
InvokeMinorGC();
CHECK(HeapLayout::InYoungGeneration(*to_be_evacuated));
// Set up a global to make sure `to_be_evacuated` is visited before the
// atomic pause.
Global<JSObject> global_to_be_evacuated(
v8_isolate(), Utils::Convert<JSObject, JSObject>(to_be_evacuated));
// Make sure compaction is enabled for the space so that an evacuation
// entry is created for `to_be_evacuated`.
bool old_stress_compaction_flag =
std::exchange(v8_flags.stress_compaction, true);
heap->StartIncrementalMarking(GCFlag::kNoFlags,
GarbageCollectionReason::kTesting);
// Finish all available marking work to make sure the to-be-evacuated
// entry is already marked.
heap->incremental_marking()->AdvanceForTesting(
v8::base::TimeDelta::Max());
// Reset the `stress_compaction` flag. If it remains enabled, the minor
// GCs below will be overriden with full GCs.
v8_flags.stress_compaction = old_stress_compaction_flag;
}
// The to-be-evacuated entry is no longer reachable. Scavenger will override
// the evacuation entry with a null address.
InvokeMinorGC();
// Iterating over segments again should not crash because of the null
// address set by the previous Scavenger.
InvokeMinorGC();
}
// Finalize the incremental GC so there are no references to `external_int`
// before we free it.
InvokeMajorGC();
delete external_int;
}
#endif // defined(V8_COMPRESS_POINTERS) && defined(V8_ENABLE_SANDBOX)
TEST_F(HeapTest,
PinningScavengerDoesntMoveObjectReachableFromStackNoPromotion) {
if (v8_flags.single_generation) return;
if (v8_flags.minor_ms) return;
v8_flags.scavenger_conservative_object_pinning = true;
v8_flags.scavenger_precise_object_pinning = false;
v8_flags.scavenger_promote_quarantined_pages = false;
ManualGCScope manual_gc_scope(isolate());
IndirectHandle<HeapObject> number =
isolate()->factory()->NewHeapNumber<AllocationType::kYoung>(42);
// The conservative stack visitor will find this on the stack, so `number`
// will not move during GCs with stack.
Address number_address = number->address();
CHECK(HeapLayout::InYoungGeneration(*number));
for (int i = 0; i < 10; i++) {
InvokeMinorGC();
CHECK(HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
}
// `number` is already in the intermediate generation. A stackless GC should
// now evacuate the object to the old generation.
{
DisableConservativeStackScanningScopeForTesting no_stack_scanning(
isolate()->heap());
InvokeMinorGC();
}
CHECK(!HeapLayout::InYoungGeneration(*number));
CHECK_NE(number_address, number->address());
}
TEST_F(HeapTest, PinningScavengerDoesntMoveObjectReachableFromStack) {
if (v8_flags.single_generation) return;
if (v8_flags.minor_ms) return;
v8_flags.scavenger_conservative_object_pinning = true;
v8_flags.scavenger_precise_object_pinning = false;
v8_flags.scavenger_promote_quarantined_pages = true;
ManualGCScope manual_gc_scope(isolate());
IndirectHandle<HeapObject> number =
isolate()->factory()->NewHeapNumber<AllocationType::kYoung>(42);
// The conservative stack visitor will find this on the stack, so `number`
// will not move during a GC with stack.
Address number_address = number->address();
CHECK(HeapLayout::InYoungGeneration(*number));
InvokeMinorGC();
CHECK(HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
// `number` is already in the intermediate generation. Another GC should
// now promote the page to the old generation, again not moving the object.
InvokeMinorGC();
CHECK(!HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
}
TEST_F(HeapTest, PinningScavengerObjectWithSelfReference) {
if (v8_flags.single_generation) return;
if (v8_flags.minor_ms) return;
v8_flags.scavenger_conservative_object_pinning = true;
ManualGCScope manual_gc_scope(isolate());
static constexpr int kArraySize = 10;
DirectHandle<FixedArray> array =
isolate()->factory()->NewFixedArray(kArraySize, AllocationType::kYoung);
CHECK(HeapLayout::InYoungGeneration(*array));
for (int i = 0; i < kArraySize; i++) {
array->set(i, *array);
}
InvokeMinorGC();
}
TEST_F(HeapTest,
PrecisePinningScavengerDoesntMoveObjectReachableFromHandlesNoPromotion) {
if (v8_flags.single_generation) return;
if (v8_flags.minor_ms) return;
v8_flags.scavenger_precise_object_pinning = true;
v8_flags.scavenger_conservative_object_pinning = false;
v8_flags.scavenger_promote_quarantined_pages = false;
ManualGCScope manual_gc_scope(isolate());
v8::HandleScope handle_scope(reinterpret_cast<v8::Isolate*>(isolate()));
IndirectHandle<HeapObject> number =
isolate()->factory()->NewHeapNumber<AllocationType::kYoung>(42);
Address number_address = number->address();
CHECK(HeapLayout::InYoungGeneration(*number));
for (int i = 0; i < 10; i++) {
InvokeMinorGC();
CHECK(HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
}
}
TEST_F(HeapTest, PrecisePinningScavengerDoesntMoveObjectReachableFromHandles) {
if (v8_flags.single_generation) return;
if (v8_flags.minor_ms) return;
v8_flags.scavenger_precise_object_pinning = true;
v8_flags.scavenger_conservative_object_pinning = false;
v8_flags.scavenger_promote_quarantined_pages = true;
ManualGCScope manual_gc_scope(isolate());
v8::HandleScope handle_scope(reinterpret_cast<v8::Isolate*>(isolate()));
IndirectHandle<HeapObject> number =
isolate()->factory()->NewHeapNumber<AllocationType::kYoung>(42);
Address number_address = number->address();
CHECK(HeapLayout::InYoungGeneration(*number));
InvokeMinorGC();
CHECK(HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
// `number` is already in the intermediate generation. Another GC should
// now move it to old gen.
InvokeMinorGC();
CHECK(!HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
}
TEST_F(HeapTest,
PrecisePinningFullGCDoesntMoveYoungObjectReachableFromHandles) {
if (v8_flags.single_generation) return;
v8_flags.precise_object_pinning = true;
ManualGCScope manual_gc_scope(isolate());
v8::HandleScope handle_scope(reinterpret_cast<v8::Isolate*>(isolate()));
IndirectHandle<HeapObject> number =
isolate()->factory()->NewHeapNumber<AllocationType::kYoung>(42);
Address number_address = number->address();
CHECK(HeapLayout::InYoungGeneration(*number));
InvokeMajorGC();
CHECK(!HeapLayout::InYoungGeneration(*number));
CHECK_EQ(number_address, number->address());
}
TEST_F(HeapTest, PrecisePinningFullGCDoesntMoveOldObjectReachableFromHandles) {
v8_flags.precise_object_pinning = true;
v8_flags.manual_evacuation_candidates_selection = true;
ManualGCScope manual_gc_scope(isolate());
v8::HandleScope handle_scope(reinterpret_cast<v8::Isolate*>(isolate()));
IndirectHandle<HeapObject> number =
isolate()->factory()->NewHeapNumber<AllocationType::kOld>(42);
CHECK(!HeapLayout::InYoungGeneration(*number));
Address number_address = number->address();
i::MemoryChunk::FromHeapObject(*number)->SetFlagNonExecutable(
i::MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
InvokeMajorGC();
CHECK_EQ(number_address, number->address());
}
} // namespace internal
} // namespace v8