761 lines
29 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jfr/jfrEvents.hpp"
#include "jvm_io.h"
#include "memory/allocation.inline.hpp"
#include "runtime/arguments.hpp"
#include "runtime/flags/jvmFlag.hpp"
#include "runtime/flags/jvmFlagAccess.hpp"
#include "runtime/flags/jvmFlagLookup.hpp"
#include "runtime/globals_extension.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/stringUtils.hpp"
static bool is_product_build() {
#ifdef PRODUCT
return true;
#else
return false;
#endif
}
void JVMFlag::set_origin(JVMFlagOrigin new_origin) {
int old_flags = _flags;
int origin = static_cast<int>(new_origin);
assert((origin & VALUE_ORIGIN_MASK) == origin, "sanity");
int was_in_cmdline = (new_origin == JVMFlagOrigin::COMMAND_LINE) ? WAS_SET_ON_COMMAND_LINE : 0;
_flags = Flags((_flags & ~VALUE_ORIGIN_MASK) | origin | was_in_cmdline);
if ((old_flags & WAS_SET_ON_COMMAND_LINE) != 0) {
assert((_flags & WAS_SET_ON_COMMAND_LINE) != 0, "once initialized, should never change");
}
}
/**
* Returns if this flag is a constant in the binary. Right now this is
* true for notproduct and develop flags in product builds.
*/
bool JVMFlag::is_constant_in_binary() const {
#ifdef PRODUCT
return is_notproduct() || is_develop();
#else
return false;
#endif
}
bool JVMFlag::is_unlocker() const {
return strcmp(_name, "UnlockDiagnosticVMOptions") == 0 ||
strcmp(_name, "UnlockExperimentalVMOptions") == 0;
}
bool JVMFlag::is_unlocked() const {
if (is_diagnostic()) {
return UnlockDiagnosticVMOptions;
}
if (is_experimental()) {
return UnlockExperimentalVMOptions;
}
return true;
}
void JVMFlag::clear_diagnostic() {
assert(is_diagnostic(), "sanity");
_flags = Flags(_flags & ~KIND_DIAGNOSTIC);
assert(!is_diagnostic(), "sanity");
}
void JVMFlag::clear_experimental() {
assert(is_experimental(), "sanity");
_flags = Flags(_flags & ~KIND_EXPERIMENTAL);
assert(!is_experimental(), "sanity");
}
void JVMFlag::set_product() {
assert(!is_product(), "sanity");
_flags = Flags(_flags | KIND_PRODUCT);
assert(is_product(), "sanity");
}
// Get custom message for this locked flag, or NULL if
// none is available. Returns message type produced.
JVMFlag::MsgType JVMFlag::get_locked_message(char* buf, int buflen) const {
buf[0] = '\0';
if (is_diagnostic() && !is_unlocked()) {
jio_snprintf(buf, buflen,
"Error: VM option '%s' is diagnostic and must be enabled via -XX:+UnlockDiagnosticVMOptions.\n"
"Error: The unlock option must precede '%s'.\n",
_name, _name);
return JVMFlag::DIAGNOSTIC_FLAG_BUT_LOCKED;
}
if (is_experimental() && !is_unlocked()) {
jio_snprintf(buf, buflen,
"Error: VM option '%s' is experimental and must be enabled via -XX:+UnlockExperimentalVMOptions.\n"
"Error: The unlock option must precede '%s'.\n",
_name, _name);
return JVMFlag::EXPERIMENTAL_FLAG_BUT_LOCKED;
}
if (is_develop() && is_product_build()) {
jio_snprintf(buf, buflen, "Error: VM option '%s' is develop and is available only in debug version of VM.\n",
_name);
return JVMFlag::DEVELOPER_FLAG_BUT_PRODUCT_BUILD;
}
if (is_notproduct() && is_product_build()) {
jio_snprintf(buf, buflen, "Error: VM option '%s' is notproduct and is available only in debug version of VM.\n",
_name);
return JVMFlag::NOTPRODUCT_FLAG_BUT_PRODUCT_BUILD;
}
return JVMFlag::NONE;
}
// Helper function for JVMFlag::print_on().
// Fills current line up to requested position.
// Should the current position already be past the requested position,
// one separator blank is enforced.
void fill_to_pos(outputStream* st, unsigned int req_pos) {
if ((unsigned int)st->position() < req_pos) {
st->fill_to(req_pos); // need to fill with blanks to reach req_pos
} else {
st->print(" "); // enforce blank separation. Previous field too long.
}
}
void JVMFlag::print_on(outputStream* st, bool withComments, bool printRanges) const {
// Don't print notproduct and develop flags in a product build.
if (is_constant_in_binary()) {
return;
}
if (!printRanges) {
// The command line options -XX:+PrintFlags* cause this function to be called
// for each existing flag to print information pertinent to this flag. The data
// is displayed in columnar form, with the following layout:
// col1 - data type, right-justified
// col2 - name, left-justified
// col3 - ' =' double-char, leading space to align with possible '+='
// col4 - value left-justified
// col5 - kind right-justified
// col6 - origin left-justified
// col7 - comments left-justified
//
// The column widths are fixed. They are defined such that, for most cases,
// an eye-pleasing tabular output is created.
//
// Sample output:
// bool ThreadPriorityVerbose = false {product} {default}
// uintx ThresholdTolerance = 10 {product} {default}
// size_t TLABSize = 0 {product} {default}
// uintx SurvivorRatio = 8 {product} {default}
// double InitialRAMPercentage = 1.562500 {product} {default}
// ccstr CompileCommandFile = MyFile.cmd {product} {command line}
// ccstrlist CompileOnly = Method1
// CompileOnly += Method2 {product} {command line}
// | | | | | | |
// | | | | | | +-- col7
// | | | | | +-- col6
// | | | | +-- col5
// | | | +-- col4
// | | +-- col3
// | +-- col2
// +-- col1
const unsigned int col_spacing = 1;
const unsigned int col1_pos = 0;
const unsigned int col1_width = 9;
const unsigned int col2_pos = col1_pos + col1_width + col_spacing;
const unsigned int col2_width = 39;
const unsigned int col3_pos = col2_pos + col2_width + col_spacing;
const unsigned int col3_width = 2;
const unsigned int col4_pos = col3_pos + col3_width + col_spacing;
const unsigned int col4_width = 30;
const unsigned int col5_pos = col4_pos + col4_width + col_spacing;
const unsigned int col5_width = 20;
const unsigned int col6_pos = col5_pos + col5_width + col_spacing;
const unsigned int col6_width = 15;
const unsigned int col7_pos = col6_pos + col6_width + col_spacing;
const unsigned int col7_width = 1;
st->fill_to(col1_pos);
st->print("%*s", col1_width, type_string()); // right-justified, therefore width is required.
fill_to_pos(st, col2_pos);
st->print("%s", _name);
fill_to_pos(st, col3_pos);
st->print(" ="); // use " =" for proper alignment with multiline ccstr output.
fill_to_pos(st, col4_pos);
if (is_bool()) {
st->print("%s", get_bool() ? "true" : "false");
} else if (is_int()) {
st->print("%d", get_int());
} else if (is_uint()) {
st->print("%u", get_uint());
} else if (is_intx()) {
st->print(INTX_FORMAT, get_intx());
} else if (is_uintx()) {
st->print(UINTX_FORMAT, get_uintx());
} else if (is_uint64_t()) {
st->print(UINT64_FORMAT, get_uint64_t());
} else if (is_size_t()) {
st->print(SIZE_FORMAT, get_size_t());
} else if (is_double()) {
st->print("%f", get_double());
} else if (is_ccstr()) {
// Honor <newline> characters in ccstr: print multiple lines.
const char* cp = get_ccstr();
if (cp != NULL) {
const char* eol;
while ((eol = strchr(cp, '\n')) != NULL) {
size_t llen = pointer_delta(eol, cp, sizeof(char));
st->print("%.*s", (int)llen, cp);
st->cr();
cp = eol+1;
fill_to_pos(st, col2_pos);
st->print("%s", _name);
fill_to_pos(st, col3_pos);
st->print("+=");
fill_to_pos(st, col4_pos);
}
st->print("%s", cp);
}
} else {
st->print("unhandled type %s", type_string());
st->cr();
return;
}
fill_to_pos(st, col5_pos);
print_kind(st, col5_width);
fill_to_pos(st, col6_pos);
print_origin(st, col6_width);
#ifndef PRODUCT
if (withComments) {
fill_to_pos(st, col7_pos);
st->print("%s", _doc);
}
#endif
st->cr();
} else if (!is_bool() && !is_ccstr()) {
// The command line options -XX:+PrintFlags* cause this function to be called
// for each existing flag to print information pertinent to this flag. The data
// is displayed in columnar form, with the following layout:
// col1 - data type, right-justified
// col2 - name, left-justified
// col4 - range [ min ... max]
// col5 - kind right-justified
// col6 - origin left-justified
// col7 - comments left-justified
//
// The column widths are fixed. They are defined such that, for most cases,
// an eye-pleasing tabular output is created.
//
// Sample output:
// intx MinPassesBeforeFlush [ 0 ... 9223372036854775807 ] {diagnostic} {default}
// uintx MinRAMFraction [ 1 ... 18446744073709551615 ] {product} {default}
// double MinRAMPercentage [ 0.000 ... 100.000 ] {product} {default}
// uintx MinSurvivorRatio [ 3 ... 18446744073709551615 ] {product} {default}
// size_t MinTLABSize [ 1 ... 9223372036854775807 ] {product} {default}
// intx MaxInlineSize [ 0 ... 2147483647 ] {product} {default}
// | | | | | |
// | | | | | +-- col7
// | | | | +-- col6
// | | | +-- col5
// | | +-- col4
// | +-- col2
// +-- col1
const unsigned int col_spacing = 1;
const unsigned int col1_pos = 0;
const unsigned int col1_width = 9;
const unsigned int col2_pos = col1_pos + col1_width + col_spacing;
const unsigned int col2_width = 49;
const unsigned int col3_pos = col2_pos + col2_width + col_spacing;
const unsigned int col3_width = 0;
const unsigned int col4_pos = col3_pos + col3_width + col_spacing;
const unsigned int col4_width = 60;
const unsigned int col5_pos = col4_pos + col4_width + col_spacing;
const unsigned int col5_width = 35;
const unsigned int col6_pos = col5_pos + col5_width + col_spacing;
const unsigned int col6_width = 15;
const unsigned int col7_pos = col6_pos + col6_width + col_spacing;
const unsigned int col7_width = 1;
st->fill_to(col1_pos);
st->print("%*s", col1_width, type_string()); // right-justified, therefore width is required.
fill_to_pos(st, col2_pos);
st->print("%s", _name);
fill_to_pos(st, col4_pos);
JVMFlagAccess::print_range(st, this);
fill_to_pos(st, col5_pos);
print_kind(st, col5_width);
fill_to_pos(st, col6_pos);
print_origin(st, col6_width);
#ifndef PRODUCT
if (withComments) {
fill_to_pos(st, col7_pos);
st->print("%s", _doc);
}
#endif
st->cr();
}
}
void JVMFlag::print_kind(outputStream* st, unsigned int width) const {
struct Data {
int flag;
const char* name;
};
Data data[] = {
{ KIND_JVMCI, "JVMCI" },
{ KIND_C1, "C1" },
{ KIND_C2, "C2" },
{ KIND_ARCH, "ARCH" },
{ KIND_PLATFORM_DEPENDENT, "pd" },
{ KIND_PRODUCT, "product" },
{ KIND_MANAGEABLE, "manageable" },
{ KIND_DIAGNOSTIC, "diagnostic" },
{ KIND_EXPERIMENTAL, "experimental" },
{ KIND_NOT_PRODUCT, "notproduct" },
{ KIND_DEVELOP, "develop" },
{ KIND_LP64_PRODUCT, "lp64_product" },
{ -1, "" }
};
if ((_flags & KIND_MASK) != 0) {
bool is_first = true;
const size_t buffer_size = 64;
size_t buffer_used = 0;
char kind[buffer_size];
jio_snprintf(kind, buffer_size, "{");
buffer_used++;
for (int i = 0; data[i].flag != -1; i++) {
Data d = data[i];
if ((_flags & d.flag) != 0) {
if (is_first) {
is_first = false;
} else {
assert(buffer_used + 1 < buffer_size, "Too small buffer");
jio_snprintf(kind + buffer_used, buffer_size - buffer_used, " ");
buffer_used++;
}
size_t length = strlen(d.name);
assert(buffer_used + length < buffer_size, "Too small buffer");
jio_snprintf(kind + buffer_used, buffer_size - buffer_used, "%s", d.name);
buffer_used += length;
}
}
assert(buffer_used + 2 <= buffer_size, "Too small buffer");
jio_snprintf(kind + buffer_used, buffer_size - buffer_used, "}");
st->print("%*s", width, kind);
}
}
void JVMFlag::print_origin(outputStream* st, unsigned int width) const {
st->print("{");
switch(get_origin()) {
case JVMFlagOrigin::DEFAULT:
st->print("default"); break;
case JVMFlagOrigin::COMMAND_LINE:
st->print("command line"); break;
case JVMFlagOrigin::ENVIRON_VAR:
st->print("environment"); break;
case JVMFlagOrigin::CONFIG_FILE:
st->print("config file"); break;
case JVMFlagOrigin::MANAGEMENT:
st->print("management"); break;
case JVMFlagOrigin::ERGONOMIC:
if (_flags & WAS_SET_ON_COMMAND_LINE) {
st->print("command line, ");
}
st->print("ergonomic"); break;
case JVMFlagOrigin::ATTACH_ON_DEMAND:
st->print("attach"); break;
case JVMFlagOrigin::INTERNAL:
st->print("internal"); break;
case JVMFlagOrigin::JIMAGE_RESOURCE:
st->print("jimage"); break;
}
st->print("}");
}
void JVMFlag::print_as_flag(outputStream* st) const {
if (is_bool()) {
st->print("-XX:%s%s", get_bool() ? "+" : "-", _name);
} else if (is_int()) {
st->print("-XX:%s=%d", _name, get_int());
} else if (is_uint()) {
st->print("-XX:%s=%u", _name, get_uint());
} else if (is_intx()) {
st->print("-XX:%s=" INTX_FORMAT, _name, get_intx());
} else if (is_uintx()) {
st->print("-XX:%s=" UINTX_FORMAT, _name, get_uintx());
} else if (is_uint64_t()) {
st->print("-XX:%s=" UINT64_FORMAT, _name, get_uint64_t());
} else if (is_size_t()) {
st->print("-XX:%s=" SIZE_FORMAT, _name, get_size_t());
} else if (is_double()) {
st->print("-XX:%s=%f", _name, get_double());
} else if (is_ccstr()) {
st->print("-XX:%s=", _name);
const char* cp = get_ccstr();
if (cp != NULL) {
// Need to turn embedded '\n's back into separate arguments
// Not so efficient to print one character at a time,
// but the choice is to do the transformation to a buffer
// and print that. And this need not be efficient.
for (; *cp != '\0'; cp += 1) {
switch (*cp) {
default:
st->print("%c", *cp);
break;
case '\n':
st->print(" -XX:%s=", _name);
break;
}
}
}
} else {
ShouldNotReachHere();
}
}
const char* JVMFlag::flag_error_str(JVMFlag::Error error) {
switch (error) {
case JVMFlag::MISSING_NAME: return "MISSING_NAME";
case JVMFlag::MISSING_VALUE: return "MISSING_VALUE";
case JVMFlag::NON_WRITABLE: return "NON_WRITABLE";
case JVMFlag::OUT_OF_BOUNDS: return "OUT_OF_BOUNDS";
case JVMFlag::VIOLATES_CONSTRAINT: return "VIOLATES_CONSTRAINT";
case JVMFlag::INVALID_FLAG: return "INVALID_FLAG";
case JVMFlag::ERR_OTHER: return "ERR_OTHER";
case JVMFlag::SUCCESS: return "SUCCESS";
default: ShouldNotReachHere(); return "NULL";
}
}
//----------------------------------------------------------------------
// Build flagTable[]
// Find out the number of LP64/ARCH/JVMCI/COMPILER1/COMPILER2 flags,
// for JVMFlag::flag_group()
#define ENUM_F(type, name, ...) enum_##name,
#define IGNORE_F(...)
// dev dev-pd pro pro-pd notpro range constraint
enum FlagCounter_LP64 { LP64_RUNTIME_FLAGS( ENUM_F, ENUM_F, ENUM_F, ENUM_F, ENUM_F, IGNORE_F, IGNORE_F) num_flags_LP64 };
enum FlagCounter_ARCH { ARCH_FLAGS( ENUM_F, ENUM_F, ENUM_F, IGNORE_F, IGNORE_F) num_flags_ARCH };
enum FlagCounter_JVMCI { JVMCI_ONLY(JVMCI_FLAGS( ENUM_F, ENUM_F, ENUM_F, ENUM_F, ENUM_F, IGNORE_F, IGNORE_F)) num_flags_JVMCI };
enum FlagCounter_C1 { COMPILER1_PRESENT(C1_FLAGS(ENUM_F, ENUM_F, ENUM_F, ENUM_F, ENUM_F, IGNORE_F, IGNORE_F)) num_flags_C1 };
enum FlagCounter_C2 { COMPILER2_PRESENT(C2_FLAGS(ENUM_F, ENUM_F, ENUM_F, ENUM_F, ENUM_F, IGNORE_F, IGNORE_F)) num_flags_C2 };
const int first_flag_enum_LP64 = 0;
const int first_flag_enum_ARCH = first_flag_enum_LP64 + num_flags_LP64;
const int first_flag_enum_JVMCI = first_flag_enum_ARCH + num_flags_ARCH;
const int first_flag_enum_C1 = first_flag_enum_JVMCI + num_flags_JVMCI;
const int first_flag_enum_C2 = first_flag_enum_C1 + num_flags_C1;
const int first_flag_enum_other = first_flag_enum_C2 + num_flags_C2;
static constexpr int flag_group(int flag_enum) {
if (flag_enum < first_flag_enum_ARCH) return JVMFlag::KIND_LP64_PRODUCT;
if (flag_enum < first_flag_enum_JVMCI) return JVMFlag::KIND_ARCH;
if (flag_enum < first_flag_enum_C1) return JVMFlag::KIND_JVMCI;
if (flag_enum < first_flag_enum_C2) return JVMFlag::KIND_C1;
if (flag_enum < first_flag_enum_other) return JVMFlag::KIND_C2;
return 0;
}
constexpr JVMFlag::JVMFlag(int flag_enum, FlagType type, const char* name,
void* addr, int flags, int extra_flags, const char* doc) :
_addr(addr), _name(name), _flags(), _type(type) NOT_PRODUCT(COMMA _doc(doc)) {
flags = flags | extra_flags | static_cast<int>(JVMFlagOrigin::DEFAULT) | flag_group(flag_enum);
if ((flags & JVMFlag::KIND_PRODUCT) != 0) {
if (flags & (JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_MANAGEABLE | JVMFlag::KIND_EXPERIMENTAL)) {
// Backwards compatibility. This will be relaxed in JDK-7123237.
flags &= ~(JVMFlag::KIND_PRODUCT);
}
}
_flags = static_cast<Flags>(flags);
}
constexpr JVMFlag::JVMFlag(int flag_enum, FlagType type, const char* name,
void* addr, int flags, const char* doc) :
JVMFlag(flag_enum, type, name, addr, flags, /*extra_flags*/0, doc) {}
const int PRODUCT_KIND = JVMFlag::KIND_PRODUCT;
const int PRODUCT_KIND_PD = JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT;
const int DEVELOP_KIND = JVMFlag::KIND_DEVELOP;
const int DEVELOP_KIND_PD = JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT;
const int NOTPROD_KIND = JVMFlag::KIND_NOT_PRODUCT;
#define FLAG_TYPE(type) (JVMFlag::TYPE_ ## type)
#define INITIALIZE_DEVELOP_FLAG( type, name, value, ...) JVMFlag(FLAG_MEMBER_ENUM(name), FLAG_TYPE(type), XSTR(name), (void*)&name, DEVELOP_KIND, __VA_ARGS__),
#define INITIALIZE_DEVELOP_FLAG_PD(type, name, ...) JVMFlag(FLAG_MEMBER_ENUM(name), FLAG_TYPE(type), XSTR(name), (void*)&name, DEVELOP_KIND_PD, __VA_ARGS__),
#define INITIALIZE_PRODUCT_FLAG( type, name, value, ...) JVMFlag(FLAG_MEMBER_ENUM(name), FLAG_TYPE(type), XSTR(name), (void*)&name, PRODUCT_KIND, __VA_ARGS__),
#define INITIALIZE_PRODUCT_FLAG_PD(type, name, ...) JVMFlag(FLAG_MEMBER_ENUM(name), FLAG_TYPE(type), XSTR(name), (void*)&name, PRODUCT_KIND_PD, __VA_ARGS__),
#define INITIALIZE_NOTPROD_FLAG( type, name, value, ...) JVMFlag(FLAG_MEMBER_ENUM(name), FLAG_TYPE(type), XSTR(name), (void*)&name, NOTPROD_KIND, __VA_ARGS__),
// Handy aliases to match the symbols used in the flag specification macros.
const int DIAGNOSTIC = JVMFlag::KIND_DIAGNOSTIC;
const int MANAGEABLE = JVMFlag::KIND_MANAGEABLE;
const int EXPERIMENTAL = JVMFlag::KIND_EXPERIMENTAL;
#define MATERIALIZE_ALL_FLAGS \
ALL_FLAGS(INITIALIZE_DEVELOP_FLAG, \
INITIALIZE_DEVELOP_FLAG_PD, \
INITIALIZE_PRODUCT_FLAG, \
INITIALIZE_PRODUCT_FLAG_PD, \
INITIALIZE_NOTPROD_FLAG, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
static JVMFlag flagTable[NUM_JVMFlagsEnum + 1] = {
MATERIALIZE_ALL_FLAGS
JVMFlag() // The iteration code wants a flag with a NULL name at the end of the table.
};
// We want flagTable[] to be completely initialized at C++ compilation time, which requires
// that all arguments passed to JVMFlag() constructors be constexpr. The following line
// checks for this -- if any non-constexpr arguments are passed, the C++ compiler will
// generate an error.
//
// constexpr implies internal linkage. This means the flagTable_verify_constexpr[] variable
// will not be included in jvmFlag.o, so there's no footprint cost for having this variable.
//
// Note that we cannot declare flagTable[] as constexpr because JVMFlag::_flags is modified
// at runtime.
constexpr JVMFlag flagTable_verify_constexpr[] = { MATERIALIZE_ALL_FLAGS };
JVMFlag* JVMFlag::flags = flagTable;
size_t JVMFlag::numFlags = (sizeof(flagTable) / sizeof(JVMFlag));
#define JVM_FLAG_TYPE_SIGNATURE(t) JVMFlag::type_signature<t>(),
const int JVMFlag::type_signatures[] = {
JVM_FLAG_NON_STRING_TYPES_DO(JVM_FLAG_TYPE_SIGNATURE)
JVMFlag::type_signature<ccstr>(),
JVMFlag::type_signature<ccstr>()
};
// Search the flag table for a named flag
JVMFlag* JVMFlag::find_flag(const char* name, size_t length, bool allow_locked, bool return_flag) {
JVMFlag* flag = JVMFlagLookup::find(name, length);
if (flag != NULL) {
// Found a matching entry.
// Don't report notproduct and develop flags in product builds.
if (flag->is_constant_in_binary()) {
return (return_flag ? flag : NULL);
}
// Report locked flags only if allowed.
if (!(flag->is_unlocked() || flag->is_unlocker())) {
if (!allow_locked) {
// disable use of locked flags, e.g. diagnostic, experimental,
// etc. until they are explicitly unlocked
return NULL;
}
}
return flag;
}
// JVMFlag name is not in the flag table
return NULL;
}
JVMFlag* JVMFlag::fuzzy_match(const char* name, size_t length, bool allow_locked) {
float VMOptionsFuzzyMatchSimilarity = 0.7f;
JVMFlag* match = NULL;
float score;
float max_score = -1;
for (JVMFlag* current = &flagTable[0]; current->_name != NULL; current++) {
score = StringUtils::similarity(current->_name, strlen(current->_name), name, length);
if (score > max_score) {
max_score = score;
match = current;
}
}
if (match == NULL) {
return NULL;
}
if (!(match->is_unlocked() || match->is_unlocker())) {
if (!allow_locked) {
return NULL;
}
}
if (max_score < VMOptionsFuzzyMatchSimilarity) {
return NULL;
}
return match;
}
bool JVMFlag::is_default(JVMFlagsEnum flag) {
return flag_from_enum(flag)->is_default();
}
bool JVMFlag::is_ergo(JVMFlagsEnum flag) {
return flag_from_enum(flag)->is_ergonomic();
}
bool JVMFlag::is_cmdline(JVMFlagsEnum flag) {
return flag_from_enum(flag)->is_command_line();
}
bool JVMFlag::is_jimage_resource(JVMFlagsEnum flag) {
return flag_from_enum(flag)->is_jimage_resource();
}
void JVMFlag::setOnCmdLine(JVMFlagsEnum flag) {
flag_from_enum(flag)->set_command_line();
}
extern "C" {
static int compare_flags(const void* void_a, const void* void_b) {
return strcmp((*((JVMFlag**) void_a))->name(), (*((JVMFlag**) void_b))->name());
}
}
void JVMFlag::printSetFlags(outputStream* out) {
// Print which flags were set on the command line
// note: this method is called before the thread structure is in place
// which means resource allocation cannot be used.
// The last entry is the null entry.
const size_t length = JVMFlag::numFlags - 1;
// Sort
JVMFlag** array = NEW_C_HEAP_ARRAY(JVMFlag*, length, mtArguments);
for (size_t i = 0; i < length; i++) {
array[i] = &flagTable[i];
}
qsort(array, length, sizeof(JVMFlag*), compare_flags);
// Print
for (size_t i = 0; i < length; i++) {
if (array[i]->get_origin() != JVMFlagOrigin::DEFAULT) {
array[i]->print_as_flag(out);
out->print(" ");
}
}
out->cr();
FREE_C_HEAP_ARRAY(JVMFlag*, array);
}
#ifndef PRODUCT
void JVMFlag::verify() {
assert(Arguments::check_vm_args_consistency(), "Some flag settings conflict");
}
#endif // PRODUCT
#ifdef ASSERT
void JVMFlag::assert_valid_flag_enum(JVMFlagsEnum i) {
assert(0 <= int(i) && int(i) < NUM_JVMFlagsEnum, "must be");
}
void JVMFlag::check_all_flag_declarations() {
for (JVMFlag* current = &flagTable[0]; current->_name != NULL; current++) {
int flags = static_cast<int>(current->_flags);
// Backwards compatibility. This will be relaxed/removed in JDK-7123237.
int mask = JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_MANAGEABLE | JVMFlag::KIND_EXPERIMENTAL;
if ((flags & mask) != 0) {
assert((flags & mask) == JVMFlag::KIND_DIAGNOSTIC ||
(flags & mask) == JVMFlag::KIND_MANAGEABLE ||
(flags & mask) == JVMFlag::KIND_EXPERIMENTAL,
"%s can be declared with at most one of "
"DIAGNOSTIC, MANAGEABLE or EXPERIMENTAL", current->_name);
assert((flags & KIND_NOT_PRODUCT) == 0 &&
(flags & KIND_DEVELOP) == 0,
"%s has an optional DIAGNOSTIC, MANAGEABLE or EXPERIMENTAL "
"attribute; it must be declared as a product flag", current->_name);
}
}
}
#endif // ASSERT
void JVMFlag::printFlags(outputStream* out, bool withComments, bool printRanges, bool skipDefaults) {
// Print the flags sorted by name
// Note: This method may be called before the thread structure is in place
// which means resource allocation cannot be used. Also, it may be
// called as part of error reporting, so handle native OOMs gracefully.
// The last entry is the null entry.
const size_t length = JVMFlag::numFlags - 1;
// Print
if (!printRanges) {
out->print_cr("[Global flags]");
} else {
out->print_cr("[Global flags ranges]");
}
// Sort
JVMFlag** array = NEW_C_HEAP_ARRAY_RETURN_NULL(JVMFlag*, length, mtArguments);
if (array != NULL) {
for (size_t i = 0; i < length; i++) {
array[i] = &flagTable[i];
}
qsort(array, length, sizeof(JVMFlag*), compare_flags);
for (size_t i = 0; i < length; i++) {
if (array[i]->is_unlocked() && !(skipDefaults && array[i]->is_default())) {
array[i]->print_on(out, withComments, printRanges);
}
}
FREE_C_HEAP_ARRAY(JVMFlag*, array);
} else {
// OOM? Print unsorted.
for (size_t i = 0; i < length; i++) {
if (flagTable[i].is_unlocked() && !(skipDefaults && flagTable[i].is_default())) {
flagTable[i].print_on(out, withComments, printRanges);
}
}
}
}
void JVMFlag::printError(bool verbose, const char* msg, ...) {
if (verbose) {
va_list listPointer;
va_start(listPointer, msg);
jio_vfprintf(defaultStream::error_stream(), msg, listPointer);
va_end(listPointer);
}
}