openjdk/jdk/src/share/classes/java/dyn/MutableCallSite.java

207 lines
10 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.dyn;
import sun.dyn.*;
import sun.dyn.empty.Empty;
import java.util.concurrent.atomic.AtomicInteger;
/**
* A {@code MutableCallSite} is a {@link CallSite} whose target variable
* behaves like an ordinary field.
* An {@code invokedynamic} instruction linked to a {@code MutableCallSite} delegates
* all calls to the site's current target.
* The {@linkplain CallSite#dynamicInvoker dynamic invoker} of a mutable call site
* also delegates each call to the site's current target.
* <p>
* Here is an example of a mutable call site which introduces a
* state variable into a method handle chain.
* <blockquote><pre>
MutableCallSite name = new MutableCallSite(MethodType.methodType(String.class));
MethodHandle MH_name = name.dynamicInvoker();
MethodType MT_str2 = MethodType.methodType(String.class, String.class);
MethodHandle MH_upcase = MethodHandles.lookup()
.findVirtual(String.class, "toUpperCase", MT_str2);
MethodHandle worker1 = MethodHandles.filterReturnValue(MH_name, MH_upcase);
name.setTarget(MethodHandles.constant(String.class, "Rocky"));
assertEquals("ROCKY", (String) worker1.invokeExact());
name.setTarget(MethodHandles.constant(String.class, "Fred"));
assertEquals("FRED", (String) worker1.invokeExact());
// (mutation can be continued indefinitely)
* </pre></blockquote>
* <p>
* The same call site may be used in several places at once.
* <blockquote><pre>
MethodHandle MH_dear = MethodHandles.lookup()
.findVirtual(String.class, "concat", MT_str2).bindTo(", dear?");
MethodHandle worker2 = MethodHandles.filterReturnValue(MH_name, MH_dear);
assertEquals("Fred, dear?", (String) worker2.invokeExact());
name.setTarget(MethodHandles.constant(String.class, "Wilma"));
assertEquals("WILMA", (String) worker1.invokeExact());
assertEquals("Wilma, dear?", (String) worker2.invokeExact());
* </pre></blockquote>
* <p>
* <em>Non-synchronization of target values:</em>
* A write to a mutable call site's target does not force other threads
* to become aware of the updated value. Threads which do not perform
* suitable synchronization actions relative to the updated call site
* may cache the old target value and delay their use of the new target
* value indefinitely.
* (This is a normal consequence of the Java Memory Model as applied
* to object fields.)
* <p>
* The {@link #sync sync} operation provides a way to force threads
* to accept a new target value, even if there is no other synchronization.
* <p>
* For target values which will be frequently updated, consider using
* a {@linkplain VolatileCallSite volatile call site} instead.
* @author John Rose, JSR 292 EG
*/
public class MutableCallSite extends CallSite {
/**
* Make a blank call site object with the given method type.
* An initial target method is supplied which will throw
* an {@link IllegalStateException} if called.
* <p>
* Before this {@code CallSite} object is returned from a bootstrap method,
* it is usually provided with a more useful target method,
* via a call to {@link CallSite#setTarget(MethodHandle) setTarget}.
* @throws NullPointerException if the proposed type is null
*/
public MutableCallSite(MethodType type) {
super(type);
}
/**
* Make a blank call site object, possibly equipped with an initial target method handle.
* @param target the method handle which will be the initial target of the call site
* @throws NullPointerException if the proposed target is null
*/
public MutableCallSite(MethodHandle target) {
super(target);
}
/**
* Perform a synchronization operation on each call site in the given array,
* forcing all other threads to throw away any cached values previously
* loaded from the target of any of the call sites.
* <p>
* This operation does not reverse any calls that have already started
* on an old target value.
* (Java supports {@linkplain java.lang.Object#wait() forward time travel} only.)
* <p>
* The overall effect is to force all future readers of each call site's target
* to accept the most recently stored value.
* ("Most recently" is reckoned relative to the {@code sync} itself.)
* Conversely, the {@code sync} call may block until all readers have
* (somehow) decached all previous versions of each call site's target.
* <p>
* To avoid race conditions, calls to {@code setTarget} and {@code sync}
* should generally be performed under some sort of mutual exclusion.
* Note that reader threads may observe an updated target as early
* as the {@code setTarget} call that install the value
* (and before the {@code sync} that confirms the value).
* On the other hand, reader threads may observe previous versions of
* the target until the {@code sync} call returns
* (and after the {@code setTarget} that attempts to convey the updated version).
* <p>
* In terms of the Java Memory Model, this operation performs a synchronization
* action which is comparable in effect to the writing of a volatile variable
* by the current thread, and an eventual volatile read by every other thread
* that may access one of the affected call sites.
* <p>
* The following effects are apparent, for each individual call site {@code S}:
* <ul>
* <li>A new volatile variable {@code V} is created, and written by the current thread.
* As defined by the JMM, this write is a global synchronization event.
* <li>As is normal with thread-local ordering of write events,
* every action already performed by the current thread is
* taken to happen before the volatile write to {@code V}.
* (In some implementations, this means that the current thread
* performs a global release operation.)
* <li>Specifically, the write to the current target of {@code S} is
* taken to happen before the volatile write to {@code V}.
* <li>The volatile write to {@code V} is placed
* (in an implementation specific manner)
* in the global synchronization order.
* <li>Consider an arbitrary thread {@code T} (other than the current thread).
* If {@code T} executes a synchronization action {@code A}
* after the volatile write to {@code V} (in the global synchronization order),
* it is therefore required to see either the current target
* of {@code S}, or a later write to that target,
* if it executes a read on the target of {@code S}.
* (This constraint is called "synchronization-order consistency".)
* <li>The JMM specifically allows optimizing compilers to elide
* reads or writes of variables that are known to be useless.
* Such elided reads and writes have no effect on the happens-before
* relation. Regardless of this fact, the volatile {@code V}
* will not be elided, even though its written value is
* indeterminate and its read value is not used.
* </ul>
* Because of the last point, the implementation behaves as if a
* volatile read of {@code V} were performed by {@code T}
* immediately after its action {@code A}. In the local ordering
* of actions in {@code T}, this read happens before any future
* read of the target of {@code S}. It is as if the
* implementation arbitrarily picked a read of {@code S}'s target
* by {@code T}, and forced a read of {@code V} to precede it,
* thereby ensuring communication of the new target value.
* <p>
* As long as the constraints of the Java Memory Model are obeyed,
* implementations may delay the completion of a {@code sync}
* operation while other threads ({@code T} above) continue to
* use previous values of {@code S}'s target.
* However, implementations are (as always) encouraged to avoid
* livelock, and to eventually require all threads to take account
* of the updated target.
* <p>
* This operation is likely to be expensive and should be used sparingly.
* If possible, it should be buffered for batch processing on sets of call sites.
* <p style="font-size:smaller;">
* (This is a static method on a set of call sites, not a
* virtual method on a single call site, for performance reasons.
* Some implementations may incur a large fixed overhead cost
* for processing one or more synchronization operations,
* but a small incremental cost for each additional call site.
* In any case, this operation is likely to be costly, since
* other threads may have to be somehow interrupted
* in order to make them notice the updated target value.
* However, it may be observed that a single call to synchronize
* several sites has the same formal effect as many calls,
* each on just one of the sites.)
* <p>
* Simple implementations of {@code MutableCallSite} may use
* a volatile variable for the target of a mutable call site.
* In such an implementation, the {@code sync} method can be a no-op,
* and yet it will conform to the JMM behavior documented above.
*/
public static void sync(MutableCallSite[] sites) {
STORE_BARRIER.lazySet(0);
// FIXME: NYI
}
private static final AtomicInteger STORE_BARRIER = new AtomicInteger();
}