8010430: Math.round has surprising behavior for odd values of ulp 1

If the effective floating point exponent is zero return the significand including the implicit 1-bit.

Reviewed-by: bpb, darcy, gls
This commit is contained in:
Dmitry Nadezhin 2013-09-11 17:07:35 -07:00 committed by Brian Burkhalter
parent bef65e773f
commit 28d455529e
3 changed files with 126 additions and 15 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1994, 2012, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -646,7 +646,7 @@ public final class Math {
/**
* Returns the closest {@code int} to the argument, with ties
* rounding up.
* rounding to positive infinity.
*
* <p>
* Special cases:
@ -665,15 +665,37 @@ public final class Math {
* @see java.lang.Integer#MIN_VALUE
*/
public static int round(float a) {
if (a != 0x1.fffffep-2f) // greatest float value less than 0.5
return (int)floor(a + 0.5f);
else
return 0;
int intBits = Float.floatToRawIntBits(a);
int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
>> (FloatConsts.SIGNIFICAND_WIDTH - 1);
int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
+ FloatConsts.EXP_BIAS) - biasedExp;
if ((shift & -32) == 0) { // shift >= 0 && shift < 32
// a is a finite number such that pow(2,-32) <= ulp(a) < 1
int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
| (FloatConsts.SIGNIF_BIT_MASK + 1));
if (intBits < 0) {
r = -r;
}
// In the comments below each Java expression evaluates to the value
// the corresponding mathematical expression:
// (r) evaluates to a / ulp(a)
// (r >> shift) evaluates to floor(a * 2)
// ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
// (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
return ((r >> shift) + 1) >> 1;
} else {
// a is either
// - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
// - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
// - an infinity or NaN
return (int) a;
}
}
/**
* Returns the closest {@code long} to the argument, with ties
* rounding up.
* rounding to positive infinity.
*
* <p>Special cases:
* <ul><li>If the argument is NaN, the result is 0.
@ -692,10 +714,32 @@ public final class Math {
* @see java.lang.Long#MIN_VALUE
*/
public static long round(double a) {
if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5
return (long)floor(a + 0.5d);
else
return 0;
long longBits = Double.doubleToRawLongBits(a);
long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
>> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
+ DoubleConsts.EXP_BIAS) - biasedExp;
if ((shift & -64) == 0) { // shift >= 0 && shift < 64
// a is a finite number such that pow(2,-64) <= ulp(a) < 1
long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
| (DoubleConsts.SIGNIF_BIT_MASK + 1));
if (longBits < 0) {
r = -r;
}
// In the comments below each Java expression evaluates to the value
// the corresponding mathematical expression:
// (r) evaluates to a / ulp(a)
// (r >> shift) evaluates to floor(a * 2)
// ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
// (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
return ((r >> shift) + 1) >> 1;
} else {
// a is either
// - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
// - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
// - an infinity or NaN
return (long) a;
}
}
private static final class RandomNumberGeneratorHolder {

View File

@ -633,7 +633,7 @@ public final class StrictMath {
/**
* Returns the closest {@code int} to the argument, with ties
* rounding up.
* rounding to positive infinity.
*
* <p>Special cases:
* <ul><li>If the argument is NaN, the result is 0.
@ -656,7 +656,7 @@ public final class StrictMath {
/**
* Returns the closest {@code long} to the argument, with ties
* rounding up.
* rounding to positive infinity.
*
* <p>Special cases:
* <ul><li>If the argument is NaN, the result is 0.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -23,7 +23,7 @@
/*
* @test
* @bug 6430675
* @bug 6430675 8010430
* @summary Check for correct implementation of {Math, StrictMath}.round
*/
public class RoundTests {
@ -32,6 +32,8 @@ public class RoundTests {
failures += testNearFloatHalfCases();
failures += testNearDoubleHalfCases();
failures += testUnityULPCases();
failures += testSpecialCases();
if (failures > 0) {
System.err.println("Testing {Math, StrictMath}.round incurred "
@ -95,4 +97,69 @@ public class RoundTests {
return failures;
}
private static int testUnityULPCases() {
int failures = 0;
for (float sign : new float[]{-1, 1}) {
for (float v1 : new float[]{1 << 23, 1 << 24}) {
for (int k = -5; k <= 5; k++) {
float value = (v1 + k) * sign;
float actual = Math.round(value);
failures += Tests.test("Math.round", value, actual, value);
}
}
}
if (failures != 0) {
System.out.println();
}
for (double sign : new double[]{-1, 1}) {
for (double v1 : new double[]{1L << 52, 1L << 53}) {
for (int k = -5; k <= 5; k++) {
double value = (v1 + k) * sign;
double actual = Math.round(value);
failures += Tests.test("Math.round", value, actual, value);
}
}
}
return failures;
}
private static int testSpecialCases() {
int failures = 0;
failures += Tests.test("Math.round", Float.NaN, Math.round(Float.NaN), 0.0F);
failures += Tests.test("Math.round", Float.POSITIVE_INFINITY,
Math.round(Float.POSITIVE_INFINITY), Integer.MAX_VALUE);
failures += Tests.test("Math.round", Float.NEGATIVE_INFINITY,
Math.round(Float.NEGATIVE_INFINITY), Integer.MIN_VALUE);
failures += Tests.test("Math.round", -(float)Integer.MIN_VALUE,
Math.round(-(float)Integer.MIN_VALUE), Integer.MAX_VALUE);
failures += Tests.test("Math.round", (float) Integer.MIN_VALUE,
Math.round((float) Integer.MIN_VALUE), Integer.MIN_VALUE);
failures += Tests.test("Math.round", 0F, Math.round(0F), 0.0F);
failures += Tests.test("Math.round", Float.MIN_VALUE,
Math.round(Float.MIN_VALUE), 0.0F);
failures += Tests.test("Math.round", -Float.MIN_VALUE,
Math.round(-Float.MIN_VALUE), 0.0F);
failures += Tests.test("Math.round", Double.NaN, Math.round(Double.NaN), 0.0);
failures += Tests.test("Math.round", Double.POSITIVE_INFINITY,
Math.round(Double.POSITIVE_INFINITY), Long.MAX_VALUE);
failures += Tests.test("Math.round", Double.NEGATIVE_INFINITY,
Math.round(Double.NEGATIVE_INFINITY), Long.MIN_VALUE);
failures += Tests.test("Math.round", -(double)Long.MIN_VALUE,
Math.round(-(double)Long.MIN_VALUE), Long.MAX_VALUE);
failures += Tests.test("Math.round", (double) Long.MIN_VALUE,
Math.round((double) Long.MIN_VALUE), Long.MIN_VALUE);
failures += Tests.test("Math.round", 0, Math.round(0), 0.0);
failures += Tests.test("Math.round", Double.MIN_VALUE,
Math.round(Double.MIN_VALUE), 0.0);
failures += Tests.test("Math.round", -Double.MIN_VALUE,
Math.round(-Double.MIN_VALUE), 0.0);
return failures;
}
}