Merge
This commit is contained in:
commit
34b247f068
@ -8508,7 +8508,7 @@ bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
|
||||
size_t i = num;
|
||||
oop cur = _overflow_list;
|
||||
const markOop proto = markOopDesc::prototype();
|
||||
NOT_PRODUCT(size_t n = 0;)
|
||||
NOT_PRODUCT(ssize_t n = 0;)
|
||||
for (oop next; i > 0 && cur != NULL; cur = next, i--) {
|
||||
next = oop(cur->mark());
|
||||
cur->set_mark(proto); // until proven otherwise
|
||||
@ -8525,45 +8525,131 @@ bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
|
||||
return !stack->isEmpty();
|
||||
}
|
||||
|
||||
// Multi-threaded; use CAS to break off a prefix
|
||||
#define BUSY (oop(0x1aff1aff))
|
||||
// (MT-safe) Get a prefix of at most "num" from the list.
|
||||
// The overflow list is chained through the mark word of
|
||||
// each object in the list. We fetch the entire list,
|
||||
// break off a prefix of the right size and return the
|
||||
// remainder. If other threads try to take objects from
|
||||
// the overflow list at that time, they will wait for
|
||||
// some time to see if data becomes available. If (and
|
||||
// only if) another thread places one or more object(s)
|
||||
// on the global list before we have returned the suffix
|
||||
// to the global list, we will walk down our local list
|
||||
// to find its end and append the global list to
|
||||
// our suffix before returning it. This suffix walk can
|
||||
// prove to be expensive (quadratic in the amount of traffic)
|
||||
// when there are many objects in the overflow list and
|
||||
// there is much producer-consumer contention on the list.
|
||||
// *NOTE*: The overflow list manipulation code here and
|
||||
// in ParNewGeneration:: are very similar in shape,
|
||||
// except that in the ParNew case we use the old (from/eden)
|
||||
// copy of the object to thread the list via its klass word.
|
||||
// Because of the common code, if you make any changes in
|
||||
// the code below, please check the ParNew version to see if
|
||||
// similar changes might be needed.
|
||||
// CR 6797058 has been filed to consolidate the common code.
|
||||
bool CMSCollector::par_take_from_overflow_list(size_t num,
|
||||
OopTaskQueue* work_q) {
|
||||
assert(work_q->size() == 0, "That's the current policy");
|
||||
assert(work_q->size() == 0, "First empty local work queue");
|
||||
assert(num < work_q->max_elems(), "Can't bite more than we can chew");
|
||||
if (_overflow_list == NULL) {
|
||||
return false;
|
||||
}
|
||||
// Grab the entire list; we'll put back a suffix
|
||||
oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
|
||||
if (prefix == NULL) { // someone grabbed it before we did ...
|
||||
// ... we could spin for a short while, but for now we don't
|
||||
return false;
|
||||
oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
|
||||
Thread* tid = Thread::current();
|
||||
size_t CMSOverflowSpinCount = (size_t)ParallelGCThreads;
|
||||
size_t sleep_time_millis = MAX2((size_t)1, num/100);
|
||||
// If the list is busy, we spin for a short while,
|
||||
// sleeping between attempts to get the list.
|
||||
for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
|
||||
os::sleep(tid, sleep_time_millis, false);
|
||||
if (_overflow_list == NULL) {
|
||||
// Nothing left to take
|
||||
return false;
|
||||
} else if (_overflow_list != BUSY) {
|
||||
// Try and grab the prefix
|
||||
prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
|
||||
}
|
||||
}
|
||||
// If the list was found to be empty, or we spun long
|
||||
// enough, we give up and return empty-handed. If we leave
|
||||
// the list in the BUSY state below, it must be the case that
|
||||
// some other thread holds the overflow list and will set it
|
||||
// to a non-BUSY state in the future.
|
||||
if (prefix == NULL || prefix == BUSY) {
|
||||
// Nothing to take or waited long enough
|
||||
if (prefix == NULL) {
|
||||
// Write back the NULL in case we overwrote it with BUSY above
|
||||
// and it is still the same value.
|
||||
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
assert(prefix != NULL && prefix != BUSY, "Error");
|
||||
size_t i = num;
|
||||
oop cur = prefix;
|
||||
// Walk down the first "num" objects, unless we reach the end.
|
||||
for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
|
||||
if (cur->mark() != NULL) {
|
||||
if (cur->mark() == NULL) {
|
||||
// We have "num" or fewer elements in the list, so there
|
||||
// is nothing to return to the global list.
|
||||
// Write back the NULL in lieu of the BUSY we wrote
|
||||
// above, if it is still the same value.
|
||||
if (_overflow_list == BUSY) {
|
||||
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
|
||||
}
|
||||
} else {
|
||||
// Chop off the suffix and rerturn it to the global list.
|
||||
assert(cur->mark() != BUSY, "Error");
|
||||
oop suffix_head = cur->mark(); // suffix will be put back on global list
|
||||
cur->set_mark(NULL); // break off suffix
|
||||
// Find tail of suffix so we can prepend suffix to global list
|
||||
for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
|
||||
oop suffix_tail = cur;
|
||||
assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
|
||||
"Tautology");
|
||||
// It's possible that the list is still in the empty(busy) state
|
||||
// we left it in a short while ago; in that case we may be
|
||||
// able to place back the suffix without incurring the cost
|
||||
// of a walk down the list.
|
||||
oop observed_overflow_list = _overflow_list;
|
||||
do {
|
||||
cur = observed_overflow_list;
|
||||
suffix_tail->set_mark(markOop(cur));
|
||||
oop cur_overflow_list = observed_overflow_list;
|
||||
bool attached = false;
|
||||
while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
|
||||
observed_overflow_list =
|
||||
(oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
|
||||
} while (cur != observed_overflow_list);
|
||||
(oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
|
||||
if (cur_overflow_list == observed_overflow_list) {
|
||||
attached = true;
|
||||
break;
|
||||
} else cur_overflow_list = observed_overflow_list;
|
||||
}
|
||||
if (!attached) {
|
||||
// Too bad, someone else sneaked in (at least) an element; we'll need
|
||||
// to do a splice. Find tail of suffix so we can prepend suffix to global
|
||||
// list.
|
||||
for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
|
||||
oop suffix_tail = cur;
|
||||
assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
|
||||
"Tautology");
|
||||
observed_overflow_list = _overflow_list;
|
||||
do {
|
||||
cur_overflow_list = observed_overflow_list;
|
||||
if (cur_overflow_list != BUSY) {
|
||||
// Do the splice ...
|
||||
suffix_tail->set_mark(markOop(cur_overflow_list));
|
||||
} else { // cur_overflow_list == BUSY
|
||||
suffix_tail->set_mark(NULL);
|
||||
}
|
||||
// ... and try to place spliced list back on overflow_list ...
|
||||
observed_overflow_list =
|
||||
(oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
|
||||
} while (cur_overflow_list != observed_overflow_list);
|
||||
// ... until we have succeeded in doing so.
|
||||
}
|
||||
}
|
||||
|
||||
// Push the prefix elements on work_q
|
||||
assert(prefix != NULL, "control point invariant");
|
||||
const markOop proto = markOopDesc::prototype();
|
||||
oop next;
|
||||
NOT_PRODUCT(size_t n = 0;)
|
||||
NOT_PRODUCT(ssize_t n = 0;)
|
||||
for (cur = prefix; cur != NULL; cur = next) {
|
||||
next = oop(cur->mark());
|
||||
cur->set_mark(proto); // until proven otherwise
|
||||
@ -8597,11 +8683,16 @@ void CMSCollector::par_push_on_overflow_list(oop p) {
|
||||
oop cur_overflow_list;
|
||||
do {
|
||||
cur_overflow_list = observed_overflow_list;
|
||||
p->set_mark(markOop(cur_overflow_list));
|
||||
if (cur_overflow_list != BUSY) {
|
||||
p->set_mark(markOop(cur_overflow_list));
|
||||
} else {
|
||||
p->set_mark(NULL);
|
||||
}
|
||||
observed_overflow_list =
|
||||
(oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
|
||||
} while (cur_overflow_list != observed_overflow_list);
|
||||
}
|
||||
#undef BUSY
|
||||
|
||||
// Single threaded
|
||||
// General Note on GrowableArray: pushes may silently fail
|
||||
@ -8610,7 +8701,7 @@ void CMSCollector::par_push_on_overflow_list(oop p) {
|
||||
// a lot of code in the JVM. The prudent thing for GrowableArray
|
||||
// to do (for now) is to exit with an error. However, that may
|
||||
// be too draconian in some cases because the caller may be
|
||||
// able to recover without much harm. For suych cases, we
|
||||
// able to recover without much harm. For such cases, we
|
||||
// should probably introduce a "soft_push" method which returns
|
||||
// an indication of success or failure with the assumption that
|
||||
// the caller may be able to recover from a failure; code in
|
||||
@ -8618,8 +8709,6 @@ void CMSCollector::par_push_on_overflow_list(oop p) {
|
||||
// failures where possible, thus, incrementally hardening the VM
|
||||
// in such low resource situations.
|
||||
void CMSCollector::preserve_mark_work(oop p, markOop m) {
|
||||
int PreserveMarkStackSize = 128;
|
||||
|
||||
if (_preserved_oop_stack == NULL) {
|
||||
assert(_preserved_mark_stack == NULL,
|
||||
"bijection with preserved_oop_stack");
|
||||
|
@ -595,7 +595,7 @@ class CMSCollector: public CHeapObj {
|
||||
size_t _ser_kac_preclean_ovflw;
|
||||
size_t _ser_kac_ovflw;
|
||||
size_t _par_kac_ovflw;
|
||||
NOT_PRODUCT(size_t _num_par_pushes;)
|
||||
NOT_PRODUCT(ssize_t _num_par_pushes;)
|
||||
|
||||
// ("Weak") Reference processing support
|
||||
ReferenceProcessor* _ref_processor;
|
||||
|
@ -79,6 +79,7 @@ parNewGeneration.cpp resourceArea.hpp
|
||||
parNewGeneration.cpp sharedHeap.hpp
|
||||
parNewGeneration.cpp space.hpp
|
||||
parNewGeneration.cpp spaceDecorator.hpp
|
||||
parNewGeneration.cpp thread.hpp
|
||||
parNewGeneration.cpp workgroup.hpp
|
||||
|
||||
parNewGeneration.hpp defNewGeneration.hpp
|
||||
|
@ -404,6 +404,8 @@ void ParEvacuateFollowersClosure::do_void() {
|
||||
if (terminator()->offer_termination()) break;
|
||||
par_scan_state()->end_term_time();
|
||||
}
|
||||
assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
|
||||
"Broken overflow list?");
|
||||
// Finish the last termination pause.
|
||||
par_scan_state()->end_term_time();
|
||||
}
|
||||
@ -456,6 +458,8 @@ ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
|
||||
_is_alive_closure(this),
|
||||
_plab_stats(YoungPLABSize, PLABWeight)
|
||||
{
|
||||
NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
|
||||
NOT_PRODUCT(_num_par_pushes = 0;)
|
||||
_task_queues = new ObjToScanQueueSet(ParallelGCThreads);
|
||||
guarantee(_task_queues != NULL, "task_queues allocation failure.");
|
||||
|
||||
@ -993,12 +997,19 @@ oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
|
||||
"push forwarded object");
|
||||
}
|
||||
// Push it on one of the queues of to-be-scanned objects.
|
||||
if (!par_scan_state->work_queue()->push(obj_to_push)) {
|
||||
bool simulate_overflow = false;
|
||||
NOT_PRODUCT(
|
||||
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
|
||||
// simulate a stack overflow
|
||||
simulate_overflow = true;
|
||||
}
|
||||
)
|
||||
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
|
||||
// Add stats for overflow pushes.
|
||||
if (Verbose && PrintGCDetails) {
|
||||
gclog_or_tty->print("queue overflow!\n");
|
||||
}
|
||||
push_on_overflow_list(old);
|
||||
push_on_overflow_list(old, par_scan_state);
|
||||
par_scan_state->note_overflow_push();
|
||||
}
|
||||
par_scan_state->note_push();
|
||||
@ -1110,9 +1121,16 @@ oop ParNewGeneration::copy_to_survivor_space_with_undo(
|
||||
"push forwarded object");
|
||||
}
|
||||
// Push it on one of the queues of to-be-scanned objects.
|
||||
if (!par_scan_state->work_queue()->push(obj_to_push)) {
|
||||
bool simulate_overflow = false;
|
||||
NOT_PRODUCT(
|
||||
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
|
||||
// simulate a stack overflow
|
||||
simulate_overflow = true;
|
||||
}
|
||||
)
|
||||
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
|
||||
// Add stats for overflow pushes.
|
||||
push_on_overflow_list(old);
|
||||
push_on_overflow_list(old, par_scan_state);
|
||||
par_scan_state->note_overflow_push();
|
||||
}
|
||||
par_scan_state->note_push();
|
||||
@ -1135,89 +1153,190 @@ oop ParNewGeneration::copy_to_survivor_space_with_undo(
|
||||
return forward_ptr;
|
||||
}
|
||||
|
||||
void ParNewGeneration::push_on_overflow_list(oop from_space_obj) {
|
||||
oop cur_overflow_list = _overflow_list;
|
||||
#ifndef PRODUCT
|
||||
// It's OK to call this multi-threaded; the worst thing
|
||||
// that can happen is that we'll get a bunch of closely
|
||||
// spaced simulated oveflows, but that's OK, in fact
|
||||
// probably good as it would exercise the overflow code
|
||||
// under contention.
|
||||
bool ParNewGeneration::should_simulate_overflow() {
|
||||
if (_overflow_counter-- <= 0) { // just being defensive
|
||||
_overflow_counter = ParGCWorkQueueOverflowInterval;
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#define BUSY (oop(0x1aff1aff))
|
||||
void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
|
||||
// if the object has been forwarded to itself, then we cannot
|
||||
// use the klass pointer for the linked list. Instead we have
|
||||
// to allocate an oopDesc in the C-Heap and use that for the linked list.
|
||||
// XXX This is horribly inefficient when a promotion failure occurs
|
||||
// and should be fixed. XXX FIX ME !!!
|
||||
#ifndef PRODUCT
|
||||
Atomic::inc_ptr(&_num_par_pushes);
|
||||
assert(_num_par_pushes > 0, "Tautology");
|
||||
#endif
|
||||
if (from_space_obj->forwardee() == from_space_obj) {
|
||||
oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
|
||||
listhead->forward_to(from_space_obj);
|
||||
from_space_obj = listhead;
|
||||
}
|
||||
while (true) {
|
||||
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
|
||||
oop observed_overflow_list =
|
||||
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
|
||||
if (observed_overflow_list == cur_overflow_list) break;
|
||||
// Otherwise...
|
||||
oop observed_overflow_list = _overflow_list;
|
||||
oop cur_overflow_list;
|
||||
do {
|
||||
cur_overflow_list = observed_overflow_list;
|
||||
}
|
||||
if (cur_overflow_list != BUSY) {
|
||||
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
|
||||
} else {
|
||||
from_space_obj->set_klass_to_list_ptr(NULL);
|
||||
}
|
||||
observed_overflow_list =
|
||||
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
|
||||
} while (cur_overflow_list != observed_overflow_list);
|
||||
}
|
||||
|
||||
// *NOTE*: The overflow list manipulation code here and
|
||||
// in CMSCollector:: are very similar in shape,
|
||||
// except that in the CMS case we thread the objects
|
||||
// directly into the list via their mark word, and do
|
||||
// not need to deal with special cases below related
|
||||
// to chunking of object arrays and promotion failure
|
||||
// handling.
|
||||
// CR 6797058 has been filed to attempt consolidation of
|
||||
// the common code.
|
||||
// Because of the common code, if you make any changes in
|
||||
// the code below, please check the CMS version to see if
|
||||
// similar changes might be needed.
|
||||
// See CMSCollector::par_take_from_overflow_list() for
|
||||
// more extensive documentation comments.
|
||||
bool
|
||||
ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
|
||||
ObjToScanQueue* work_q = par_scan_state->work_queue();
|
||||
assert(work_q->size() == 0, "Should first empty local work queue");
|
||||
// How many to take?
|
||||
int objsFromOverflow = MIN2(work_q->max_elems()/4,
|
||||
(juint)ParGCDesiredObjsFromOverflowList);
|
||||
size_t objsFromOverflow = MIN2((size_t)work_q->max_elems()/4,
|
||||
(size_t)ParGCDesiredObjsFromOverflowList);
|
||||
|
||||
if (_overflow_list == NULL) return false;
|
||||
|
||||
// Otherwise, there was something there; try claiming the list.
|
||||
oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
|
||||
|
||||
if (prefix == NULL) {
|
||||
return false;
|
||||
}
|
||||
oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
|
||||
// Trim off a prefix of at most objsFromOverflow items
|
||||
int i = 1;
|
||||
Thread* tid = Thread::current();
|
||||
size_t spin_count = (size_t)ParallelGCThreads;
|
||||
size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
|
||||
for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
|
||||
// someone grabbed it before we did ...
|
||||
// ... we spin for a short while...
|
||||
os::sleep(tid, sleep_time_millis, false);
|
||||
if (_overflow_list == NULL) {
|
||||
// nothing left to take
|
||||
return false;
|
||||
} else if (_overflow_list != BUSY) {
|
||||
// try and grab the prefix
|
||||
prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
|
||||
}
|
||||
}
|
||||
if (prefix == NULL || prefix == BUSY) {
|
||||
// Nothing to take or waited long enough
|
||||
if (prefix == NULL) {
|
||||
// Write back the NULL in case we overwrote it with BUSY above
|
||||
// and it is still the same value.
|
||||
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
assert(prefix != NULL && prefix != BUSY, "Error");
|
||||
size_t i = 1;
|
||||
oop cur = prefix;
|
||||
while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
|
||||
i++; cur = oop(cur->klass());
|
||||
}
|
||||
|
||||
// Reattach remaining (suffix) to overflow list
|
||||
if (cur->klass_or_null() != NULL) {
|
||||
oop suffix = oop(cur->klass());
|
||||
cur->set_klass_to_list_ptr(NULL);
|
||||
|
||||
// Find last item of suffix list
|
||||
oop last = suffix;
|
||||
while (last->klass_or_null() != NULL) {
|
||||
last = oop(last->klass());
|
||||
if (cur->klass_or_null() == NULL) {
|
||||
// Write back the NULL in lieu of the BUSY we wrote
|
||||
// above and it is still the same value.
|
||||
if (_overflow_list == BUSY) {
|
||||
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
|
||||
}
|
||||
// Atomically prepend suffix to current overflow list
|
||||
oop cur_overflow_list = _overflow_list;
|
||||
while (true) {
|
||||
last->set_klass_to_list_ptr(cur_overflow_list);
|
||||
oop observed_overflow_list =
|
||||
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
|
||||
if (observed_overflow_list == cur_overflow_list) break;
|
||||
// Otherwise...
|
||||
cur_overflow_list = observed_overflow_list;
|
||||
} else {
|
||||
assert(cur->klass_or_null() != BUSY, "Error");
|
||||
oop suffix = oop(cur->klass()); // suffix will be put back on global list
|
||||
cur->set_klass_to_list_ptr(NULL); // break off suffix
|
||||
// It's possible that the list is still in the empty(busy) state
|
||||
// we left it in a short while ago; in that case we may be
|
||||
// able to place back the suffix.
|
||||
oop observed_overflow_list = _overflow_list;
|
||||
oop cur_overflow_list = observed_overflow_list;
|
||||
bool attached = false;
|
||||
while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
|
||||
observed_overflow_list =
|
||||
(oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
|
||||
if (cur_overflow_list == observed_overflow_list) {
|
||||
attached = true;
|
||||
break;
|
||||
} else cur_overflow_list = observed_overflow_list;
|
||||
}
|
||||
if (!attached) {
|
||||
// Too bad, someone else got in in between; we'll need to do a splice.
|
||||
// Find the last item of suffix list
|
||||
oop last = suffix;
|
||||
while (last->klass_or_null() != NULL) {
|
||||
last = oop(last->klass());
|
||||
}
|
||||
// Atomically prepend suffix to current overflow list
|
||||
observed_overflow_list = _overflow_list;
|
||||
do {
|
||||
cur_overflow_list = observed_overflow_list;
|
||||
if (cur_overflow_list != BUSY) {
|
||||
// Do the splice ...
|
||||
last->set_klass_to_list_ptr(cur_overflow_list);
|
||||
} else { // cur_overflow_list == BUSY
|
||||
last->set_klass_to_list_ptr(NULL);
|
||||
}
|
||||
observed_overflow_list =
|
||||
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
|
||||
} while (cur_overflow_list != observed_overflow_list);
|
||||
}
|
||||
}
|
||||
|
||||
// Push objects on prefix list onto this thread's work queue
|
||||
assert(cur != NULL, "program logic");
|
||||
assert(prefix != NULL && prefix != BUSY, "program logic");
|
||||
cur = prefix;
|
||||
int n = 0;
|
||||
ssize_t n = 0;
|
||||
while (cur != NULL) {
|
||||
oop obj_to_push = cur->forwardee();
|
||||
oop next = oop(cur->klass_or_null());
|
||||
cur->set_klass(obj_to_push->klass());
|
||||
if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
|
||||
obj_to_push = cur;
|
||||
// This may be an array object that is self-forwarded. In that case, the list pointer
|
||||
// space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
|
||||
if (!is_in_reserved(cur)) {
|
||||
// This can become a scaling bottleneck when there is work queue overflow coincident
|
||||
// with promotion failure.
|
||||
oopDesc* f = cur;
|
||||
FREE_C_HEAP_ARRAY(oopDesc, f);
|
||||
} else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
|
||||
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
|
||||
obj_to_push = cur;
|
||||
}
|
||||
work_q->push(obj_to_push);
|
||||
bool ok = work_q->push(obj_to_push);
|
||||
assert(ok, "Should have succeeded");
|
||||
cur = next;
|
||||
n++;
|
||||
}
|
||||
par_scan_state->note_overflow_refill(n);
|
||||
#ifndef PRODUCT
|
||||
assert(_num_par_pushes >= n, "Too many pops?");
|
||||
Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
#undef BUSY
|
||||
|
||||
void ParNewGeneration::ref_processor_init()
|
||||
{
|
||||
|
@ -278,6 +278,7 @@ class ParNewGeneration: public DefNewGeneration {
|
||||
friend class ParNewRefProcTask;
|
||||
friend class ParNewRefProcTaskExecutor;
|
||||
friend class ParScanThreadStateSet;
|
||||
friend class ParEvacuateFollowersClosure;
|
||||
|
||||
private:
|
||||
// XXX use a global constant instead of 64!
|
||||
@ -296,6 +297,7 @@ class ParNewGeneration: public DefNewGeneration {
|
||||
// klass-pointers (klass information already copied to the forwarded
|
||||
// image.) Manipulated with CAS.
|
||||
oop _overflow_list;
|
||||
NOT_PRODUCT(ssize_t _num_par_pushes;)
|
||||
|
||||
// If true, older generation does not support promotion undo, so avoid.
|
||||
static bool _avoid_promotion_undo;
|
||||
@ -372,8 +374,12 @@ class ParNewGeneration: public DefNewGeneration {
|
||||
oop copy_to_survivor_space_with_undo(ParScanThreadState* par_scan_state,
|
||||
oop obj, size_t obj_sz, markOop m);
|
||||
|
||||
// in support of testing overflow code
|
||||
NOT_PRODUCT(int _overflow_counter;)
|
||||
NOT_PRODUCT(bool should_simulate_overflow();)
|
||||
|
||||
// Push the given (from-space) object on the global overflow list.
|
||||
void push_on_overflow_list(oop from_space_obj);
|
||||
void push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state);
|
||||
|
||||
// If the global overflow list is non-empty, move some tasks from it
|
||||
// onto "work_q" (which must be empty). No more than 1/4 of the
|
||||
|
@ -116,7 +116,7 @@ void PSOldGen::initialize_work(const char* perf_data_name, int level) {
|
||||
// ObjectSpace stuff
|
||||
//
|
||||
|
||||
_object_space = new MutableSpace();
|
||||
_object_space = new MutableSpace(virtual_space()->alignment());
|
||||
|
||||
if (_object_space == NULL)
|
||||
vm_exit_during_initialization("Could not allocate an old gen space");
|
||||
@ -385,10 +385,10 @@ void PSOldGen::post_resize() {
|
||||
start_array()->set_covered_region(new_memregion);
|
||||
Universe::heap()->barrier_set()->resize_covered_region(new_memregion);
|
||||
|
||||
HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
|
||||
|
||||
// ALWAYS do this last!!
|
||||
object_space()->set_end(virtual_space_high);
|
||||
object_space()->initialize(new_memregion,
|
||||
SpaceDecorator::DontClear,
|
||||
SpaceDecorator::DontMangle);
|
||||
|
||||
assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
|
||||
"Sanity");
|
||||
|
@ -78,7 +78,7 @@ void PSVirtualSpace::release() {
|
||||
_special = false;
|
||||
}
|
||||
|
||||
bool PSVirtualSpace::expand_by(size_t bytes, bool pre_touch) {
|
||||
bool PSVirtualSpace::expand_by(size_t bytes) {
|
||||
assert(is_aligned(bytes), "arg not aligned");
|
||||
DEBUG_ONLY(PSVirtualSpaceVerifier this_verifier(this));
|
||||
|
||||
@ -92,15 +92,6 @@ bool PSVirtualSpace::expand_by(size_t bytes, bool pre_touch) {
|
||||
_committed_high_addr += bytes;
|
||||
}
|
||||
|
||||
if (pre_touch || AlwaysPreTouch) {
|
||||
for (char* curr = base_addr;
|
||||
curr < _committed_high_addr;
|
||||
curr += os::vm_page_size()) {
|
||||
char tmp = *curr;
|
||||
*curr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -255,7 +246,7 @@ PSVirtualSpaceHighToLow::PSVirtualSpaceHighToLow(ReservedSpace rs) {
|
||||
DEBUG_ONLY(verify());
|
||||
}
|
||||
|
||||
bool PSVirtualSpaceHighToLow::expand_by(size_t bytes, bool pre_touch) {
|
||||
bool PSVirtualSpaceHighToLow::expand_by(size_t bytes) {
|
||||
assert(is_aligned(bytes), "arg not aligned");
|
||||
DEBUG_ONLY(PSVirtualSpaceVerifier this_verifier(this));
|
||||
|
||||
@ -269,15 +260,6 @@ bool PSVirtualSpaceHighToLow::expand_by(size_t bytes, bool pre_touch) {
|
||||
_committed_low_addr -= bytes;
|
||||
}
|
||||
|
||||
if (pre_touch || AlwaysPreTouch) {
|
||||
for (char* curr = base_addr;
|
||||
curr < _committed_high_addr;
|
||||
curr += os::vm_page_size()) {
|
||||
char tmp = *curr;
|
||||
*curr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -80,7 +80,7 @@ class PSVirtualSpace : public CHeapObj {
|
||||
inline void set_reserved(char* low_addr, char* high_addr, bool special);
|
||||
inline void set_reserved(ReservedSpace rs);
|
||||
inline void set_committed(char* low_addr, char* high_addr);
|
||||
virtual bool expand_by(size_t bytes, bool pre_touch = false);
|
||||
virtual bool expand_by(size_t bytes);
|
||||
virtual bool shrink_by(size_t bytes);
|
||||
virtual size_t expand_into(PSVirtualSpace* space, size_t bytes);
|
||||
void release();
|
||||
@ -127,7 +127,7 @@ class PSVirtualSpaceHighToLow : public PSVirtualSpace {
|
||||
PSVirtualSpaceHighToLow(ReservedSpace rs, size_t alignment);
|
||||
PSVirtualSpaceHighToLow(ReservedSpace rs);
|
||||
|
||||
virtual bool expand_by(size_t bytes, bool pre_touch = false);
|
||||
virtual bool expand_by(size_t bytes);
|
||||
virtual bool shrink_by(size_t bytes);
|
||||
virtual size_t expand_into(PSVirtualSpace* space, size_t bytes);
|
||||
|
||||
|
@ -64,12 +64,12 @@ void PSYoungGen::initialize_work() {
|
||||
}
|
||||
|
||||
if (UseNUMA) {
|
||||
_eden_space = new MutableNUMASpace();
|
||||
_eden_space = new MutableNUMASpace(virtual_space()->alignment());
|
||||
} else {
|
||||
_eden_space = new MutableSpace();
|
||||
_eden_space = new MutableSpace(virtual_space()->alignment());
|
||||
}
|
||||
_from_space = new MutableSpace();
|
||||
_to_space = new MutableSpace();
|
||||
_from_space = new MutableSpace(virtual_space()->alignment());
|
||||
_to_space = new MutableSpace(virtual_space()->alignment());
|
||||
|
||||
if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
|
||||
vm_exit_during_initialization("Could not allocate a young gen space");
|
||||
|
@ -27,7 +27,7 @@
|
||||
# include "incls/_mutableNUMASpace.cpp.incl"
|
||||
|
||||
|
||||
MutableNUMASpace::MutableNUMASpace() {
|
||||
MutableNUMASpace::MutableNUMASpace(size_t alignment) : MutableSpace(alignment) {
|
||||
_lgrp_spaces = new (ResourceObj::C_HEAP) GrowableArray<LGRPSpace*>(0, true);
|
||||
_page_size = os::vm_page_size();
|
||||
_adaptation_cycles = 0;
|
||||
@ -221,7 +221,7 @@ bool MutableNUMASpace::update_layout(bool force) {
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i]));
|
||||
lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -443,10 +443,10 @@ void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection
|
||||
// Is there bottom?
|
||||
if (new_region.start() < intersection.start()) { // Yes
|
||||
// Try to coalesce small pages into a large one.
|
||||
if (UseLargePages && page_size() >= os::large_page_size()) {
|
||||
HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), os::large_page_size());
|
||||
if (UseLargePages && page_size() >= alignment()) {
|
||||
HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), alignment());
|
||||
if (new_region.contains(p)
|
||||
&& pointer_delta(p, new_region.start(), sizeof(char)) >= os::large_page_size()) {
|
||||
&& pointer_delta(p, new_region.start(), sizeof(char)) >= alignment()) {
|
||||
if (intersection.contains(p)) {
|
||||
intersection = MemRegion(p, intersection.end());
|
||||
} else {
|
||||
@ -462,10 +462,10 @@ void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection
|
||||
// Is there top?
|
||||
if (intersection.end() < new_region.end()) { // Yes
|
||||
// Try to coalesce small pages into a large one.
|
||||
if (UseLargePages && page_size() >= os::large_page_size()) {
|
||||
HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), os::large_page_size());
|
||||
if (UseLargePages && page_size() >= alignment()) {
|
||||
HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), alignment());
|
||||
if (new_region.contains(p)
|
||||
&& pointer_delta(new_region.end(), p, sizeof(char)) >= os::large_page_size()) {
|
||||
&& pointer_delta(new_region.end(), p, sizeof(char)) >= alignment()) {
|
||||
if (intersection.contains(p)) {
|
||||
intersection = MemRegion(intersection.start(), p);
|
||||
} else {
|
||||
@ -504,12 +504,12 @@ void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersecti
|
||||
// That's the only case we have to make an additional bias_region() call.
|
||||
HeapWord* start = invalid_region->start();
|
||||
HeapWord* end = invalid_region->end();
|
||||
if (UseLargePages && page_size() >= os::large_page_size()) {
|
||||
HeapWord *p = (HeapWord*)round_down((intptr_t) start, os::large_page_size());
|
||||
if (UseLargePages && page_size() >= alignment()) {
|
||||
HeapWord *p = (HeapWord*)round_down((intptr_t) start, alignment());
|
||||
if (new_region.contains(p)) {
|
||||
start = p;
|
||||
}
|
||||
p = (HeapWord*)round_to((intptr_t) end, os::large_page_size());
|
||||
p = (HeapWord*)round_to((intptr_t) end, alignment());
|
||||
if (new_region.contains(end)) {
|
||||
end = p;
|
||||
}
|
||||
@ -526,7 +526,8 @@ void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersecti
|
||||
|
||||
void MutableNUMASpace::initialize(MemRegion mr,
|
||||
bool clear_space,
|
||||
bool mangle_space) {
|
||||
bool mangle_space,
|
||||
bool setup_pages) {
|
||||
assert(clear_space, "Reallocation will destory data!");
|
||||
assert(lgrp_spaces()->length() > 0, "There should be at least one space");
|
||||
|
||||
@ -538,7 +539,7 @@ void MutableNUMASpace::initialize(MemRegion mr,
|
||||
|
||||
// Compute chunk sizes
|
||||
size_t prev_page_size = page_size();
|
||||
set_page_size(UseLargePages ? os::large_page_size() : os::vm_page_size());
|
||||
set_page_size(UseLargePages ? alignment() : os::vm_page_size());
|
||||
HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
|
||||
HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
|
||||
size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
|
||||
@ -666,7 +667,7 @@ void MutableNUMASpace::initialize(MemRegion mr,
|
||||
}
|
||||
|
||||
// Clear space (set top = bottom) but never mangle.
|
||||
s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle);
|
||||
s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle, MutableSpace::DontSetupPages);
|
||||
|
||||
set_adaptation_cycles(samples_count());
|
||||
}
|
||||
|
@ -82,8 +82,8 @@ class MutableNUMASpace : public MutableSpace {
|
||||
char* last_page_scanned() { return _last_page_scanned; }
|
||||
void set_last_page_scanned(char* p) { _last_page_scanned = p; }
|
||||
public:
|
||||
LGRPSpace(int l) : _lgrp_id(l), _last_page_scanned(NULL), _allocation_failed(false) {
|
||||
_space = new MutableSpace();
|
||||
LGRPSpace(int l, size_t alignment) : _lgrp_id(l), _last_page_scanned(NULL), _allocation_failed(false) {
|
||||
_space = new MutableSpace(alignment);
|
||||
_alloc_rate = new AdaptiveWeightedAverage(NUMAChunkResizeWeight);
|
||||
}
|
||||
~LGRPSpace() {
|
||||
@ -183,10 +183,10 @@ class MutableNUMASpace : public MutableSpace {
|
||||
|
||||
public:
|
||||
GrowableArray<LGRPSpace*>* lgrp_spaces() const { return _lgrp_spaces; }
|
||||
MutableNUMASpace();
|
||||
MutableNUMASpace(size_t alignment);
|
||||
virtual ~MutableNUMASpace();
|
||||
// Space initialization.
|
||||
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
|
||||
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space, bool setup_pages = SetupPages);
|
||||
// Update space layout if necessary. Do all adaptive resizing job.
|
||||
virtual void update();
|
||||
// Update allocation rate averages.
|
||||
|
@ -25,7 +25,10 @@
|
||||
# include "incls/_precompiled.incl"
|
||||
# include "incls/_mutableSpace.cpp.incl"
|
||||
|
||||
MutableSpace::MutableSpace(): ImmutableSpace(), _top(NULL) {
|
||||
MutableSpace::MutableSpace(size_t alignment): ImmutableSpace(), _top(NULL), _alignment(alignment) {
|
||||
assert(MutableSpace::alignment() >= 0 &&
|
||||
MutableSpace::alignment() % os::vm_page_size() == 0,
|
||||
"Space should be aligned");
|
||||
_mangler = new MutableSpaceMangler(this);
|
||||
}
|
||||
|
||||
@ -33,16 +36,88 @@ MutableSpace::~MutableSpace() {
|
||||
delete _mangler;
|
||||
}
|
||||
|
||||
void MutableSpace::numa_setup_pages(MemRegion mr, bool clear_space) {
|
||||
if (!mr.is_empty()) {
|
||||
size_t page_size = UseLargePages ? alignment() : os::vm_page_size();
|
||||
HeapWord *start = (HeapWord*)round_to((intptr_t) mr.start(), page_size);
|
||||
HeapWord *end = (HeapWord*)round_down((intptr_t) mr.end(), page_size);
|
||||
if (end > start) {
|
||||
size_t size = pointer_delta(end, start, sizeof(char));
|
||||
if (clear_space) {
|
||||
// Prefer page reallocation to migration.
|
||||
os::free_memory((char*)start, size);
|
||||
}
|
||||
os::numa_make_global((char*)start, size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MutableSpace::pretouch_pages(MemRegion mr) {
|
||||
for (volatile char *p = (char*)mr.start(); p < (char*)mr.end(); p += os::vm_page_size()) {
|
||||
char t = *p; *p = t;
|
||||
}
|
||||
}
|
||||
|
||||
void MutableSpace::initialize(MemRegion mr,
|
||||
bool clear_space,
|
||||
bool mangle_space) {
|
||||
HeapWord* bottom = mr.start();
|
||||
HeapWord* end = mr.end();
|
||||
bool mangle_space,
|
||||
bool setup_pages) {
|
||||
|
||||
assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
|
||||
assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()),
|
||||
"invalid space boundaries");
|
||||
set_bottom(bottom);
|
||||
set_end(end);
|
||||
|
||||
if (setup_pages && (UseNUMA || AlwaysPreTouch)) {
|
||||
// The space may move left and right or expand/shrink.
|
||||
// We'd like to enforce the desired page placement.
|
||||
MemRegion head, tail;
|
||||
if (last_setup_region().is_empty()) {
|
||||
// If it's the first initialization don't limit the amount of work.
|
||||
head = mr;
|
||||
tail = MemRegion(mr.end(), mr.end());
|
||||
} else {
|
||||
// Is there an intersection with the address space?
|
||||
MemRegion intersection = last_setup_region().intersection(mr);
|
||||
if (intersection.is_empty()) {
|
||||
intersection = MemRegion(mr.end(), mr.end());
|
||||
}
|
||||
// All the sizes below are in words.
|
||||
size_t head_size = 0, tail_size = 0;
|
||||
if (mr.start() <= intersection.start()) {
|
||||
head_size = pointer_delta(intersection.start(), mr.start());
|
||||
}
|
||||
if(intersection.end() <= mr.end()) {
|
||||
tail_size = pointer_delta(mr.end(), intersection.end());
|
||||
}
|
||||
// Limit the amount of page manipulation if necessary.
|
||||
if (NUMASpaceResizeRate > 0 && !AlwaysPreTouch) {
|
||||
const size_t change_size = head_size + tail_size;
|
||||
const float setup_rate_words = NUMASpaceResizeRate >> LogBytesPerWord;
|
||||
head_size = MIN2((size_t)(setup_rate_words * head_size / change_size),
|
||||
head_size);
|
||||
tail_size = MIN2((size_t)(setup_rate_words * tail_size / change_size),
|
||||
tail_size);
|
||||
}
|
||||
head = MemRegion(intersection.start() - head_size, intersection.start());
|
||||
tail = MemRegion(intersection.end(), intersection.end() + tail_size);
|
||||
}
|
||||
assert(mr.contains(head) && mr.contains(tail), "Sanity");
|
||||
|
||||
if (UseNUMA) {
|
||||
numa_setup_pages(head, clear_space);
|
||||
numa_setup_pages(tail, clear_space);
|
||||
}
|
||||
|
||||
if (AlwaysPreTouch) {
|
||||
pretouch_pages(head);
|
||||
pretouch_pages(tail);
|
||||
}
|
||||
|
||||
// Remember where we stopped so that we can continue later.
|
||||
set_last_setup_region(MemRegion(head.start(), tail.end()));
|
||||
}
|
||||
|
||||
set_bottom(mr.start());
|
||||
set_end(mr.end());
|
||||
|
||||
if (clear_space) {
|
||||
clear(mangle_space);
|
||||
|
@ -25,7 +25,10 @@
|
||||
// A MutableSpace is a subtype of ImmutableSpace that supports the
|
||||
// concept of allocation. This includes the concepts that a space may
|
||||
// be only partially full, and the querry methods that go with such
|
||||
// an assumption.
|
||||
// an assumption. MutableSpace is also responsible for minimizing the
|
||||
// page allocation time by having the memory pretouched (with
|
||||
// AlwaysPretouch) and for optimizing page placement on NUMA systems
|
||||
// by make the underlying region interleaved (with UseNUMA).
|
||||
//
|
||||
// Invariant: (ImmutableSpace +) bottom() <= top() <= end()
|
||||
// top() is inclusive and end() is exclusive.
|
||||
@ -37,15 +40,23 @@ class MutableSpace: public ImmutableSpace {
|
||||
|
||||
// Helper for mangling unused space in debug builds
|
||||
MutableSpaceMangler* _mangler;
|
||||
|
||||
// The last region which page had been setup to be interleaved.
|
||||
MemRegion _last_setup_region;
|
||||
size_t _alignment;
|
||||
protected:
|
||||
HeapWord* _top;
|
||||
|
||||
MutableSpaceMangler* mangler() { return _mangler; }
|
||||
|
||||
void numa_setup_pages(MemRegion mr, bool clear_space);
|
||||
void pretouch_pages(MemRegion mr);
|
||||
|
||||
void set_last_setup_region(MemRegion mr) { _last_setup_region = mr; }
|
||||
MemRegion last_setup_region() const { return _last_setup_region; }
|
||||
|
||||
public:
|
||||
virtual ~MutableSpace();
|
||||
MutableSpace();
|
||||
MutableSpace(size_t page_size);
|
||||
|
||||
// Accessors
|
||||
HeapWord* top() const { return _top; }
|
||||
@ -57,13 +68,20 @@ class MutableSpace: public ImmutableSpace {
|
||||
virtual void set_bottom(HeapWord* value) { _bottom = value; }
|
||||
virtual void set_end(HeapWord* value) { _end = value; }
|
||||
|
||||
size_t alignment() { return _alignment; }
|
||||
|
||||
// Returns a subregion containing all objects in this space.
|
||||
MemRegion used_region() { return MemRegion(bottom(), top()); }
|
||||
|
||||
static const bool SetupPages = true;
|
||||
static const bool DontSetupPages = false;
|
||||
|
||||
// Initialization
|
||||
virtual void initialize(MemRegion mr,
|
||||
bool clear_space,
|
||||
bool mangle_space);
|
||||
bool mangle_space,
|
||||
bool setup_pages = SetupPages);
|
||||
|
||||
virtual void clear(bool mangle_space);
|
||||
// Does the usual initialization but optionally resets top to bottom.
|
||||
#if 0 // MANGLE_SPACE
|
||||
|
@ -721,12 +721,6 @@ ReferenceProcessor::process_phase3(DiscoveredList& refs_list,
|
||||
iter.obj(), iter.obj()->blueprint()->internal_name());
|
||||
}
|
||||
assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
|
||||
// If discovery is concurrent, we may have objects with null referents,
|
||||
// being those that were concurrently cleared after they were discovered
|
||||
// (and not subsequently precleaned).
|
||||
assert( (discovery_is_atomic() && iter.referent()->is_oop())
|
||||
|| (!discovery_is_atomic() && iter.referent()->is_oop_or_null(UseConcMarkSweepGC)),
|
||||
"Adding a bad referent");
|
||||
iter.next();
|
||||
}
|
||||
// Remember to keep sentinel pointer around
|
||||
|
@ -1307,7 +1307,14 @@ class CommandLineFlags {
|
||||
product(intx, ParGCArrayScanChunk, 50, \
|
||||
"Scan a subset and push remainder, if array is bigger than this") \
|
||||
\
|
||||
product(intx, ParGCDesiredObjsFromOverflowList, 20, \
|
||||
notproduct(bool, ParGCWorkQueueOverflowALot, false, \
|
||||
"Whether we should simulate work queue overflow in ParNew") \
|
||||
\
|
||||
notproduct(uintx, ParGCWorkQueueOverflowInterval, 1000, \
|
||||
"An `interval' counter that determines how frequently" \
|
||||
" we simulate overflow; a smaller number increases frequency") \
|
||||
\
|
||||
product(uintx, ParGCDesiredObjsFromOverflowList, 20, \
|
||||
"The desired number of objects to claim from the overflow list") \
|
||||
\
|
||||
product(uintx, CMSParPromoteBlocksToClaim, 50, \
|
||||
@ -1429,8 +1436,8 @@ class CommandLineFlags {
|
||||
"Whether we should simulate frequent marking stack / work queue" \
|
||||
" overflow") \
|
||||
\
|
||||
notproduct(intx, CMSMarkStackOverflowInterval, 1000, \
|
||||
"A per-thread `interval' counter that determines how frequently" \
|
||||
notproduct(uintx, CMSMarkStackOverflowInterval, 1000, \
|
||||
"An `interval' counter that determines how frequently" \
|
||||
" we simulate overflow; a smaller number increases frequency") \
|
||||
\
|
||||
product(uintx, CMSMaxAbortablePrecleanLoops, 0, \
|
||||
@ -1648,7 +1655,7 @@ class CommandLineFlags {
|
||||
develop(uintx, WorkStealingYieldsBeforeSleep, 1000, \
|
||||
"Number of yields before a sleep is done during workstealing") \
|
||||
\
|
||||
product(uintx, PreserveMarkStackSize, 40, \
|
||||
product(uintx, PreserveMarkStackSize, 1024, \
|
||||
"Size for stack used in promotion failure handling") \
|
||||
\
|
||||
product_pd(bool, UseTLAB, "Use thread-local object allocation") \
|
||||
|
Loading…
x
Reference in New Issue
Block a user