7130085: Port fdlibm hypot to Java
Reviewed-by: bpb
This commit is contained in:
parent
f6878d40ef
commit
47814c8df0
@ -157,7 +157,6 @@ SUNWprivate_1.1 {
|
||||
Java_java_lang_StrictMath_cosh;
|
||||
Java_java_lang_StrictMath_sinh;
|
||||
Java_java_lang_StrictMath_tanh;
|
||||
Java_java_lang_StrictMath_hypot;
|
||||
Java_java_lang_StrictMath_log1p;
|
||||
Java_java_lang_StrictMath_expm1;
|
||||
Java_java_lang_Object_getClass;
|
||||
|
@ -26,7 +26,8 @@
|
||||
package java.lang;
|
||||
|
||||
/**
|
||||
* Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
|
||||
* Port of the "Freely Distributable Math Library", version 5.3, from
|
||||
* C to Java.
|
||||
*
|
||||
* <p>The C version of fdlibm relied on the idiom of pointer aliasing
|
||||
* a 64-bit double floating-point value as a two-element array of
|
||||
@ -37,7 +38,7 @@ package java.lang;
|
||||
* operated on as integer values, the standard library methods for
|
||||
* bitwise floating-point to integer conversion,
|
||||
* Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
|
||||
* or indirectly used .
|
||||
* or indirectly used.
|
||||
*
|
||||
* <p>The C version of fdlibm also took some pains to signal the
|
||||
* correct IEEE 754 exceptional conditions divide by zero, invalid,
|
||||
@ -47,13 +48,21 @@ package java.lang;
|
||||
* handling is not supported natively in the JVM, such coding patterns
|
||||
* have been omitted from this port. For example, rather than {@code
|
||||
* return huge * huge}, this port will use {@code return INFINITY}.
|
||||
*
|
||||
* <p>Various comparison and arithmetic operations in fdlibm could be
|
||||
* done either based on the integer view of a value or directly on the
|
||||
* floating-point representation. Which idiom is faster may depend on
|
||||
* platform specific factors. However, for code clarity if no other
|
||||
* reason, this port will favor expressing the semantics of those
|
||||
* operations in terms of floating-point operations when convenient to
|
||||
* do so.
|
||||
*/
|
||||
class FdLibm {
|
||||
// Constants used by multiple algorithms
|
||||
private static final double INFINITY = Double.POSITIVE_INFINITY;
|
||||
|
||||
private FdLibm() {
|
||||
throw new UnsupportedOperationException("No instances for you.");
|
||||
throw new UnsupportedOperationException("No FdLibm instances for you.");
|
||||
}
|
||||
|
||||
/**
|
||||
@ -90,6 +99,139 @@ class FdLibm {
|
||||
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
|
||||
}
|
||||
|
||||
/**
|
||||
* hypot(x,y)
|
||||
*
|
||||
* Method :
|
||||
* If (assume round-to-nearest) z = x*x + y*y
|
||||
* has error less than sqrt(2)/2 ulp, than
|
||||
* sqrt(z) has error less than 1 ulp (exercise).
|
||||
*
|
||||
* So, compute sqrt(x*x + y*y) with some care as
|
||||
* follows to get the error below 1 ulp:
|
||||
*
|
||||
* Assume x > y > 0;
|
||||
* (if possible, set rounding to round-to-nearest)
|
||||
* 1. if x > 2y use
|
||||
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
|
||||
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
|
||||
* 2. if x <= 2y use
|
||||
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
|
||||
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
|
||||
* y1= y with lower 32 bits chopped, y2 = y - y1.
|
||||
*
|
||||
* NOTE: scaling may be necessary if some argument is too
|
||||
* large or too tiny
|
||||
*
|
||||
* Special cases:
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
|
||||
* than 1 ulp (unit in the last place)
|
||||
*/
|
||||
public static class Hypot {
|
||||
public static final double TWO_MINUS_600 = 0x1.0p-600;
|
||||
public static final double TWO_PLUS_600 = 0x1.0p+600;
|
||||
|
||||
public static strictfp double compute(double x, double y) {
|
||||
double a = Math.abs(x);
|
||||
double b = Math.abs(y);
|
||||
|
||||
if (!Double.isFinite(a) || !Double.isFinite(b)) {
|
||||
if (a == INFINITY || b == INFINITY)
|
||||
return INFINITY;
|
||||
else
|
||||
return a + b; // Propagate NaN significand bits
|
||||
}
|
||||
|
||||
if (b > a) {
|
||||
double tmp = a;
|
||||
a = b;
|
||||
b = tmp;
|
||||
}
|
||||
assert a >= b;
|
||||
|
||||
// Doing bitwise conversion after screening for NaN allows
|
||||
// the code to not worry about the possibility of
|
||||
// "negative" NaN values.
|
||||
|
||||
// Note: the ha and hb variables are the high-order
|
||||
// 32-bits of a and b stored as integer values. The ha and
|
||||
// hb values are used first for a rough magnitude
|
||||
// comparison of a and b and second for simulating higher
|
||||
// precision by allowing a and b, respectively, to be
|
||||
// decomposed into non-overlapping portions. Both of these
|
||||
// uses could be eliminated. The magnitude comparison
|
||||
// could be eliminated by extracting and comparing the
|
||||
// exponents of a and b or just be performing a
|
||||
// floating-point divide. Splitting a floating-point
|
||||
// number into non-overlapping portions can be
|
||||
// accomplished by judicious use of multiplies and
|
||||
// additions. For details see T. J. Dekker, A Floating
|
||||
// Point Technique for Extending the Available Precision ,
|
||||
// Numerische Mathematik, vol. 18, 1971, pp.224-242 and
|
||||
// subsequent work.
|
||||
|
||||
int ha = __HI(a); // high word of a
|
||||
int hb = __HI(b); // high word of b
|
||||
|
||||
if ((ha - hb) > 0x3c00000) {
|
||||
return a + b; // x / y > 2**60
|
||||
}
|
||||
|
||||
int k = 0;
|
||||
if (a > 0x1.0p500) { // a > 2**500
|
||||
// scale a and b by 2**-600
|
||||
ha -= 0x25800000;
|
||||
hb -= 0x25800000;
|
||||
a = a * TWO_MINUS_600;
|
||||
b = b * TWO_MINUS_600;
|
||||
k += 600;
|
||||
}
|
||||
double t1, t2;
|
||||
if (b < 0x1.0p-500) { // b < 2**-500
|
||||
if (b < Double.MIN_NORMAL) { // subnormal b or 0 */
|
||||
if (b == 0.0)
|
||||
return a;
|
||||
t1 = 0x1.0p1022; // t1 = 2^1022
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 1022;
|
||||
} else { // scale a and b by 2^600
|
||||
ha += 0x25800000; // a *= 2^600
|
||||
hb += 0x25800000; // b *= 2^600
|
||||
a = a * TWO_PLUS_600;
|
||||
b = b * TWO_PLUS_600;
|
||||
k -= 600;
|
||||
}
|
||||
}
|
||||
// medium size a and b
|
||||
double w = a - b;
|
||||
if (w > b) {
|
||||
t1 = 0;
|
||||
t1 = __HI(t1, ha);
|
||||
t2 = a - t1;
|
||||
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
|
||||
} else {
|
||||
double y1, y2;
|
||||
a = a + a;
|
||||
y1 = 0;
|
||||
y1 = __HI(y1, hb);
|
||||
y2 = b - y1;
|
||||
t1 = 0;
|
||||
t1 = __HI(t1, ha + 0x00100000);
|
||||
t2 = a - t1;
|
||||
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
|
||||
}
|
||||
if (k != 0) {
|
||||
return Math.powerOfTwoD(k) * w;
|
||||
} else
|
||||
return w;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute x**y
|
||||
* n
|
||||
@ -97,7 +239,7 @@ class FdLibm {
|
||||
* 1. Compute and return log2(x) in two pieces:
|
||||
* log2(x) = w1 + w2,
|
||||
* where w1 has 53 - 24 = 29 bit trailing zeros.
|
||||
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
||||
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
|
||||
* arithmetic, where |y'| <= 0.5.
|
||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
||||
*
|
||||
|
@ -1329,7 +1329,9 @@ public final class StrictMath {
|
||||
* without intermediate overflow or underflow
|
||||
* @since 1.5
|
||||
*/
|
||||
public static native double hypot(double x, double y);
|
||||
public static double hypot(double x, double y) {
|
||||
return FdLibm.Hypot.compute(x, y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns <i>e</i><sup>x</sup> -1. Note that for values of
|
||||
|
@ -1,128 +0,0 @@
|
||||
|
||||
/*
|
||||
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/* __ieee754_hypot(x,y)
|
||||
*
|
||||
* Method :
|
||||
* If (assume round-to-nearest) z=x*x+y*y
|
||||
* has error less than sqrt(2)/2 ulp, than
|
||||
* sqrt(z) has error less than 1 ulp (exercise).
|
||||
*
|
||||
* So, compute sqrt(x*x+y*y) with some care as
|
||||
* follows to get the error below 1 ulp:
|
||||
*
|
||||
* Assume x>y>0;
|
||||
* (if possible, set rounding to round-to-nearest)
|
||||
* 1. if x > 2y use
|
||||
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
||||
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
|
||||
* 2. if x <= 2y use
|
||||
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
||||
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
|
||||
* y1= y with lower 32 bits chopped, y2 = y-y1.
|
||||
*
|
||||
* NOTE: scaling may be necessary if some argument is too
|
||||
* large or too tiny
|
||||
*
|
||||
* Special cases:
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns sqrt(x^2+y^2) with error less
|
||||
* than 1 ulps (units in the last place)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_hypot(double x, double y)
|
||||
#else
|
||||
double __ieee754_hypot(x,y)
|
||||
double x, y;
|
||||
#endif
|
||||
{
|
||||
double a=x,b=y,t1,t2,y1,y2,w;
|
||||
int j,k,ha,hb;
|
||||
|
||||
ha = __HI(x)&0x7fffffff; /* high word of x */
|
||||
hb = __HI(y)&0x7fffffff; /* high word of y */
|
||||
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
||||
__HI(a) = ha; /* a <- |a| */
|
||||
__HI(b) = hb; /* b <- |b| */
|
||||
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
|
||||
k=0;
|
||||
if(ha > 0x5f300000) { /* a>2**500 */
|
||||
if(ha >= 0x7ff00000) { /* Inf or NaN */
|
||||
w = a+b; /* for sNaN */
|
||||
if(((ha&0xfffff)|__LO(a))==0) w = a;
|
||||
if(((hb^0x7ff00000)|__LO(b))==0) w = b;
|
||||
return w;
|
||||
}
|
||||
/* scale a and b by 2**-600 */
|
||||
ha -= 0x25800000; hb -= 0x25800000; k += 600;
|
||||
__HI(a) = ha;
|
||||
__HI(b) = hb;
|
||||
}
|
||||
if(hb < 0x20b00000) { /* b < 2**-500 */
|
||||
if(hb <= 0x000fffff) { /* subnormal b or 0 */
|
||||
if((hb|(__LO(b)))==0) return a;
|
||||
t1=0;
|
||||
__HI(t1) = 0x7fd00000; /* t1=2^1022 */
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 1022;
|
||||
} else { /* scale a and b by 2^600 */
|
||||
ha += 0x25800000; /* a *= 2^600 */
|
||||
hb += 0x25800000; /* b *= 2^600 */
|
||||
k -= 600;
|
||||
__HI(a) = ha;
|
||||
__HI(b) = hb;
|
||||
}
|
||||
}
|
||||
/* medium size a and b */
|
||||
w = a-b;
|
||||
if (w>b) {
|
||||
t1 = 0;
|
||||
__HI(t1) = ha;
|
||||
t2 = a-t1;
|
||||
w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
} else {
|
||||
a = a+a;
|
||||
y1 = 0;
|
||||
__HI(y1) = hb;
|
||||
y2 = b - y1;
|
||||
t1 = 0;
|
||||
__HI(t1) = ha+0x00100000;
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if(k!=0) {
|
||||
t1 = 1.0;
|
||||
__HI(t1) += (k<<20);
|
||||
return t1*w;
|
||||
} else return w;
|
||||
}
|
@ -1,52 +0,0 @@
|
||||
|
||||
/*
|
||||
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper hypot(x,y)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double hypot(double x, double y)/* wrapper hypot */
|
||||
#else
|
||||
double hypot(x,y) /* wrapper hypot */
|
||||
double x,y;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_hypot(x,y);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_hypot(x,y);
|
||||
if(_LIB_VERSION == _IEEE_) return z;
|
||||
if((!finite(z))&&finite(x)&&finite(y))
|
||||
return __kernel_standard(x,y,4); /* hypot overflow */
|
||||
else
|
||||
return z;
|
||||
#endif
|
||||
}
|
@ -126,14 +126,6 @@ Java_java_lang_StrictMath_tanh(JNIEnv *env, jclass unused, jdouble d)
|
||||
return (jdouble) jtanh((double)d);
|
||||
}
|
||||
|
||||
JNIEXPORT jdouble JNICALL
|
||||
Java_java_lang_StrictMath_hypot(JNIEnv *env, jclass unused, jdouble x, jdouble y)
|
||||
{
|
||||
return (jdouble) jhypot((double)x, (double)y);
|
||||
}
|
||||
|
||||
|
||||
|
||||
JNIEXPORT jdouble JNICALL
|
||||
Java_java_lang_StrictMath_log1p(JNIEnv *env, jclass unused, jdouble d)
|
||||
{
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2003, 2004, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -42,9 +42,37 @@
|
||||
public class HypotTests {
|
||||
private HypotTests(){}
|
||||
|
||||
/**
|
||||
* The hypot implementation is commutative, {@code hypot(a, b) ==
|
||||
* hypot(b, a)}, and independent of sign, {@code hypot(a, b) ==
|
||||
* hypot(-a, b) == hypot(a, -b) == hypot(-a, -b)}.
|
||||
*/
|
||||
static int testHypotCase(double input1, double input2, double expected) {
|
||||
return Tests.test("StrictMath.hypot(double)", input1, input2,
|
||||
StrictMath.hypot(input1, input2), expected);
|
||||
int failures = 0;
|
||||
failures += Tests.test("StrictMath.hypot(double)", input1, input2,
|
||||
StrictMath.hypot(input1, input2), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", input2, input1,
|
||||
StrictMath.hypot(input2, input1), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", -input1, input2,
|
||||
StrictMath.hypot(-input1, input2), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", input2, -input1,
|
||||
StrictMath.hypot(input2, -input1), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", input1, -input2,
|
||||
StrictMath.hypot(input1, -input2), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", -input2, input1,
|
||||
StrictMath.hypot(-input2, input1), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", -input1, -input2,
|
||||
StrictMath.hypot(-input1, -input2), expected);
|
||||
|
||||
failures += Tests.test("StrictMath.hypot(double)", -input2, -input1,
|
||||
StrictMath.hypot(-input2, -input1), expected);
|
||||
return failures;
|
||||
}
|
||||
|
||||
static int testHypot() {
|
||||
@ -611,21 +639,60 @@ public class HypotTests {
|
||||
{0x1.8p1, 0x1.8bffffffffff6p6, 0x1.8c2e88e6f44b1p6},
|
||||
{0x1.8p1, 0x1.8ffffffffffe8p6, 0x1.902e11d3b5549p6},
|
||||
{0x1.8p1, 0x1.8fffffffffffep6, 0x1.902e11d3b556p6},
|
||||
|
||||
// Test near decision points of the fdlibm algorithm
|
||||
{0x1.0000000000001p501, 0x1.000000000000p501, 0x1.6a09e667f3bcdp501},
|
||||
{0x1.0p501, 0x1.0p499, 0x1.07e0f66afed07p501},
|
||||
|
||||
{0x1.0p500, 0x1.0p450, 0x1.0p500},
|
||||
{0x1.0000000000001p500, 0x1.0p450, 0x1.0000000000001p500},
|
||||
|
||||
{0x1.0p500, 0x1.0p440, 0x1.0p500},
|
||||
{0x1.0000000000001p500, 0x1.0p440, 0x1.0000000000001p500},
|
||||
{0x1.0p500, 0x1.0p439, 0x1.0p500},
|
||||
{0x1.0000000000001p500, 0x1.0p439, 0x1.0000000000001p500},
|
||||
|
||||
{0x1.0p-450, 0x1.0p-500, 0x1.0p-450},
|
||||
{0x1.0000000000001p-450, 0x1.0p-500, 0x1.0000000000001p-450},
|
||||
{0x1.0p-450, 0x1.fffffffffffffp-499, 0x1.0p-450},
|
||||
{0x1.0000000000001p-450, 0x1.fffffffffffffp-499, 0x1.0000000000001p-450},
|
||||
|
||||
|
||||
{0x1.0p-450, 0x1.0p-500, 0x1.0p-450},
|
||||
{0x1.0000000000001p-450, 0x1.0p-500, 0x1.0000000000001p-450},
|
||||
{0x1.0p-450, 0x1.fffffffffffffp-499, 0x1.0p-450},
|
||||
{0x1.0000000000001p-450, 0x1.fffffffffffffp-499, 0x1.0000000000001p-450},
|
||||
|
||||
// 0x1.0p-1022 is MIN_NORMAL
|
||||
{0x1.0000000000001p-1022, 0x1.0000000000001p-1022, 0x1.6a09e667f3bcep-1022},
|
||||
{0x1.0000000000001p-1022, 0x1.0p-1022, 0x1.6a09e667f3bcdp-1022},
|
||||
{0x1.0000000000001p-1022, 0x0.fffffffffffffp-1022, 0x1.6a09e667f3bcdp-1022},
|
||||
{0x1.0000000000001p-1022, 0x0.0000000000001P-1022, 0x1.0000000000001p-1022},
|
||||
{0x1.0000000000001p-1022, 0.0, 0x1.0000000000001p-1022},
|
||||
|
||||
{0x1.0000000000000p-1022, 0x0.fffffffffffffp-1022, 0x1.6a09e667f3bccp-1022},
|
||||
{0x1.0000000000000p-1021, 0x0.fffffffffffffp-1022, 0x1.1e3779b97f4a8p-1021},
|
||||
{0x1.0000000000000p-1020, 0x0.fffffffffffffp-1022, 0x1.07e0f66afed07p-1020},
|
||||
|
||||
// 0x0.0000000000001P-1022 is MIN_VALUE (smallest nonzero number)
|
||||
{0x0.0000000000001p-1022, 0x0.0000000000001p-1022, 0x0.0000000000001p-1022},
|
||||
{0x0.0000000000002p-1022, 0x0.0000000000001p-1022, 0x0.0000000000002p-1022},
|
||||
{0x0.0000000000003p-1022, 0x0.0000000000002p-1022, 0x0.0000000000004p-1022},
|
||||
};
|
||||
|
||||
for (double[] testCase: testCases)
|
||||
failures+=testHypotCase(testCase[0], testCase[1], testCase[2]);
|
||||
failures += testHypotCase(testCase[0], testCase[1], testCase[2]);
|
||||
|
||||
return failures;
|
||||
}
|
||||
|
||||
public static void main(String [] argv) {
|
||||
public static void main(String... args) {
|
||||
int failures = 0;
|
||||
|
||||
failures += testHypot();
|
||||
|
||||
if (failures > 0) {
|
||||
System.err.println("Testing log1p incurred "
|
||||
System.err.println("Testing hypot incurred "
|
||||
+ failures + " failures.");
|
||||
throw new RuntimeException();
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user