6765745: par compact - allow young gen spaces to be split

Reviewed-by: jmasa
This commit is contained in:
John Coomes 2008-12-11 12:05:14 -08:00
parent 000b184507
commit 7a9585170d
2 changed files with 516 additions and 162 deletions

View File

@ -88,6 +88,72 @@ GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
#endif
void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
HeapWord* destination)
{
assert(src_region_idx != 0, "invalid src_region_idx");
assert(partial_obj_size != 0, "invalid partial_obj_size argument");
assert(destination != NULL, "invalid destination argument");
_src_region_idx = src_region_idx;
_partial_obj_size = partial_obj_size;
_destination = destination;
// These fields may not be updated below, so make sure they're clear.
assert(_dest_region_addr == NULL, "should have been cleared");
assert(_first_src_addr == NULL, "should have been cleared");
// Determine the number of destination regions for the partial object.
HeapWord* const last_word = destination + partial_obj_size - 1;
const ParallelCompactData& sd = PSParallelCompact::summary_data();
HeapWord* const beg_region_addr = sd.region_align_down(destination);
HeapWord* const end_region_addr = sd.region_align_down(last_word);
if (beg_region_addr == end_region_addr) {
// One destination region.
_destination_count = 1;
if (end_region_addr == destination) {
// The destination falls on a region boundary, thus the first word of the
// partial object will be the first word copied to the destination region.
_dest_region_addr = end_region_addr;
_first_src_addr = sd.region_to_addr(src_region_idx);
}
} else {
// Two destination regions. When copied, the partial object will cross a
// destination region boundary, so a word somewhere within the partial
// object will be the first word copied to the second destination region.
_destination_count = 2;
_dest_region_addr = end_region_addr;
const size_t ofs = pointer_delta(end_region_addr, destination);
assert(ofs < _partial_obj_size, "sanity");
_first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
}
}
void SplitInfo::clear()
{
_src_region_idx = 0;
_partial_obj_size = 0;
_destination = NULL;
_destination_count = 0;
_dest_region_addr = NULL;
_first_src_addr = NULL;
assert(!is_valid(), "sanity");
}
#ifdef ASSERT
void SplitInfo::verify_clear()
{
assert(_src_region_idx == 0, "not clear");
assert(_partial_obj_size == 0, "not clear");
assert(_destination == NULL, "not clear");
assert(_destination_count == 0, "not clear");
assert(_dest_region_addr == NULL, "not clear");
assert(_first_src_addr == NULL, "not clear");
}
#endif // #ifdef ASSERT
#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
"perm", "old ", "eden", "from", "to "
@ -416,21 +482,134 @@ ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
}
}
bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
HeapWord* source_beg, HeapWord* source_end,
HeapWord** target_next,
HeapWord** source_next) {
// This is too strict.
// assert(region_offset(source_beg) == 0, "not RegionSize aligned");
// Find the point at which a space can be split and, if necessary, record the
// split point.
//
// If the current src region (which overflowed the destination space) doesn't
// have a partial object, the split point is at the beginning of the current src
// region (an "easy" split, no extra bookkeeping required).
//
// If the current src region has a partial object, the split point is in the
// region where that partial object starts (call it the split_region). If
// split_region has a partial object, then the split point is just after that
// partial object (a "hard" split where we have to record the split data and
// zero the partial_obj_size field). With a "hard" split, we know that the
// partial_obj ends within split_region because the partial object that caused
// the overflow starts in split_region. If split_region doesn't have a partial
// obj, then the split is at the beginning of split_region (another "easy"
// split).
HeapWord*
ParallelCompactData::summarize_split_space(size_t src_region,
SplitInfo& split_info,
HeapWord* destination,
HeapWord* target_end,
HeapWord** target_next)
{
assert(destination <= target_end, "sanity");
assert(destination + _region_data[src_region].data_size() > target_end,
"region should not fit into target space");
size_t split_region = src_region;
HeapWord* split_destination = destination;
size_t partial_obj_size = _region_data[src_region].partial_obj_size();
if (destination + partial_obj_size > target_end) {
// The split point is just after the partial object (if any) in the
// src_region that contains the start of the object that overflowed the
// destination space.
//
// Find the start of the "overflow" object and set split_region to the
// region containing it.
HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
split_region = addr_to_region_idx(overflow_obj);
// Clear the source_region field of all destination regions whose first word
// came from data after the split point (a non-null source_region field
// implies a region must be filled).
//
// An alternative to the simple loop below: clear during post_compact(),
// which uses memcpy instead of individual stores, and is easy to
// parallelize. (The downside is that it clears the entire RegionData
// object as opposed to just one field.)
//
// post_compact() would have to clear the summary data up to the highest
// address that was written during the summary phase, which would be
//
// max(top, max(new_top, clear_top))
//
// where clear_top is a new field in SpaceInfo. Would have to set clear_top
// to destination + partial_obj_size, where both have the values passed to
// this routine.
const RegionData* const sr = region(split_region);
const size_t beg_idx =
addr_to_region_idx(region_align_up(sr->destination() +
sr->partial_obj_size()));
const size_t end_idx =
addr_to_region_idx(region_align_up(destination + partial_obj_size));
if (TraceParallelOldGCSummaryPhase) {
gclog_or_tty->print_cr("split: clearing source_region field in ["
SIZE_FORMAT ", " SIZE_FORMAT ")",
beg_idx, end_idx);
}
for (size_t idx = beg_idx; idx < end_idx; ++idx) {
_region_data[idx].set_source_region(0);
}
// Set split_destination and partial_obj_size to reflect the split region.
split_destination = sr->destination();
partial_obj_size = sr->partial_obj_size();
}
// The split is recorded only if a partial object extends onto the region.
if (partial_obj_size != 0) {
_region_data[split_region].set_partial_obj_size(0);
split_info.record(split_region, partial_obj_size, split_destination);
}
// Setup the continuation addresses.
*target_next = split_destination + partial_obj_size;
HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
"sb=" PTR_FORMAT " se=" PTR_FORMAT " "
"tn=" PTR_FORMAT " sn=" PTR_FORMAT,
target_beg, target_end,
source_beg, source_end,
target_next != 0 ? *target_next : (HeapWord*) 0,
source_next != 0 ? *source_next : (HeapWord*) 0);
const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
" pos=" SIZE_FORMAT,
split_type, source_next, split_region,
partial_obj_size);
gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
" tn=" PTR_FORMAT,
split_type, split_destination,
addr_to_region_idx(split_destination),
*target_next);
if (partial_obj_size != 0) {
HeapWord* const po_beg = split_info.destination();
HeapWord* const po_end = po_beg + split_info.partial_obj_size();
gclog_or_tty->print_cr("%s split: "
"po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
"po_end=" PTR_FORMAT " " SIZE_FORMAT,
split_type,
po_beg, addr_to_region_idx(po_beg),
po_end, addr_to_region_idx(po_end));
}
}
return source_next;
}
bool ParallelCompactData::summarize(SplitInfo& split_info,
HeapWord* source_beg, HeapWord* source_end,
HeapWord** source_next,
HeapWord* target_beg, HeapWord* target_end,
HeapWord** target_next)
{
if (TraceParallelOldGCSummaryPhase) {
HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
"tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
source_beg, source_end, source_next_val,
target_beg, target_end, *target_next);
}
size_t cur_region = addr_to_region_idx(source_beg);
@ -438,45 +617,53 @@ bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
HeapWord *dest_addr = target_beg;
while (cur_region < end_region) {
size_t words = _region_data[cur_region].data_size();
#if 1
assert(pointer_delta(target_end, dest_addr) >= words,
"source region does not fit into target region");
#else
// XXX - need some work on the corner cases here. If the region does not
// fit, then must either make sure any partial_obj from the region fits, or
// "undo" the initial part of the partial_obj that is in the previous
// region.
if (dest_addr + words >= target_end) {
// Let the caller know where to continue.
*target_next = dest_addr;
*source_next = region_to_addr(cur_region);
return false;
}
#endif // #if 1
// The destination must be set even if the region has no data.
_region_data[cur_region].set_destination(dest_addr);
// Set the destination_count for cur_region, and if necessary, update
// source_region for a destination region. The source_region field is
// updated if cur_region is the first (left-most) region to be copied to a
// destination region.
//
// The destination_count calculation is a bit subtle. A region that has
// data that compacts into itself does not count itself as a destination.
// This maintains the invariant that a zero count means the region is
// available and can be claimed and then filled.
size_t words = _region_data[cur_region].data_size();
if (words > 0) {
// If cur_region does not fit entirely into the target space, find a point
// at which the source space can be 'split' so that part is copied to the
// target space and the rest is copied elsewhere.
if (dest_addr + words > target_end) {
assert(source_next != NULL, "source_next is NULL when splitting");
*source_next = summarize_split_space(cur_region, split_info, dest_addr,
target_end, target_next);
return false;
}
// Compute the destination_count for cur_region, and if necessary, update
// source_region for a destination region. The source_region field is
// updated if cur_region is the first (left-most) region to be copied to a
// destination region.
//
// The destination_count calculation is a bit subtle. A region that has
// data that compacts into itself does not count itself as a destination.
// This maintains the invariant that a zero count means the region is
// available and can be claimed and then filled.
uint destination_count = 0;
if (split_info.is_split(cur_region)) {
// The current region has been split: the partial object will be copied
// to one destination space and the remaining data will be copied to
// another destination space. Adjust the initial destination_count and,
// if necessary, set the source_region field if the partial object will
// cross a destination region boundary.
destination_count = split_info.destination_count();
if (destination_count == 2) {
size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
_region_data[dest_idx].set_source_region(cur_region);
}
}
HeapWord* const last_addr = dest_addr + words - 1;
const size_t dest_region_1 = addr_to_region_idx(dest_addr);
const size_t dest_region_2 = addr_to_region_idx(last_addr);
#if 0
// Initially assume that the destination regions will be the same and
// adjust the value below if necessary. Under this assumption, if
// cur_region == dest_region_2, then cur_region will be compacted
// completely into itself.
uint destination_count = cur_region == dest_region_2 ? 0 : 1;
destination_count += cur_region == dest_region_2 ? 0 : 1;
if (dest_region_1 != dest_region_2) {
// Destination regions differ; adjust destination_count.
destination_count += 1;
@ -487,25 +674,6 @@ bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
// region.
_region_data[dest_region_1].set_source_region(cur_region);
}
#else
// Initially assume that the destination regions will be different and
// adjust the value below if necessary. Under this assumption, if
// cur_region == dest_region2, then cur_region will be compacted partially
// into dest_region_1 and partially into itself.
uint destination_count = cur_region == dest_region_2 ? 1 : 2;
if (dest_region_1 != dest_region_2) {
// Data from cur_region will be copied to the start of dest_region_2.
_region_data[dest_region_2].set_source_region(cur_region);
} else {
// Destination regions are the same; adjust destination_count.
destination_count -= 1;
if (region_offset(dest_addr) == 0) {
// Data from cur_region will be copied to the start of the destination
// region.
_region_data[dest_region_1].set_source_region(cur_region);
}
}
#endif // #if 0
_region_data[cur_region].set_destination_count(destination_count);
_region_data[cur_region].set_data_location(region_to_addr(cur_region));
@ -749,6 +917,13 @@ PSParallelCompact::clear_data_covering_space(SpaceId id)
const size_t end_region =
_summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
_summary_data.clear_range(beg_region, end_region);
// Clear the data used to 'split' regions.
SplitInfo& split_info = _space_info[id].split_info();
if (split_info.is_valid()) {
split_info.clear();
}
DEBUG_ONLY(split_info.verify_clear();)
}
void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
@ -807,10 +982,11 @@ void PSParallelCompact::post_compact()
{
TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
// Clear the marking bitmap and summary data and update top() in each space.
for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
// Clear the marking bitmap, summary data and split info.
clear_data_covering_space(SpaceId(id));
_space_info[id].space()->set_top(_space_info[id].new_top());
// Update top(). Must be done after clearing the bitmap and summary data.
_space_info[id].publish_new_top();
}
MutableSpace* const eden_space = _space_info[eden_space_id].space();
@ -1243,10 +1419,11 @@ void PSParallelCompact::summarize_spaces_quick()
{
for (unsigned int i = 0; i < last_space_id; ++i) {
const MutableSpace* space = _space_info[i].space();
bool result = _summary_data.summarize(space->bottom(), space->end(),
space->bottom(), space->top(),
_space_info[i].new_top_addr());
assert(result, "should never fail");
HeapWord** nta = _space_info[i].new_top_addr();
bool result = _summary_data.summarize(_space_info[i].split_info(),
space->bottom(), space->top(), NULL,
space->bottom(), space->end(), nta);
assert(result, "space must fit into itself");
_space_info[i].set_dense_prefix(space->bottom());
}
}
@ -1308,7 +1485,7 @@ void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
}
#endif // #ifdef _LP64
gc_heap()->fill_with_object(obj_beg, obj_len);
CollectedHeap::fill_with_object(obj_beg, obj_len);
_mark_bitmap.mark_obj(obj_beg, obj_len);
_summary_data.add_obj(obj_beg, obj_len);
assert(start_array(id) != NULL, "sanity");
@ -1316,6 +1493,17 @@ void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
}
}
void
PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
{
RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
cur->set_source_region(0);
}
}
void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
@ -1337,20 +1525,24 @@ PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
}
#endif // #ifndef PRODUCT
// If dead space crosses the dense prefix boundary, it is (at least
// partially) filled with a dummy object, marked live and added to the
// summary data. This simplifies the copy/update phase and must be done
// before the final locations of objects are determined, to prevent leaving
// a fragment of dead space that is too small to fill with an object.
// Recompute the summary data, taking into account the dense prefix. If every
// last byte will be reclaimed, then the existing summary data which compacts
// everything can be left in place.
if (!maximum_compaction && dense_prefix_end != space->bottom()) {
// If dead space crosses the dense prefix boundary, it is (at least
// partially) filled with a dummy object, marked live and added to the
// summary data. This simplifies the copy/update phase and must be done
// before the final locations of objects are determined, to prevent leaving
// a fragment of dead space that is too small to fill with an object.
fill_dense_prefix_end(id);
}
// Compute the destination of each Region, and thus each object.
_summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
_summary_data.summarize(dense_prefix_end, space->end(),
dense_prefix_end, space->top(),
_space_info[id].new_top_addr());
// Compute the destination of each Region, and thus each object.
_summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
_summary_data.summarize(_space_info[id].split_info(),
dense_prefix_end, space->top(), NULL,
dense_prefix_end, space->end(),
_space_info[id].new_top_addr());
}
}
if (TraceParallelOldGCSummaryPhase) {
@ -1370,6 +1562,30 @@ PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
}
}
#ifndef PRODUCT
void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
HeapWord* dst_beg, HeapWord* dst_end,
SpaceId src_space_id,
HeapWord* src_beg, HeapWord* src_end)
{
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("summarizing %d [%s] into %d [%s]: "
"src=" PTR_FORMAT "-" PTR_FORMAT " "
SIZE_FORMAT "-" SIZE_FORMAT " "
"dst=" PTR_FORMAT "-" PTR_FORMAT " "
SIZE_FORMAT "-" SIZE_FORMAT,
src_space_id, space_names[src_space_id],
dst_space_id, space_names[dst_space_id],
src_beg, src_end,
_summary_data.addr_to_region_idx(src_beg),
_summary_data.addr_to_region_idx(src_end),
dst_beg, dst_end,
_summary_data.addr_to_region_idx(dst_beg),
_summary_data.addr_to_region_idx(dst_end));
}
}
#endif // #ifndef PRODUCT
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
bool maximum_compaction)
{
@ -1402,57 +1618,90 @@ void PSParallelCompact::summary_phase(ParCompactionManager* cm,
// The amount of live data that will end up in old space (assuming it fits).
size_t old_space_total_live = 0;
unsigned int id;
for (id = old_space_id; id < last_space_id; ++id) {
assert(perm_space_id < old_space_id, "should not count perm data here");
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
old_space_total_live += pointer_delta(_space_info[id].new_top(),
_space_info[id].space()->bottom());
}
const MutableSpace* old_space = _space_info[old_space_id].space();
MutableSpace* const old_space = _space_info[old_space_id].space();
if (old_space_total_live > old_space->capacity_in_words()) {
// XXX - should also try to expand
maximum_compaction = true;
} else if (!UseParallelOldGCDensePrefix) {
maximum_compaction = true;
}
// Permanent and Old generations.
summarize_space(perm_space_id, maximum_compaction);
summarize_space(old_space_id, maximum_compaction);
// Summarize the remaining spaces (those in the young gen) into old space. If
// the live data from a space doesn't fit, the existing summarization is left
// intact, so the data is compacted down within the space itself.
HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
HeapWord* const target_space_end = old_space->end();
for (id = eden_space_id; id < last_space_id; ++id) {
// Summarize the remaining spaces in the young gen. The initial target space
// is the old gen. If a space does not fit entirely into the target, then the
// remainder is compacted into the space itself and that space becomes the new
// target.
SpaceId dst_space_id = old_space_id;
HeapWord* dst_space_end = old_space->end();
HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
const MutableSpace* space = _space_info[id].space();
const size_t live = pointer_delta(_space_info[id].new_top(),
space->bottom());
const size_t available = pointer_delta(target_space_end, *new_top_addr);
const size_t available = pointer_delta(dst_space_end, *new_top_addr);
NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
SpaceId(id), space->bottom(), space->top());)
if (live > 0 && live <= available) {
// All the live data will fit.
if (TraceParallelOldGCSummaryPhase) {
tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
id, *new_top_addr);
}
_summary_data.summarize(*new_top_addr, target_space_end,
space->bottom(), space->top(),
new_top_addr);
bool done = _summary_data.summarize(_space_info[id].split_info(),
space->bottom(), space->top(),
NULL,
*new_top_addr, dst_space_end,
new_top_addr);
assert(done, "space must fit into old gen");
// XXX - this is necessary because decrement_destination_counts() tests
// source_region() to determine if a region will be filled. Probably
// better to pass src_space->new_top() into decrement_destination_counts
// and test that instead.
//
// Clear the source_region field for each region in the space.
HeapWord* const new_top = _space_info[id].new_top();
HeapWord* const clear_end = _summary_data.region_align_up(new_top);
RegionData* beg_region =
_summary_data.addr_to_region_ptr(space->bottom());
RegionData* end_region = _summary_data.addr_to_region_ptr(clear_end);
while (beg_region < end_region) {
beg_region->set_source_region(0);
++beg_region;
}
clear_source_region(space->bottom(), _space_info[id].new_top());
// Reset the new_top value for the space.
_space_info[id].set_new_top(space->bottom());
} else if (live > 0) {
// Attempt to fit part of the source space into the target space.
HeapWord* next_src_addr = NULL;
bool done = _summary_data.summarize(_space_info[id].split_info(),
space->bottom(), space->top(),
&next_src_addr,
*new_top_addr, dst_space_end,
new_top_addr);
assert(!done, "space should not fit into old gen");
assert(next_src_addr != NULL, "sanity");
// The source space becomes the new target, so the remainder is compacted
// within the space itself.
dst_space_id = SpaceId(id);
dst_space_end = space->end();
new_top_addr = _space_info[id].new_top_addr();
HeapWord* const clear_end = _space_info[id].new_top();
NOT_PRODUCT(summary_phase_msg(dst_space_id,
space->bottom(), dst_space_end,
SpaceId(id), next_src_addr, space->top());)
done = _summary_data.summarize(_space_info[id].split_info(),
next_src_addr, space->top(),
NULL,
space->bottom(), dst_space_end,
new_top_addr);
assert(done, "space must fit when compacted into itself");
assert(*new_top_addr <= space->top(), "usage should not grow");
// XXX - this should go away. See comments above.
//
// Clear the source_region field in regions at the end of the space that
// will not be filled.
HeapWord* const clear_beg = _summary_data.region_align_up(*new_top_addr);
clear_source_region(clear_beg, clear_end);
}
}
@ -2051,14 +2300,13 @@ void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
// regions in the dense prefix. Assume that 1 gc thread
// will work on opening the gaps and the remaining gc threads
// will work on the dense prefix.
SpaceId space_id = old_space_id;
while (space_id != last_space_id) {
unsigned int space_id;
for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
const MutableSpace* const space = _space_info[space_id].space();
if (dense_prefix_end == space->bottom()) {
// There is no dense prefix for this space.
space_id = next_compaction_space_id(space_id);
continue;
}
@ -2108,23 +2356,20 @@ void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
// region_index_end is not processed
size_t region_index_end = MIN2(region_index_start + regions_per_thread,
region_index_end_dense_prefix);
q->enqueue(new UpdateDensePrefixTask(
space_id,
region_index_start,
region_index_end));
q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
region_index_start,
region_index_end));
region_index_start = region_index_end;
}
}
// This gets any part of the dense prefix that did not
// fit evenly.
if (region_index_start < region_index_end_dense_prefix) {
q->enqueue(new UpdateDensePrefixTask(
space_id,
region_index_start,
region_index_end_dense_prefix));
q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
region_index_start,
region_index_end_dense_prefix));
}
space_id = next_compaction_space_id(space_id);
} // End tasks for dense prefix
}
}
void PSParallelCompact::enqueue_region_stealing_tasks(
@ -2570,16 +2815,24 @@ PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
return m->bit_to_addr(cur_beg);
}
HeapWord*
PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
size_t src_region_idx)
HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
SpaceId src_space_id,
size_t src_region_idx)
{
ParMarkBitMap* const bitmap = mark_bitmap();
assert(summary_data().is_region_aligned(dest_addr), "not aligned");
const SplitInfo& split_info = _space_info[src_space_id].split_info();
if (split_info.dest_region_addr() == dest_addr) {
// The partial object ending at the split point contains the first word to
// be copied to dest_addr.
return split_info.first_src_addr();
}
const ParallelCompactData& sd = summary_data();
ParMarkBitMap* const bitmap = mark_bitmap();
const size_t RegionSize = ParallelCompactData::RegionSize;
assert(sd.is_region_aligned(dest_addr), "not aligned");
const RegionData* const src_region_ptr = sd.region(src_region_idx);
const size_t partial_obj_size = src_region_ptr->partial_obj_size();
HeapWord* const src_region_destination = src_region_ptr->destination();
@ -2740,7 +2993,7 @@ void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
HeapWord* src_space_top = _space_info[src_space_id].space()->top();
MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
closure.set_source(first_src_addr(dest_addr, src_region_idx));
closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
// Adjust src_region_idx to prepare for decrementing destination counts (the
// destination count is not decremented when a region is copied to itself).
@ -3011,34 +3264,3 @@ void PSParallelCompact::compact_prologue() {
summary_data().calc_new_pointer(Universe::intArrayKlassObj());
}
// The initial implementation of this method created a field
// _next_compaction_space_id in SpaceInfo and initialized
// that field in SpaceInfo::initialize_space_info(). That
// required that _next_compaction_space_id be declared a
// SpaceId in SpaceInfo and that would have required that
// either SpaceId be declared in a separate class or that
// it be declared in SpaceInfo. It didn't seem consistent
// to declare it in SpaceInfo (didn't really fit logically).
// Alternatively, defining a separate class to define SpaceId
// seem excessive. This implementation is simple and localizes
// the knowledge.
PSParallelCompact::SpaceId
PSParallelCompact::next_compaction_space_id(SpaceId id) {
assert(id < last_space_id, "id out of range");
switch (id) {
case perm_space_id :
return last_space_id;
case old_space_id :
return eden_space_id;
case eden_space_id :
return from_space_id;
case from_space_id :
return to_space_id;
case to_space_id :
return last_space_id;
default:
assert(false, "Bad space id");
return last_space_id;
}
}

View File

@ -36,6 +36,123 @@ class PreGCValues;
class MoveAndUpdateClosure;
class RefProcTaskExecutor;
// The SplitInfo class holds the information needed to 'split' a source region
// so that the live data can be copied to two destination *spaces*. Normally,
// all the live data in a region is copied to a single destination space (e.g.,
// everything live in a region in eden is copied entirely into the old gen).
// However, when the heap is nearly full, all the live data in eden may not fit
// into the old gen. Copying only some of the regions from eden to old gen
// requires finding a region that does not contain a partial object (i.e., no
// live object crosses the region boundary) somewhere near the last object that
// does fit into the old gen. Since it's not always possible to find such a
// region, splitting is necessary for predictable behavior.
//
// A region is always split at the end of the partial object. This avoids
// additional tests when calculating the new location of a pointer, which is a
// very hot code path. The partial object and everything to its left will be
// copied to another space (call it dest_space_1). The live data to the right
// of the partial object will be copied either within the space itself, or to a
// different destination space (distinct from dest_space_1).
//
// Split points are identified during the summary phase, when region
// destinations are computed: data about the split, including the
// partial_object_size, is recorded in a SplitInfo record and the
// partial_object_size field in the summary data is set to zero. The zeroing is
// possible (and necessary) since the partial object will move to a different
// destination space than anything to its right, thus the partial object should
// not affect the locations of any objects to its right.
//
// The recorded data is used during the compaction phase, but only rarely: when
// the partial object on the split region will be copied across a destination
// region boundary. This test is made once each time a region is filled, and is
// a simple address comparison, so the overhead is negligible (see
// PSParallelCompact::first_src_addr()).
//
// Notes:
//
// Only regions with partial objects are split; a region without a partial
// object does not need any extra bookkeeping.
//
// At most one region is split per space, so the amount of data required is
// constant.
//
// A region is split only when the destination space would overflow. Once that
// happens, the destination space is abandoned and no other data (even from
// other source spaces) is targeted to that destination space. Abandoning the
// destination space may leave a somewhat large unused area at the end, if a
// large object caused the overflow.
//
// Future work:
//
// More bookkeeping would be required to continue to use the destination space.
// The most general solution would allow data from regions in two different
// source spaces to be "joined" in a single destination region. At the very
// least, additional code would be required in next_src_region() to detect the
// join and skip to an out-of-order source region. If the join region was also
// the last destination region to which a split region was copied (the most
// likely case), then additional work would be needed to get fill_region() to
// stop iteration and switch to a new source region at the right point. Basic
// idea would be to use a fake value for the top of the source space. It is
// doable, if a bit tricky.
//
// A simpler (but less general) solution would fill the remainder of the
// destination region with a dummy object and continue filling the next
// destination region.
class SplitInfo
{
public:
// Return true if this split info is valid (i.e., if a split has been
// recorded). The very first region cannot have a partial object and thus is
// never split, so 0 is the 'invalid' value.
bool is_valid() const { return _src_region_idx > 0; }
// Return true if this split holds data for the specified source region.
inline bool is_split(size_t source_region) const;
// The index of the split region, the size of the partial object on that
// region and the destination of the partial object.
size_t src_region_idx() const { return _src_region_idx; }
size_t partial_obj_size() const { return _partial_obj_size; }
HeapWord* destination() const { return _destination; }
// The destination count of the partial object referenced by this split
// (either 1 or 2). This must be added to the destination count of the
// remainder of the source region.
unsigned int destination_count() const { return _destination_count; }
// If a word within the partial object will be written to the first word of a
// destination region, this is the address of the destination region;
// otherwise this is NULL.
HeapWord* dest_region_addr() const { return _dest_region_addr; }
// If a word within the partial object will be written to the first word of a
// destination region, this is the address of that word within the partial
// object; otherwise this is NULL.
HeapWord* first_src_addr() const { return _first_src_addr; }
// Record the data necessary to split the region src_region_idx.
void record(size_t src_region_idx, size_t partial_obj_size,
HeapWord* destination);
void clear();
DEBUG_ONLY(void verify_clear();)
private:
size_t _src_region_idx;
size_t _partial_obj_size;
HeapWord* _destination;
unsigned int _destination_count;
HeapWord* _dest_region_addr;
HeapWord* _first_src_addr;
};
inline bool SplitInfo::is_split(size_t region_idx) const
{
return _src_region_idx == region_idx && is_valid();
}
class SpaceInfo
{
public:
@ -58,18 +175,23 @@ class SpaceInfo
// is no start array.
ObjectStartArray* start_array() const { return _start_array; }
SplitInfo& split_info() { return _split_info; }
void set_space(MutableSpace* s) { _space = s; }
void set_new_top(HeapWord* addr) { _new_top = addr; }
void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
void set_start_array(ObjectStartArray* s) { _start_array = s; }
void publish_new_top() const { _space->set_top(_new_top); }
private:
MutableSpace* _space;
HeapWord* _new_top;
HeapWord* _min_dense_prefix;
HeapWord* _dense_prefix;
ObjectStartArray* _start_array;
SplitInfo _split_info;
};
class ParallelCompactData
@ -230,9 +352,14 @@ public:
// must be region-aligned; end need not be.
void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
bool summarize(HeapWord* target_beg, HeapWord* target_end,
HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
HeapWord* destination, HeapWord* target_end,
HeapWord** target_next);
bool summarize(SplitInfo& split_info,
HeapWord* source_beg, HeapWord* source_end,
HeapWord** target_next, HeapWord** source_next = 0);
HeapWord** source_next,
HeapWord* target_beg, HeapWord* target_end,
HeapWord** target_next);
void clear();
void clear_range(size_t beg_region, size_t end_region);
@ -838,13 +965,13 @@ class PSParallelCompact : AllStatic {
// non-empty.
static void fill_dense_prefix_end(SpaceId id);
// Clear the summary data source_region field for the specified addresses.
static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
static void summarize_spaces_quick();
static void summarize_space(SpaceId id, bool maximum_compaction);
static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
// The space that is compacted after space_id.
static SpaceId next_compaction_space_id(SpaceId space_id);
// Adjust addresses in roots. Does not adjust addresses in heap.
static void adjust_roots();
@ -999,6 +1126,7 @@ class PSParallelCompact : AllStatic {
// Return the address of the word to be copied to dest_addr, which must be
// aligned to a region boundary.
static HeapWord* first_src_addr(HeapWord* const dest_addr,
SpaceId src_space_id,
size_t src_region_idx);
// Determine the next source region, set closure.source() to the start of the
@ -1081,6 +1209,10 @@ class PSParallelCompact : AllStatic {
const SpaceId id,
const bool maximum_compaction,
HeapWord* const addr);
static void summary_phase_msg(SpaceId dst_space_id,
HeapWord* dst_beg, HeapWord* dst_end,
SpaceId src_space_id,
HeapWord* src_beg, HeapWord* src_end);
#endif // #ifndef PRODUCT
#ifdef ASSERT