This commit is contained in:
Bharadwaj Yadavalli 2016-04-08 12:36:27 -04:00
commit cecf2d83d5
66 changed files with 1993 additions and 1188 deletions

View File

@ -14242,6 +14242,48 @@ instruct cmpP_narrowOop_imm0_branch(cmpOp cmp, iRegN oop, immP0 zero, label labl
ins_pipe(pipe_cmp_branch);
%}
instruct cmpUI_imm0_branch(cmpOpU cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsRegU cr) %{
match(If cmp (CmpU op1 op2));
predicate(n->in(1)->as_Bool()->_test._test == BoolTest::ne
|| n->in(1)->as_Bool()->_test._test == BoolTest::eq
|| n->in(1)->as_Bool()->_test._test == BoolTest::gt
|| n->in(1)->as_Bool()->_test._test == BoolTest::le);
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cbw$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ || cond == Assembler::LS)
__ cbzw($op1$$Register, *L);
else
__ cbnzw($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
instruct cmpUL_imm0_branch(cmpOpU cmp, iRegL op1, immL0 op2, label labl, rFlagsRegU cr) %{
match(If cmp (CmpU op1 op2));
predicate(n->in(1)->as_Bool()->_test._test == BoolTest::ne
|| n->in(1)->as_Bool()->_test._test == BoolTest::eq
|| n->in(1)->as_Bool()->_test._test == BoolTest::gt
|| n->in(1)->as_Bool()->_test._test == BoolTest::le);
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "cb$cmp $op1, $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
if (cond == Assembler::EQ || cond == Assembler::LS)
__ cbz($op1$$Register, *L);
else
__ cbnz($op1$$Register, *L);
%}
ins_pipe(pipe_cmp_branch);
%}
// Test bit and Branch
// Patterns for short (< 32KiB) variants

View File

@ -1221,6 +1221,38 @@ public:
INSN(caspal, true, true)
#undef INSN
// 8.1 Atomic operations
void lse_atomic(Register Rs, Register Rt, Register Rn,
enum operand_size sz, int op1, int op2, bool a, bool r) {
starti;
f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), rf(Rn, 5), zrf(Rt, 0);
}
#define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \
} \
void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \
} \
void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \
} \
void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \
}
INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000);
INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001);
INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010);
INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011);
INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
INSN(swp, swpa, swpl, swpal, 1, 0b000);
#undef INSN
// Load register (literal)
#define INSN(NAME, opc, V) \
void NAME(Register Rt, address dest) { \

View File

@ -1556,54 +1556,14 @@ void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
}
void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
if (UseLSE) {
__ mov(rscratch1, cmpval);
__ casal(Assembler::word, rscratch1, newval, addr);
__ cmpw(rscratch1, cmpval);
__ cset(rscratch1, Assembler::NE);
} else {
Label retry_load, nope;
// flush and load exclusive from the memory location
// and fail if it is not what we expect
__ prfm(Address(addr), PSTL1STRM);
__ bind(retry_load);
__ ldaxrw(rscratch1, addr);
__ cmpw(rscratch1, cmpval);
__ cset(rscratch1, Assembler::NE);
__ br(Assembler::NE, nope);
// if we store+flush with no intervening write rscratch1 wil be zero
__ stlxrw(rscratch1, newval, addr);
// retry so we only ever return after a load fails to compare
// ensures we don't return a stale value after a failed write.
__ cbnzw(rscratch1, retry_load);
__ bind(nope);
}
__ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, rscratch1);
__ cset(rscratch1, Assembler::NE);
__ membar(__ AnyAny);
}
void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
if (UseLSE) {
__ mov(rscratch1, cmpval);
__ casal(Assembler::xword, rscratch1, newval, addr);
__ cmp(rscratch1, cmpval);
__ cset(rscratch1, Assembler::NE);
} else {
Label retry_load, nope;
// flush and load exclusive from the memory location
// and fail if it is not what we expect
__ prfm(Address(addr), PSTL1STRM);
__ bind(retry_load);
__ ldaxr(rscratch1, addr);
__ cmp(rscratch1, cmpval);
__ cset(rscratch1, Assembler::NE);
__ br(Assembler::NE, nope);
// if we store+flush with no intervening write rscratch1 wil be zero
__ stlxr(rscratch1, newval, addr);
// retry so we only ever return after a load fails to compare
// ensures we don't return a stale value after a failed write.
__ cbnz(rscratch1, retry_load);
__ bind(nope);
}
__ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, rscratch1);
__ cset(rscratch1, Assembler::NE);
__ membar(__ AnyAny);
}
@ -3121,38 +3081,32 @@ void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr
BasicType type = src->type();
bool is_oop = type == T_OBJECT || type == T_ARRAY;
void (MacroAssembler::* lda)(Register Rd, Register Ra);
void (MacroAssembler::* add)(Register Rd, Register Rn, RegisterOrConstant increment);
void (MacroAssembler::* stl)(Register Rs, Register Rt, Register Rn);
void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
switch(type) {
case T_INT:
lda = &MacroAssembler::ldaxrw;
add = &MacroAssembler::addw;
stl = &MacroAssembler::stlxrw;
xchg = &MacroAssembler::atomic_xchgalw;
add = &MacroAssembler::atomic_addalw;
break;
case T_LONG:
lda = &MacroAssembler::ldaxr;
add = &MacroAssembler::add;
stl = &MacroAssembler::stlxr;
xchg = &MacroAssembler::atomic_xchgal;
add = &MacroAssembler::atomic_addal;
break;
case T_OBJECT:
case T_ARRAY:
if (UseCompressedOops) {
lda = &MacroAssembler::ldaxrw;
add = &MacroAssembler::addw;
stl = &MacroAssembler::stlxrw;
xchg = &MacroAssembler::atomic_xchgalw;
add = &MacroAssembler::atomic_addalw;
} else {
lda = &MacroAssembler::ldaxr;
add = &MacroAssembler::add;
stl = &MacroAssembler::stlxr;
xchg = &MacroAssembler::atomic_xchgal;
add = &MacroAssembler::atomic_addal;
}
break;
default:
ShouldNotReachHere();
lda = &MacroAssembler::ldaxr;
add = &MacroAssembler::add;
stl = &MacroAssembler::stlxr; // unreachable
xchg = &MacroAssembler::atomic_xchgal;
add = &MacroAssembler::atomic_addal; // unreachable
}
switch (code) {
@ -3170,14 +3124,8 @@ void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr
assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
rscratch1, rscratch2);
}
Label again;
__ lea(tmp, addr);
__ prfm(Address(tmp), PSTL1STRM);
__ bind(again);
(_masm->*lda)(dst, tmp);
(_masm->*add)(rscratch1, dst, inc);
(_masm->*stl)(rscratch2, rscratch1, tmp);
__ cbnzw(rscratch2, again);
(_masm->*add)(dst, inc, tmp);
break;
}
case lir_xchg:
@ -3186,17 +3134,12 @@ void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr
Register obj = as_reg(data);
Register dst = as_reg(dest);
if (is_oop && UseCompressedOops) {
__ encode_heap_oop(rscratch1, obj);
obj = rscratch1;
__ encode_heap_oop(rscratch2, obj);
obj = rscratch2;
}
assert_different_registers(obj, addr.base(), tmp, rscratch2, dst);
Label again;
assert_different_registers(obj, addr.base(), tmp, rscratch1, dst);
__ lea(tmp, addr);
__ prfm(Address(tmp), PSTL1STRM);
__ bind(again);
(_masm->*lda)(dst, tmp);
(_masm->*stl)(rscratch2, obj, tmp);
__ cbnzw(rscratch2, again);
(_masm->*xchg)(dst, obj, tmp);
if (is_oop && UseCompressedOops) {
__ decode_heap_oop(dst);
}

View File

@ -55,6 +55,7 @@ define_pd_global(intx, InteriorEntryAlignment, 16);
define_pd_global(intx, NewSizeThreadIncrease, ScaleForWordSize(4*K));
define_pd_global(intx, LoopUnrollLimit, 60);
define_pd_global(intx, LoopPercentProfileLimit, 10);
define_pd_global(intx, PostLoopMultiversioning, false);
// InitialCodeCacheSize derived from specjbb2000 run.
define_pd_global(intx, InitialCodeCacheSize, 2496*K); // Integral multiple of CodeCacheExpansionSize
define_pd_global(intx, CodeCacheExpansionSize, 64*K);

View File

@ -1637,6 +1637,11 @@ Address MacroAssembler::form_address(Register Rd, Register base, long byte_offse
}
void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
if (UseLSE) {
mov(tmp, 1);
ldadd(Assembler::word, tmp, zr, counter_addr);
return;
}
Label retry_load;
prfm(Address(counter_addr), PSTL1STRM);
bind(retry_load);
@ -2172,8 +2177,18 @@ static bool different(Register a, RegisterOrConstant b, Register c) {
return a != b.as_register() && a != c && b.as_register() != c;
}
#define ATOMIC_OP(LDXR, OP, IOP, STXR) \
void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \
#define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \
void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
if (UseLSE) { \
prev = prev->is_valid() ? prev : zr; \
if (incr.is_register()) { \
AOP(sz, incr.as_register(), prev, addr); \
} else { \
mov(rscratch2, incr.as_constant()); \
AOP(sz, rscratch2, prev, addr); \
} \
return; \
} \
Register result = rscratch2; \
if (prev->is_valid()) \
result = different(prev, incr, addr) ? prev : rscratch2; \
@ -2190,13 +2205,20 @@ void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Registe
} \
}
ATOMIC_OP(ldxr, add, sub, stxr)
ATOMIC_OP(ldxrw, addw, subw, stxrw)
ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
#undef ATOMIC_OP
#define ATOMIC_XCHG(OP, LDXR, STXR) \
#define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \
void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
if (UseLSE) { \
prev = prev->is_valid() ? prev : zr; \
AOP(sz, newv, prev, addr); \
return; \
} \
Register result = rscratch2; \
if (prev->is_valid()) \
result = different(prev, newv, addr) ? prev : rscratch2; \
@ -2211,8 +2233,10 @@ void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) {
mov(prev, result); \
}
ATOMIC_XCHG(xchg, ldxr, stxr)
ATOMIC_XCHG(xchgw, ldxrw, stxrw)
ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
#undef ATOMIC_XCHG

View File

@ -957,9 +957,13 @@ public:
void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
void atomic_xchg(Register prev, Register newv, Register addr);
void atomic_xchgw(Register prev, Register newv, Register addr);
void atomic_xchgal(Register prev, Register newv, Register addr);
void atomic_xchgalw(Register prev, Register newv, Register addr);
void orptr(Address adr, RegisterOrConstant src) {
ldr(rscratch2, adr);

View File

@ -1711,20 +1711,42 @@ class StubGenerator: public StubCodeGenerator {
// to a long, int, short, or byte copy loop.
//
address generate_unsafe_copy(const char *name,
address byte_copy_entry) {
#ifdef PRODUCT
return StubRoutines::_jbyte_arraycopy;
#else
address byte_copy_entry,
address short_copy_entry,
address int_copy_entry,
address long_copy_entry) {
Label L_long_aligned, L_int_aligned, L_short_aligned;
Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
// bump this on entry, not on exit:
__ lea(rscratch2, ExternalAddress((address)&SharedRuntime::_unsafe_array_copy_ctr));
__ incrementw(Address(rscratch2));
inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
__ orr(rscratch1, s, d);
__ orr(rscratch1, rscratch1, count);
__ andr(rscratch1, rscratch1, BytesPerLong-1);
__ cbz(rscratch1, L_long_aligned);
__ andr(rscratch1, rscratch1, BytesPerInt-1);
__ cbz(rscratch1, L_int_aligned);
__ tbz(rscratch1, 0, L_short_aligned);
__ b(RuntimeAddress(byte_copy_entry));
__ BIND(L_short_aligned);
__ lsr(count, count, LogBytesPerShort); // size => short_count
__ b(RuntimeAddress(short_copy_entry));
__ BIND(L_int_aligned);
__ lsr(count, count, LogBytesPerInt); // size => int_count
__ b(RuntimeAddress(int_copy_entry));
__ BIND(L_long_aligned);
__ lsr(count, count, LogBytesPerLong); // size => long_count
__ b(RuntimeAddress(long_copy_entry));
return start;
#endif
}
//
@ -2090,7 +2112,10 @@ class StubGenerator: public StubCodeGenerator {
/*dest_uninitialized*/true);
StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
entry_jbyte_arraycopy);
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_jlong_arraycopy);
StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
entry_jbyte_arraycopy,

View File

@ -1983,14 +1983,8 @@ void TemplateInterpreterGenerator::count_bytecode() {
__ push(rscratch1);
__ push(rscratch2);
__ push(rscratch3);
Label L;
__ mov(rscratch2, (address) &BytecodeCounter::_counter_value);
__ prfm(Address(rscratch2), PSTL1STRM);
__ bind(L);
__ ldxr(rscratch1, rscratch2);
__ add(rscratch1, rscratch1, 1);
__ stxr(rscratch3, rscratch1, rscratch2);
__ cbnzw(rscratch3, L);
__ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
__ atomic_add(noreg, 1, rscratch3);
__ pop(rscratch3);
__ pop(rscratch2);
__ pop(rscratch1);

View File

@ -73,6 +73,7 @@ public:
CPU_SHA1 = (1<<5),
CPU_SHA2 = (1<<6),
CPU_CRC32 = (1<<7),
CPU_LSE = (1<<8),
CPU_A53MAC = (1 << 30),
CPU_DMB_ATOMICS = (1 << 31),
};

View File

@ -624,6 +624,7 @@ class Assembler : public AbstractAssembler {
VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ),
VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
@ -2047,6 +2048,7 @@ class Assembler : public AbstractAssembler {
inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);

View File

@ -839,6 +839,7 @@ inline void Assembler::vandc( VectorRegister d, VectorRegister a, VectorRegist
inline void Assembler::vnor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vxor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VXOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vrld( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLD_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vrlb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vrlw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vrlh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLH_OPCODE | vrt(d) | vra(a) | vrb(b)); }

View File

@ -55,6 +55,7 @@ define_pd_global(bool, UseTLAB, true);
define_pd_global(bool, ResizeTLAB, true);
define_pd_global(intx, LoopUnrollLimit, 60);
define_pd_global(intx, LoopPercentProfileLimit, 10);
define_pd_global(intx, PostLoopMultiversioning, false);
// Peephole and CISC spilling both break the graph, and so make the
// scheduler sick.

View File

@ -2417,6 +2417,433 @@ class StubGenerator: public StubCodeGenerator {
return start;
}
// Arguments for generated stub (little endian only):
// R3_ARG1 - source byte array address
// R4_ARG2 - destination byte array address
// R5_ARG3 - round key array
address generate_aescrypt_encryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
address start = __ function_entry();
Label L_doLast;
Register from = R3_ARG1; // source array address
Register to = R4_ARG2; // destination array address
Register key = R5_ARG3; // round key array
Register keylen = R8;
Register temp = R9;
Register keypos = R10;
Register hex = R11;
Register fifteen = R12;
VectorRegister vRet = VR0;
VectorRegister vKey1 = VR1;
VectorRegister vKey2 = VR2;
VectorRegister vKey3 = VR3;
VectorRegister vKey4 = VR4;
VectorRegister fromPerm = VR5;
VectorRegister keyPerm = VR6;
VectorRegister toPerm = VR7;
VectorRegister fSplt = VR8;
VectorRegister vTmp1 = VR9;
VectorRegister vTmp2 = VR10;
VectorRegister vTmp3 = VR11;
VectorRegister vTmp4 = VR12;
VectorRegister vLow = VR13;
VectorRegister vHigh = VR14;
__ li (hex, 16);
__ li (fifteen, 15);
__ vspltisb (fSplt, 0x0f);
// load unaligned from[0-15] to vsRet
__ lvx (vRet, from);
__ lvx (vTmp1, fifteen, from);
__ lvsl (fromPerm, from);
__ vxor (fromPerm, fromPerm, fSplt);
__ vperm (vRet, vRet, vTmp1, fromPerm);
// load keylen (44 or 52 or 60)
__ lwz (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);
// to load keys
__ lvsr (keyPerm, key);
__ vxor (vTmp2, vTmp2, vTmp2);
__ vspltisb (vTmp2, -16);
__ vrld (keyPerm, keyPerm, vTmp2);
__ vrld (keyPerm, keyPerm, vTmp2);
__ vsldoi (keyPerm, keyPerm, keyPerm, -8);
// load the 1st round key to vKey1
__ li (keypos, 0);
__ lvx (vKey1, keypos, key);
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey1, vTmp1, vKey1, keyPerm);
// 1st round
__ vxor (vRet, vRet, vKey1);
// load the 2nd round key to vKey1
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp2, vTmp1, keyPerm);
// load the 3rd round key to vKey2
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp1, vTmp2, keyPerm);
// load the 4th round key to vKey3
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey3, vTmp2, vTmp1, keyPerm);
// load the 5th round key to vKey4
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey4, vTmp1, vTmp2, keyPerm);
// 2nd - 5th rounds
__ vcipher (vRet, vRet, vKey1);
__ vcipher (vRet, vRet, vKey2);
__ vcipher (vRet, vRet, vKey3);
__ vcipher (vRet, vRet, vKey4);
// load the 6th round key to vKey1
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp2, vTmp1, keyPerm);
// load the 7th round key to vKey2
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp1, vTmp2, keyPerm);
// load the 8th round key to vKey3
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey3, vTmp2, vTmp1, keyPerm);
// load the 9th round key to vKey4
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey4, vTmp1, vTmp2, keyPerm);
// 6th - 9th rounds
__ vcipher (vRet, vRet, vKey1);
__ vcipher (vRet, vRet, vKey2);
__ vcipher (vRet, vRet, vKey3);
__ vcipher (vRet, vRet, vKey4);
// load the 10th round key to vKey1
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp2, vTmp1, keyPerm);
// load the 11th round key to vKey2
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp1, vTmp2, keyPerm);
// if all round keys are loaded, skip next 4 rounds
__ cmpwi (CCR0, keylen, 44);
__ beq (CCR0, L_doLast);
// 10th - 11th rounds
__ vcipher (vRet, vRet, vKey1);
__ vcipher (vRet, vRet, vKey2);
// load the 12th round key to vKey1
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp2, vTmp1, keyPerm);
// load the 13th round key to vKey2
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp1, vTmp2, keyPerm);
// if all round keys are loaded, skip next 2 rounds
__ cmpwi (CCR0, keylen, 52);
__ beq (CCR0, L_doLast);
// 12th - 13th rounds
__ vcipher (vRet, vRet, vKey1);
__ vcipher (vRet, vRet, vKey2);
// load the 14th round key to vKey1
__ addi (keypos, keypos, 16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp2, vTmp1, keyPerm);
// load the 15th round key to vKey2
__ addi (keypos, keypos, 16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp1, vTmp2, keyPerm);
__ bind(L_doLast);
// last two rounds
__ vcipher (vRet, vRet, vKey1);
__ vcipherlast (vRet, vRet, vKey2);
__ neg (temp, to);
__ lvsr (toPerm, temp);
__ vspltisb (vTmp2, -1);
__ vxor (vTmp1, vTmp1, vTmp1);
__ vperm (vTmp2, vTmp2, vTmp1, toPerm);
__ vxor (toPerm, toPerm, fSplt);
__ lvx (vTmp1, to);
__ vperm (vRet, vRet, vRet, toPerm);
__ vsel (vTmp1, vTmp1, vRet, vTmp2);
__ lvx (vTmp4, fifteen, to);
__ stvx (vTmp1, to);
__ vsel (vRet, vRet, vTmp4, vTmp2);
__ stvx (vRet, fifteen, to);
__ blr();
return start;
}
// Arguments for generated stub (little endian only):
// R3_ARG1 - source byte array address
// R4_ARG2 - destination byte array address
// R5_ARG3 - K (key) in little endian int array
address generate_aescrypt_decryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
address start = __ function_entry();
Label L_doLast;
Label L_do44;
Label L_do52;
Label L_do60;
Register from = R3_ARG1; // source array address
Register to = R4_ARG2; // destination array address
Register key = R5_ARG3; // round key array
Register keylen = R8;
Register temp = R9;
Register keypos = R10;
Register hex = R11;
Register fifteen = R12;
VectorRegister vRet = VR0;
VectorRegister vKey1 = VR1;
VectorRegister vKey2 = VR2;
VectorRegister vKey3 = VR3;
VectorRegister vKey4 = VR4;
VectorRegister vKey5 = VR5;
VectorRegister fromPerm = VR6;
VectorRegister keyPerm = VR7;
VectorRegister toPerm = VR8;
VectorRegister fSplt = VR9;
VectorRegister vTmp1 = VR10;
VectorRegister vTmp2 = VR11;
VectorRegister vTmp3 = VR12;
VectorRegister vTmp4 = VR13;
VectorRegister vLow = VR14;
VectorRegister vHigh = VR15;
__ li (hex, 16);
__ li (fifteen, 15);
__ vspltisb (fSplt, 0x0f);
// load unaligned from[0-15] to vsRet
__ lvx (vRet, from);
__ lvx (vTmp1, fifteen, from);
__ lvsl (fromPerm, from);
__ vxor (fromPerm, fromPerm, fSplt);
__ vperm (vRet, vRet, vTmp1, fromPerm); // align [and byte swap in LE]
// load keylen (44 or 52 or 60)
__ lwz (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);
// to load keys
__ lvsr (keyPerm, key);
__ vxor (vTmp2, vTmp2, vTmp2);
__ vspltisb (vTmp2, -16);
__ vrld (keyPerm, keyPerm, vTmp2);
__ vrld (keyPerm, keyPerm, vTmp2);
__ vsldoi (keyPerm, keyPerm, keyPerm, -8);
__ cmpwi (CCR0, keylen, 44);
__ beq (CCR0, L_do44);
__ cmpwi (CCR0, keylen, 52);
__ beq (CCR0, L_do52);
// load the 15th round key to vKey11
__ li (keypos, 240);
__ lvx (vTmp1, keypos, key);
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp1, vTmp2, keyPerm);
// load the 14th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp2, vTmp1, keyPerm);
// load the 13th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey3, vTmp1, vTmp2, keyPerm);
// load the 12th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey4, vTmp2, vTmp1, keyPerm);
// load the 11th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey5, vTmp1, vTmp2, keyPerm);
// 1st - 5th rounds
__ vxor (vRet, vRet, vKey1);
__ vncipher (vRet, vRet, vKey2);
__ vncipher (vRet, vRet, vKey3);
__ vncipher (vRet, vRet, vKey4);
__ vncipher (vRet, vRet, vKey5);
__ b (L_doLast);
__ bind (L_do52);
// load the 13th round key to vKey11
__ li (keypos, 208);
__ lvx (vTmp1, keypos, key);
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp1, vTmp2, keyPerm);
// load the 12th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp2, vTmp1, keyPerm);
// load the 11th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey3, vTmp1, vTmp2, keyPerm);
// 1st - 3rd rounds
__ vxor (vRet, vRet, vKey1);
__ vncipher (vRet, vRet, vKey2);
__ vncipher (vRet, vRet, vKey3);
__ b (L_doLast);
__ bind (L_do44);
// load the 11th round key to vKey11
__ li (keypos, 176);
__ lvx (vTmp1, keypos, key);
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp1, vTmp2, keyPerm);
// 1st round
__ vxor (vRet, vRet, vKey1);
__ bind (L_doLast);
// load the 10th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey1, vTmp2, vTmp1, keyPerm);
// load the 9th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey2, vTmp1, vTmp2, keyPerm);
// load the 8th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey3, vTmp2, vTmp1, keyPerm);
// load the 7th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey4, vTmp1, vTmp2, keyPerm);
// load the 6th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey5, vTmp2, vTmp1, keyPerm);
// last 10th - 6th rounds
__ vncipher (vRet, vRet, vKey1);
__ vncipher (vRet, vRet, vKey2);
__ vncipher (vRet, vRet, vKey3);
__ vncipher (vRet, vRet, vKey4);
__ vncipher (vRet, vRet, vKey5);
// load the 5th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey1, vTmp1, vTmp2, keyPerm);
// load the 4th round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey2, vTmp2, vTmp1, keyPerm);
// load the 3rd round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey3, vTmp1, vTmp2, keyPerm);
// load the 2nd round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp1, keypos, key);
__ vperm (vKey4, vTmp2, vTmp1, keyPerm);
// load the 1st round key to vKey10
__ addi (keypos, keypos, -16);
__ lvx (vTmp2, keypos, key);
__ vperm (vKey5, vTmp1, vTmp2, keyPerm);
// last 5th - 1th rounds
__ vncipher (vRet, vRet, vKey1);
__ vncipher (vRet, vRet, vKey2);
__ vncipher (vRet, vRet, vKey3);
__ vncipher (vRet, vRet, vKey4);
__ vncipherlast (vRet, vRet, vKey5);
__ neg (temp, to);
__ lvsr (toPerm, temp);
__ vspltisb (vTmp2, -1);
__ vxor (vTmp1, vTmp1, vTmp1);
__ vperm (vTmp2, vTmp2, vTmp1, toPerm);
__ vxor (toPerm, toPerm, fSplt);
__ lvx (vTmp1, to);
__ vperm (vRet, vRet, vRet, toPerm);
__ vsel (vTmp1, vTmp1, vRet, vTmp2);
__ lvx (vTmp4, fifteen, to);
__ stvx (vTmp1, to);
__ vsel (vRet, vRet, vTmp4, vTmp2);
__ stvx (vRet, fifteen, to);
__ blr();
return start;
}
void generate_arraycopy_stubs() {
// Note: the disjoint stubs must be generated first, some of
@ -2693,10 +3120,6 @@ class StubGenerator: public StubCodeGenerator {
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
if (UseAESIntrinsics) {
guarantee(!UseAESIntrinsics, "not yet implemented.");
}
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
@ -2719,6 +3142,12 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::_montgomerySquare
= CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
}
if (UseAESIntrinsics) {
StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
}
}
public:

View File

@ -122,7 +122,7 @@ void VM_Version::initialize() {
(has_fcfids() ? " fcfids" : ""),
(has_vand() ? " vand" : ""),
(has_lqarx() ? " lqarx" : ""),
(has_vcipher() ? " vcipher" : ""),
(has_vcipher() ? " aes" : ""),
(has_vpmsumb() ? " vpmsumb" : ""),
(has_tcheck() ? " tcheck" : ""),
(has_mfdscr() ? " mfdscr" : "")
@ -186,6 +186,28 @@ void VM_Version::initialize() {
}
// The AES intrinsic stubs require AES instruction support.
#if defined(VM_LITTLE_ENDIAN)
if (has_vcipher()) {
if (FLAG_IS_DEFAULT(UseAES)) {
UseAES = true;
}
} else if (UseAES) {
if (!FLAG_IS_DEFAULT(UseAES))
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAES && has_vcipher()) {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
UseAESIntrinsics = true;
}
} else if (UseAESIntrinsics) {
if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
#else
if (UseAES) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
@ -195,6 +217,7 @@ void VM_Version::initialize() {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
#endif
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");

View File

@ -53,6 +53,7 @@ define_pd_global(bool, UseTLAB, true);
define_pd_global(bool, ResizeTLAB, true);
define_pd_global(intx, LoopUnrollLimit, 60); // Design center runs on 1.3.1
define_pd_global(intx, LoopPercentProfileLimit, 10);
define_pd_global(intx, PostLoopMultiversioning, false);
define_pd_global(intx, MinJumpTableSize, 5);
// Peephole and CISC spilling both break the graph, and so makes the

File diff suppressed because it is too large Load Diff

View File

@ -1977,39 +1977,43 @@ private:
void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// 128bit copy from/to 256bit (YMM) vector registers
void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
// vinserti forms
void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
// 256bit copy from/to 512bit (ZMM) vector registers
void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
// 128bit copy from/to 256bit (YMM) or 512bit (ZMM) vector registers
void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
// vinsertf forms
void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
// duplicate 4-bytes integer data from src into 8 locations in dest
// vextracti forms
void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8);
void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
// vextractf forms
void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
// legacy xmm sourced word/dword replicate
void vpbroadcastw(XMMRegister dst, XMMRegister src);
void vpbroadcastd(XMMRegister dst, XMMRegister src);
// duplicate 2-bytes integer data from src into 16 locations in dest
void vpbroadcastw(XMMRegister dst, XMMRegister src);
// duplicate n-bytes integer data from src into vector_len locations in dest
// xmm/mem sourced byte/word/dword/qword replicate
void evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
void evpbroadcastb(XMMRegister dst, Address src, int vector_len);
void evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
@ -2019,11 +2023,13 @@ private:
void evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
void evpbroadcastq(XMMRegister dst, Address src, int vector_len);
// scalar single/double precision replicate
void evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
void evpbroadcastss(XMMRegister dst, Address src, int vector_len);
void evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
void evpbroadcastsd(XMMRegister dst, Address src, int vector_len);
// gpr sourced byte/word/dword/qword replicate
void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
void evpbroadcastd(XMMRegister dst, Register src, int vector_len);

View File

@ -47,6 +47,7 @@ define_pd_global(intx, ConditionalMoveLimit, 3);
define_pd_global(intx, FreqInlineSize, 325);
define_pd_global(intx, MinJumpTableSize, 10);
define_pd_global(intx, LoopPercentProfileLimit, 30);
define_pd_global(intx, PostLoopMultiversioning, true);
#ifdef AMD64
define_pd_global(intx, INTPRESSURE, 13);
define_pd_global(intx, FLOATPRESSURE, 14);

View File

@ -1216,7 +1216,10 @@ public:
void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
if (UseAVX > 1) { // vinserti128 is available only in AVX2
if (UseAVX > 2) {
Assembler::vinserti32x4(dst, dst, src, imm8);
} else if (UseAVX > 1) {
// vinserti128 is available only in AVX2
Assembler::vinserti128(dst, nds, src, imm8);
} else {
Assembler::vinsertf128(dst, nds, src, imm8);
@ -1224,7 +1227,10 @@ public:
}
void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
if (UseAVX > 1) { // vinserti128 is available only in AVX2
if (UseAVX > 2) {
Assembler::vinserti32x4(dst, dst, src, imm8);
} else if (UseAVX > 1) {
// vinserti128 is available only in AVX2
Assembler::vinserti128(dst, nds, src, imm8);
} else {
Assembler::vinsertf128(dst, nds, src, imm8);
@ -1232,7 +1238,10 @@ public:
}
void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
if (UseAVX > 1) { // vextracti128 is available only in AVX2
if (UseAVX > 2) {
Assembler::vextracti32x4(dst, src, imm8);
} else if (UseAVX > 1) {
// vextracti128 is available only in AVX2
Assembler::vextracti128(dst, src, imm8);
} else {
Assembler::vextractf128(dst, src, imm8);
@ -1240,7 +1249,10 @@ public:
}
void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
if (UseAVX > 1) { // vextracti128 is available only in AVX2
if (UseAVX > 2) {
Assembler::vextracti32x4(dst, src, imm8);
} else if (UseAVX > 1) {
// vextracti128 is available only in AVX2
Assembler::vextracti128(dst, src, imm8);
} else {
Assembler::vextractf128(dst, src, imm8);
@ -1260,37 +1272,57 @@ public:
void vextracti128_high(Address dst, XMMRegister src) {
vextracti128(dst, src, 1);
}
void vinsertf128_high(XMMRegister dst, XMMRegister src) {
vinsertf128(dst, dst, src, 1);
if (UseAVX > 2) {
Assembler::vinsertf32x4(dst, dst, src, 1);
} else {
Assembler::vinsertf128(dst, dst, src, 1);
}
}
void vinsertf128_high(XMMRegister dst, Address src) {
vinsertf128(dst, dst, src, 1);
if (UseAVX > 2) {
Assembler::vinsertf32x4(dst, dst, src, 1);
} else {
Assembler::vinsertf128(dst, dst, src, 1);
}
}
void vextractf128_high(XMMRegister dst, XMMRegister src) {
vextractf128(dst, src, 1);
if (UseAVX > 2) {
Assembler::vextractf32x4(dst, src, 1);
} else {
Assembler::vextractf128(dst, src, 1);
}
}
void vextractf128_high(Address dst, XMMRegister src) {
vextractf128(dst, src, 1);
if (UseAVX > 2) {
Assembler::vextractf32x4(dst, src, 1);
} else {
Assembler::vextractf128(dst, src, 1);
}
}
// 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
vinserti64x4(dst, dst, src, 1);
Assembler::vinserti64x4(dst, dst, src, 1);
}
void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
vinsertf64x4(dst, dst, src, 1);
Assembler::vinsertf64x4(dst, dst, src, 1);
}
void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
vextracti64x4(dst, src, 1);
Assembler::vextracti64x4(dst, src, 1);
}
void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
vextractf64x4(dst, src, 1);
Assembler::vextractf64x4(dst, src, 1);
}
void vextractf64x4_high(Address dst, XMMRegister src) {
vextractf64x4(dst, src, 1);
Assembler::vextractf64x4(dst, src, 1);
}
void vinsertf64x4_high(XMMRegister dst, Address src) {
vinsertf64x4(dst, dst, src, 1);
Assembler::vinsertf64x4(dst, dst, src, 1);
}
// 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
@ -1306,40 +1338,59 @@ public:
void vextracti128_low(Address dst, XMMRegister src) {
vextracti128(dst, src, 0);
}
void vinsertf128_low(XMMRegister dst, XMMRegister src) {
vinsertf128(dst, dst, src, 0);
if (UseAVX > 2) {
Assembler::vinsertf32x4(dst, dst, src, 0);
} else {
Assembler::vinsertf128(dst, dst, src, 0);
}
}
void vinsertf128_low(XMMRegister dst, Address src) {
vinsertf128(dst, dst, src, 0);
if (UseAVX > 2) {
Assembler::vinsertf32x4(dst, dst, src, 0);
} else {
Assembler::vinsertf128(dst, dst, src, 0);
}
}
void vextractf128_low(XMMRegister dst, XMMRegister src) {
vextractf128(dst, src, 0);
if (UseAVX > 2) {
Assembler::vextractf32x4(dst, src, 0);
} else {
Assembler::vextractf128(dst, src, 0);
}
}
void vextractf128_low(Address dst, XMMRegister src) {
vextractf128(dst, src, 0);
if (UseAVX > 2) {
Assembler::vextractf32x4(dst, src, 0);
} else {
Assembler::vextractf128(dst, src, 0);
}
}
// 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
vinserti64x4(dst, dst, src, 0);
Assembler::vinserti64x4(dst, dst, src, 0);
}
void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
vinsertf64x4(dst, dst, src, 0);
Assembler::vinsertf64x4(dst, dst, src, 0);
}
void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
vextracti64x4(dst, src, 0);
Assembler::vextracti64x4(dst, src, 0);
}
void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
vextractf64x4(dst, src, 0);
Assembler::vextractf64x4(dst, src, 0);
}
void vextractf64x4_low(Address dst, XMMRegister src) {
vextractf64x4(dst, src, 0);
Assembler::vextractf64x4(dst, src, 0);
}
void vinsertf64x4_low(XMMRegister dst, Address src) {
vinsertf64x4(dst, dst, src, 0);
Assembler::vinsertf64x4(dst, dst, src, 0);
}
// Carry-Less Multiplication Quadword
void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
// 0x00 - multiply lower 64 bits [0:63]

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2016 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -47,8 +47,10 @@ public class MethodCounters extends Metadata {
private static synchronized void initialize(TypeDataBase db) throws WrongTypeException {
Type type = db.lookupType("MethodCounters");
interpreterInvocationCountField = new CIntField(type.getCIntegerField("_interpreter_invocation_count"), 0);
interpreterThrowoutCountField = new CIntField(type.getCIntegerField("_interpreter_throwout_count"), 0);
if (VM.getVM().isServerCompiler()) {
interpreterInvocationCountField = new CIntField(type.getCIntegerField("_interpreter_invocation_count"), 0);
interpreterThrowoutCountField = new CIntField(type.getCIntegerField("_interpreter_throwout_count"), 0);
}
if (!VM.getVM().isCore()) {
invocationCounter = new CIntField(type.getCIntegerField("_invocation_counter"), 0);
backedgeCounter = new CIntField(type.getCIntegerField("_backedge_counter"), 0);
@ -61,11 +63,19 @@ public class MethodCounters extends Metadata {
private static CIntField backedgeCounter;
public int interpreterInvocationCount() {
return (int) interpreterInvocationCountField.getValue(this);
if (interpreterInvocationCountField != null) {
return (int) interpreterInvocationCountField.getValue(this);
} else {
return 0;
}
}
public int interpreterThrowoutCount() {
return (int) interpreterThrowoutCountField.getValue(this);
if (interpreterThrowoutCountField != null) {
return (int) interpreterThrowoutCountField.getValue(this);
} else {
return 0;
}
}
public long getInvocationCounter() {
if (Assert.ASSERTS_ENABLED) {

View File

@ -23,7 +23,6 @@
package jdk.vm.ci.hotspot;
import static jdk.vm.ci.hotspot.UnsafeAccess.UNSAFE;
import jdk.vm.ci.common.JVMCIError;
import jdk.vm.ci.hotspot.HotSpotVMConfig.CompressEncoding;
import jdk.vm.ci.meta.Constant;
import jdk.vm.ci.meta.JavaConstant;
@ -59,7 +58,7 @@ class HotSpotMemoryAccessProviderImpl implements HotSpotMemoryAccessProvider, Ho
return true;
}
} else {
throw new JVMCIError("%s", metaspaceObject);
throw new IllegalArgumentException(String.valueOf(metaspaceObject));
}
}
return false;
@ -75,7 +74,7 @@ class HotSpotMemoryAccessProviderImpl implements HotSpotMemoryAccessProvider, Ho
return prim.asLong();
}
}
throw new JVMCIError("%s", base);
throw new IllegalArgumentException(String.valueOf(base));
}
private static long readRawValue(Constant baseConstant, long displacement, int bits) {
@ -91,7 +90,7 @@ class HotSpotMemoryAccessProviderImpl implements HotSpotMemoryAccessProvider, Ho
case Long.SIZE:
return UNSAFE.getLong(base, displacement);
default:
throw new JVMCIError("%d", bits);
throw new IllegalArgumentException(String.valueOf(bits));
}
} else {
long pointer = asRawPointer(baseConstant);
@ -105,7 +104,7 @@ class HotSpotMemoryAccessProviderImpl implements HotSpotMemoryAccessProvider, Ho
case Long.SIZE:
return UNSAFE.getLong(pointer + displacement);
default:
throw new JVMCIError("%d", bits);
throw new IllegalArgumentException(String.valueOf(bits));
}
}
}
@ -178,7 +177,7 @@ class HotSpotMemoryAccessProviderImpl implements HotSpotMemoryAccessProvider, Ho
case Double:
return JavaConstant.forDouble(Double.longBitsToDouble(rawValue));
default:
throw new JVMCIError("Unsupported kind: %s", kind);
throw new IllegalArgumentException("Unsupported kind: " + kind);
}
} catch (NullPointerException e) {
return null;

View File

@ -35,8 +35,10 @@ public interface MemoryAccessProvider {
* @param displacement the displacement within the object in bytes
* @return the read value encapsulated in a {@link JavaConstant} object, or {@code null} if the
* value cannot be read.
* @throws IllegalArgumentException if {@code kind} is {@link JavaKind#Void} or not
* {@linkplain JavaKind#isPrimitive() primitive} kind
*/
JavaConstant readUnsafeConstant(JavaKind kind, JavaConstant base, long displacement);
JavaConstant readUnsafeConstant(JavaKind kind, JavaConstant base, long displacement) throws IllegalArgumentException;
/**
* Reads a primitive value using a base address and a displacement.
@ -46,8 +48,11 @@ public interface MemoryAccessProvider {
* @param displacement the displacement within the object in bytes
* @param bits the number of bits to read from memory
* @return the read value encapsulated in a {@link JavaConstant} object of {@link JavaKind} kind
* @throws IllegalArgumentException if {@code kind} is {@link JavaKind#Void} or not
* {@linkplain JavaKind#isPrimitive() primitive} kind or {@code bits} is not 8, 16,
* 32 or 64
*/
JavaConstant readPrimitiveConstant(JavaKind kind, Constant base, long displacement, int bits);
JavaConstant readPrimitiveConstant(JavaKind kind, Constant base, long displacement, int bits) throws IllegalArgumentException;
/**
* Reads a Java {@link Object} value using a base address and a displacement.

View File

@ -51,6 +51,8 @@ public interface MethodHandleAccessProvider {
/**
* Returns the method handle method intrinsic identifier for the provided method, or
* {@code null} if the method is not an intrinsic processed by this interface.
*
* @throws NullPointerException if {@code method} is null
*/
IntrinsicMethod lookupMethodHandleIntrinsic(ResolvedJavaMethod method);
@ -58,19 +60,27 @@ public interface MethodHandleAccessProvider {
* Resolves the invocation target for an invocation of {@link IntrinsicMethod#INVOKE_BASIC
* MethodHandle.invokeBasic} with the given constant receiver {@link MethodHandle}. Returns
* {@code null} if the invocation target is not available at this time.
* <p>
*
* The first invocations of a method handle can use an interpreter to lookup the actual invoked
* method; frequently executed method handles can use Java bytecode generation to avoid the
* interpreter overhead. If the parameter forceBytecodeGeneration is set to true, the VM should
* try to generate bytecodes before this method returns.
*
* @returns {@code null} if {@code methodHandle} is not a {@link MethodHandle} or the invocation
* target is not available at this time
* @throws NullPointerException if {@code methodHandle} is null
*/
ResolvedJavaMethod resolveInvokeBasicTarget(JavaConstant methodHandle, boolean forceBytecodeGeneration);
/**
* Resolves the invocation target for an invocation of a {@code MethodHandle.linkTo*} method
* with the given constant member name. The member name is the last parameter of the
* {@code linkTo*} method. Returns {@code null} if the invocation target is not available at
* this time.
* {@code linkTo*} method.
*
* @returns {@code null} if the invocation target is not available at this time
* @throws NullPointerException if {@code memberName} is null
* @throws IllegalArgumentException if {@code memberName} is not a
* {@code java.lang.invoke.MemberName}
*/
ResolvedJavaMethod resolveLinkToTarget(JavaConstant memberName);
}

View File

@ -556,17 +556,16 @@ void LIR_Assembler::emit_op1(LIR_Op1* op) {
leal(op->in_opr(), op->result_opr());
break;
case lir_null_check:
if (GenerateCompilerNullChecks) {
ImplicitNullCheckStub* stub = add_debug_info_for_null_check_here(op->info());
case lir_null_check: {
ImplicitNullCheckStub* stub = add_debug_info_for_null_check_here(op->info());
if (op->in_opr()->is_single_cpu()) {
_masm->null_check(op->in_opr()->as_register(), stub->entry());
} else {
Unimplemented();
}
if (op->in_opr()->is_single_cpu()) {
_masm->null_check(op->in_opr()->as_register(), stub->entry());
} else {
Unimplemented();
}
break;
}
case lir_monaddr:
monitor_address(op->in_opr()->as_constant_ptr()->as_jint(), op->result_opr());

View File

@ -2041,8 +2041,7 @@ void LIRGenerator::do_Throw(Throw* x) {
// to avoid a fixed interval with an oop during the null check.
// Use a copy of the CodeEmitInfo because debug information is
// different for null_check and throw.
if (GenerateCompilerNullChecks &&
(x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
// if the exception object wasn't created using new then it might be null.
__ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
}

View File

@ -2067,7 +2067,18 @@ bool SystemDictionary::initialize_wk_klass(WKID id, int init_opt, TRAPS) {
int sid = (info >> CEIL_LG_OPTION_LIMIT);
Symbol* symbol = vmSymbols::symbol_at((vmSymbols::SID)sid);
InstanceKlass** klassp = &_well_known_klasses[id];
bool must_load = (init_opt < SystemDictionary::Opt);
bool must_load;
#if INCLUDE_JVMCI
if (EnableJVMCI) {
// If JVMCI is enabled we require its classes to be found.
must_load = (init_opt < SystemDictionary::Opt) || (init_opt == SystemDictionary::Jvmci);
} else
#endif
{
must_load = (init_opt < SystemDictionary::Opt);
}
if ((*klassp) == NULL) {
Klass* k;
if (must_load) {

View File

@ -241,7 +241,7 @@ class SystemDictionary : AllStatic {
Opt, // preload tried; NULL if not present
#if INCLUDE_JVMCI
Jvmci, // preload tried; error if not present, use only with JVMCI
Jvmci, // preload tried; error if not present if JVMCI enabled
#endif
OPTION_LIMIT,
CEIL_LG_OPTION_LIMIT = 2 // OPTION_LIMIT <= (1<<CEIL_LG_OPTION_LIMIT)

View File

@ -1042,6 +1042,14 @@ void CodeCache::clear_inline_caches() {
}
}
void CodeCache::cleanup_inline_caches() {
assert_locked_or_safepoint(CodeCache_lock);
NMethodIterator iter;
while(iter.next_alive()) {
iter.method()->cleanup_inline_caches(/*clean_all=*/true);
}
}
// Keeps track of time spent for checking dependencies
NOT_PRODUCT(static elapsedTimer dependentCheckTime;)

View File

@ -201,6 +201,7 @@ class CodeCache : AllStatic {
static bool needs_cache_clean() { return _needs_cache_clean; }
static void set_needs_cache_clean(bool v) { _needs_cache_clean = v; }
static void clear_inline_caches(); // clear all inline caches
static void cleanup_inline_caches();
// Returns true if an own CodeHeap for the given CodeBlobType is available
static bool heap_available(int code_blob_type);

View File

@ -1139,8 +1139,7 @@ void nmethod::clear_ic_stubs() {
}
}
void nmethod::cleanup_inline_caches() {
void nmethod::cleanup_inline_caches(bool clean_all/*=false*/) {
assert_locked_or_safepoint(CompiledIC_lock);
// If the method is not entrant or zombie then a JMP is plastered over the
@ -1170,7 +1169,7 @@ void nmethod::cleanup_inline_caches() {
if( cb != NULL && cb->is_nmethod() ) {
nmethod* nm = (nmethod*)cb;
// Clean inline caches pointing to zombie, non-entrant and unloaded methods
if (!nm->is_in_use() || (nm->method()->code() != nm)) ic->set_to_clean(is_alive());
if (clean_all || !nm->is_in_use() || (nm->method()->code() != nm)) ic->set_to_clean(is_alive());
}
break;
}
@ -1180,7 +1179,7 @@ void nmethod::cleanup_inline_caches() {
if( cb != NULL && cb->is_nmethod() ) {
nmethod* nm = (nmethod*)cb;
// Clean inline caches pointing to zombie, non-entrant and unloaded methods
if (!nm->is_in_use() || (nm->method()->code() != nm)) csc->set_to_clean();
if (clean_all || !nm->is_in_use() || (nm->method()->code() != nm)) csc->set_to_clean();
}
break;
}

View File

@ -599,7 +599,7 @@ public:
// Inline cache support
void clear_inline_caches();
void clear_ic_stubs();
void cleanup_inline_caches();
void cleanup_inline_caches(bool clean_all = false);
bool inlinecache_check_contains(address addr) const {
return (addr >= code_begin() && addr < verified_entry_point());
}

View File

@ -389,13 +389,16 @@ CompileTask* CompileQueue::get() {
task = CompilationPolicy::policy()->select_task(this);
}
// Save method pointers across unlock safepoint. The task is removed from
// the compilation queue, which is walked during RedefineClasses.
save_method = methodHandle(task->method());
save_hot_method = methodHandle(task->hot_method());
if (task != NULL) {
// Save method pointers across unlock safepoint. The task is removed from
// the compilation queue, which is walked during RedefineClasses.
save_method = methodHandle(task->method());
save_hot_method = methodHandle(task->hot_method());
remove(task);
purge_stale_tasks(); // may temporarily release MCQ lock
}
remove(task);
purge_stale_tasks(); // may temporarily release MCQ lock
return task;
}
@ -1784,7 +1787,8 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
bool is_osr = (osr_bci != standard_entry_bci);
bool should_log = (thread->log() != NULL);
bool should_break = false;
int task_level = task->comp_level();
const int task_level = task->comp_level();
AbstractCompiler* comp = task->compiler();
DirectiveSet* directive;
{
@ -1796,7 +1800,7 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
assert(!method->is_native(), "no longer compile natives");
// Look up matching directives
directive = DirectivesStack::getMatchingDirective(method, compiler(task_level));
directive = DirectivesStack::getMatchingDirective(method, comp);
// Save information about this method in case of failure.
set_last_compile(thread, method, is_osr, task_level);
@ -1815,13 +1819,13 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
int compilable = ciEnv::MethodCompilable;
const char* failure_reason = NULL;
const char* retry_message = NULL;
AbstractCompiler *comp = compiler(task_level);
int system_dictionary_modification_counter;
{
MutexLocker locker(Compile_lock, thread);
system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
}
#if INCLUDE_JVMCI
if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
JVMCICompiler* jvmci = (JVMCICompiler*) comp;

View File

@ -123,6 +123,13 @@ void CompileTask::initialize(int compile_id,
_next = NULL;
}
/**
* Returns the compiler for this task.
*/
AbstractCompiler* CompileTask::compiler() {
return CompileBroker::compiler(_comp_level);
}
// ------------------------------------------------------------------
// CompileTask::code/set_code
//

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -115,6 +115,8 @@ class CompileTask : public CHeapObj<mtCompiler> {
int comp_level() { return _comp_level;}
void set_comp_level(int comp_level) { _comp_level = comp_level;}
AbstractCompiler* compiler();
int num_inlined_bytecodes() const { return _num_inlined_bytecodes; }
void set_num_inlined_bytecodes(int n) { _num_inlined_bytecodes = n; }

View File

@ -632,9 +632,11 @@ BytecodeInterpreter::run(interpreterState istate) {
if (_compiling) {
MethodCounters* mcs;
GET_METHOD_COUNTERS(mcs);
#if COMPILER2_OR_JVMCI
if (ProfileInterpreter) {
METHOD->increment_interpreter_invocation_count(THREAD);
}
#endif
mcs->invocation_counter()->increment();
if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);

View File

@ -521,8 +521,10 @@ IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThrea
#ifndef CC_INTERP
continuation = Interpreter::remove_activation_entry();
#endif
#if COMPILER2_OR_JVMCI
// Count this for compilation purposes
h_method->interpreter_throwout_increment(THREAD);
#endif
} else {
// handler in this method => change bci/bcp to handler bci/bcp and continue there
handler_pc = h_method->code_base() + handler_bci;

View File

@ -1434,65 +1434,65 @@ C2V_END
#define METASPACE_METHOD_DATA "J"
JNINativeMethod CompilerToVM::methods[] = {
{CC"getBytecode", CC"("HS_RESOLVED_METHOD")[B", FN_PTR(getBytecode)},
{CC"getExceptionTableStart", CC"("HS_RESOLVED_METHOD")J", FN_PTR(getExceptionTableStart)},
{CC"getExceptionTableLength", CC"("HS_RESOLVED_METHOD")I", FN_PTR(getExceptionTableLength)},
{CC"findUniqueConcreteMethod", CC"("HS_RESOLVED_KLASS HS_RESOLVED_METHOD")"HS_RESOLVED_METHOD, FN_PTR(findUniqueConcreteMethod)},
{CC"getImplementor", CC"("HS_RESOLVED_KLASS")"HS_RESOLVED_KLASS, FN_PTR(getImplementor)},
{CC"getStackTraceElement", CC"("HS_RESOLVED_METHOD"I)"STACK_TRACE_ELEMENT, FN_PTR(getStackTraceElement)},
{CC"methodIsIgnoredBySecurityStackWalk", CC"("HS_RESOLVED_METHOD")Z", FN_PTR(methodIsIgnoredBySecurityStackWalk)},
{CC"doNotInlineOrCompile", CC"("HS_RESOLVED_METHOD")V", FN_PTR(doNotInlineOrCompile)},
{CC"canInlineMethod", CC"("HS_RESOLVED_METHOD")Z", FN_PTR(canInlineMethod)},
{CC"shouldInlineMethod", CC"("HS_RESOLVED_METHOD")Z", FN_PTR(shouldInlineMethod)},
{CC"lookupType", CC"("STRING CLASS"Z)"HS_RESOLVED_KLASS, FN_PTR(lookupType)},
{CC"lookupNameInPool", CC"("HS_CONSTANT_POOL"I)"STRING, FN_PTR(lookupNameInPool)},
{CC"lookupNameAndTypeRefIndexInPool", CC"("HS_CONSTANT_POOL"I)I", FN_PTR(lookupNameAndTypeRefIndexInPool)},
{CC"lookupSignatureInPool", CC"("HS_CONSTANT_POOL"I)"STRING, FN_PTR(lookupSignatureInPool)},
{CC"lookupKlassRefIndexInPool", CC"("HS_CONSTANT_POOL"I)I", FN_PTR(lookupKlassRefIndexInPool)},
{CC"lookupKlassInPool", CC"("HS_CONSTANT_POOL"I)Ljava/lang/Object;", FN_PTR(lookupKlassInPool)},
{CC"lookupAppendixInPool", CC"("HS_CONSTANT_POOL"I)"OBJECT, FN_PTR(lookupAppendixInPool)},
{CC"lookupMethodInPool", CC"("HS_CONSTANT_POOL"IB)"HS_RESOLVED_METHOD, FN_PTR(lookupMethodInPool)},
{CC"constantPoolRemapInstructionOperandFromCache", CC"("HS_CONSTANT_POOL"I)I", FN_PTR(constantPoolRemapInstructionOperandFromCache)},
{CC"resolveConstantInPool", CC"("HS_CONSTANT_POOL"I)"OBJECT, FN_PTR(resolveConstantInPool)},
{CC"resolvePossiblyCachedConstantInPool", CC"("HS_CONSTANT_POOL"I)"OBJECT, FN_PTR(resolvePossiblyCachedConstantInPool)},
{CC"resolveTypeInPool", CC"("HS_CONSTANT_POOL"I)"HS_RESOLVED_KLASS, FN_PTR(resolveTypeInPool)},
{CC"resolveFieldInPool", CC"("HS_CONSTANT_POOL"IB[J)"HS_RESOLVED_KLASS, FN_PTR(resolveFieldInPool)},
{CC"resolveInvokeDynamicInPool", CC"("HS_CONSTANT_POOL"I)V", FN_PTR(resolveInvokeDynamicInPool)},
{CC"resolveInvokeHandleInPool", CC"("HS_CONSTANT_POOL"I)V", FN_PTR(resolveInvokeHandleInPool)},
{CC"resolveMethod", CC"("HS_RESOLVED_KLASS HS_RESOLVED_METHOD HS_RESOLVED_KLASS")"HS_RESOLVED_METHOD, FN_PTR(resolveMethod)},
{CC"getVtableIndexForInterfaceMethod", CC"("HS_RESOLVED_KLASS HS_RESOLVED_METHOD")I", FN_PTR(getVtableIndexForInterfaceMethod)},
{CC"getClassInitializer", CC"("HS_RESOLVED_KLASS")"HS_RESOLVED_METHOD, FN_PTR(getClassInitializer)},
{CC"hasFinalizableSubclass", CC"("HS_RESOLVED_KLASS")Z", FN_PTR(hasFinalizableSubclass)},
{CC"getMaxCallTargetOffset", CC"(J)J", FN_PTR(getMaxCallTargetOffset)},
{CC"getResolvedJavaMethodAtSlot", CC"("CLASS"I)"HS_RESOLVED_METHOD, FN_PTR(getResolvedJavaMethodAtSlot)},
{CC"getResolvedJavaMethod", CC"(Ljava/lang/Object;J)"HS_RESOLVED_METHOD, FN_PTR(getResolvedJavaMethod)},
{CC"getConstantPool", CC"(Ljava/lang/Object;J)"HS_CONSTANT_POOL, FN_PTR(getConstantPool)},
{CC"getResolvedJavaType", CC"(Ljava/lang/Object;JZ)"HS_RESOLVED_KLASS, FN_PTR(getResolvedJavaType)},
{CC"initializeConfiguration", CC"("HS_CONFIG")J", FN_PTR(initializeConfiguration)},
{CC"installCode", CC"("TARGET_DESCRIPTION HS_COMPILED_CODE INSTALLED_CODE HS_SPECULATION_LOG")I", FN_PTR(installCode)},
{CC"getMetadata", CC"("TARGET_DESCRIPTION HS_COMPILED_CODE HS_METADATA")I", FN_PTR(getMetadata)},
{CC"resetCompilationStatistics", CC"()V", FN_PTR(resetCompilationStatistics)},
{CC"disassembleCodeBlob", CC"("INSTALLED_CODE")"STRING, FN_PTR(disassembleCodeBlob)},
{CC"executeInstalledCode", CC"(["OBJECT INSTALLED_CODE")"OBJECT, FN_PTR(executeInstalledCode)},
{CC"getLineNumberTable", CC"("HS_RESOLVED_METHOD")[J", FN_PTR(getLineNumberTable)},
{CC"getLocalVariableTableStart", CC"("HS_RESOLVED_METHOD")J", FN_PTR(getLocalVariableTableStart)},
{CC"getLocalVariableTableLength", CC"("HS_RESOLVED_METHOD")I", FN_PTR(getLocalVariableTableLength)},
{CC"reprofile", CC"("HS_RESOLVED_METHOD")V", FN_PTR(reprofile)},
{CC"invalidateInstalledCode", CC"("INSTALLED_CODE")V", FN_PTR(invalidateInstalledCode)},
{CC"readUncompressedOop", CC"(J)"OBJECT, FN_PTR(readUncompressedOop)},
{CC"collectCounters", CC"()[J", FN_PTR(collectCounters)},
{CC"allocateCompileId", CC"("HS_RESOLVED_METHOD"I)I", FN_PTR(allocateCompileId)},
{CC"isMature", CC"("METASPACE_METHOD_DATA")Z", FN_PTR(isMature)},
{CC"hasCompiledCodeForOSR", CC"("HS_RESOLVED_METHOD"II)Z", FN_PTR(hasCompiledCodeForOSR)},
{CC"getSymbol", CC"(J)"STRING, FN_PTR(getSymbol)},
{CC"lookupSymbol", CC"("STRING")J", FN_PTR(lookupSymbol)},
{CC"getNextStackFrame", CC"("HS_STACK_FRAME_REF "["RESOLVED_METHOD"I)"HS_STACK_FRAME_REF, FN_PTR(getNextStackFrame)},
{CC"materializeVirtualObjects", CC"("HS_STACK_FRAME_REF"Z)V", FN_PTR(materializeVirtualObjects)},
{CC"shouldDebugNonSafepoints", CC"()Z", FN_PTR(shouldDebugNonSafepoints)},
{CC"writeDebugOutput", CC"([BII)V", FN_PTR(writeDebugOutput)},
{CC"flushDebugOutput", CC"()V", FN_PTR(flushDebugOutput)},
{CC"methodDataProfileDataSize", CC"(JI)I", FN_PTR(methodDataProfileDataSize)},
{CC"interpreterFrameSize", CC"("BYTECODE_FRAME")I", FN_PTR(interpreterFrameSize)},
{CC "getBytecode", CC "(" HS_RESOLVED_METHOD ")[B", FN_PTR(getBytecode)},
{CC "getExceptionTableStart", CC "(" HS_RESOLVED_METHOD ")J", FN_PTR(getExceptionTableStart)},
{CC "getExceptionTableLength", CC "(" HS_RESOLVED_METHOD ")I", FN_PTR(getExceptionTableLength)},
{CC "findUniqueConcreteMethod", CC "(" HS_RESOLVED_KLASS HS_RESOLVED_METHOD ")" HS_RESOLVED_METHOD, FN_PTR(findUniqueConcreteMethod)},
{CC "getImplementor", CC "(" HS_RESOLVED_KLASS ")" HS_RESOLVED_KLASS, FN_PTR(getImplementor)},
{CC "getStackTraceElement", CC "(" HS_RESOLVED_METHOD "I)" STACK_TRACE_ELEMENT, FN_PTR(getStackTraceElement)},
{CC "methodIsIgnoredBySecurityStackWalk", CC "(" HS_RESOLVED_METHOD ")Z", FN_PTR(methodIsIgnoredBySecurityStackWalk)},
{CC "doNotInlineOrCompile", CC "(" HS_RESOLVED_METHOD ")V", FN_PTR(doNotInlineOrCompile)},
{CC "canInlineMethod", CC "(" HS_RESOLVED_METHOD ")Z", FN_PTR(canInlineMethod)},
{CC "shouldInlineMethod", CC "(" HS_RESOLVED_METHOD ")Z", FN_PTR(shouldInlineMethod)},
{CC "lookupType", CC "(" STRING CLASS "Z)" HS_RESOLVED_KLASS, FN_PTR(lookupType)},
{CC "lookupNameInPool", CC "(" HS_CONSTANT_POOL "I)" STRING, FN_PTR(lookupNameInPool)},
{CC "lookupNameAndTypeRefIndexInPool", CC "(" HS_CONSTANT_POOL "I)I", FN_PTR(lookupNameAndTypeRefIndexInPool)},
{CC "lookupSignatureInPool", CC "(" HS_CONSTANT_POOL "I)" STRING, FN_PTR(lookupSignatureInPool)},
{CC "lookupKlassRefIndexInPool", CC "(" HS_CONSTANT_POOL "I)I", FN_PTR(lookupKlassRefIndexInPool)},
{CC "lookupKlassInPool", CC "(" HS_CONSTANT_POOL "I)Ljava/lang/Object;", FN_PTR(lookupKlassInPool)},
{CC "lookupAppendixInPool", CC "(" HS_CONSTANT_POOL "I)" OBJECT, FN_PTR(lookupAppendixInPool)},
{CC "lookupMethodInPool", CC "(" HS_CONSTANT_POOL "IB)" HS_RESOLVED_METHOD, FN_PTR(lookupMethodInPool)},
{CC "constantPoolRemapInstructionOperandFromCache", CC "(" HS_CONSTANT_POOL "I)I", FN_PTR(constantPoolRemapInstructionOperandFromCache)},
{CC "resolveConstantInPool", CC "(" HS_CONSTANT_POOL "I)" OBJECT, FN_PTR(resolveConstantInPool)},
{CC "resolvePossiblyCachedConstantInPool", CC "(" HS_CONSTANT_POOL "I)" OBJECT, FN_PTR(resolvePossiblyCachedConstantInPool)},
{CC "resolveTypeInPool", CC "(" HS_CONSTANT_POOL "I)" HS_RESOLVED_KLASS, FN_PTR(resolveTypeInPool)},
{CC "resolveFieldInPool", CC "(" HS_CONSTANT_POOL "IB[J)" HS_RESOLVED_KLASS, FN_PTR(resolveFieldInPool)},
{CC "resolveInvokeDynamicInPool", CC "(" HS_CONSTANT_POOL "I)V", FN_PTR(resolveInvokeDynamicInPool)},
{CC "resolveInvokeHandleInPool", CC "(" HS_CONSTANT_POOL "I)V", FN_PTR(resolveInvokeHandleInPool)},
{CC "resolveMethod", CC "(" HS_RESOLVED_KLASS HS_RESOLVED_METHOD HS_RESOLVED_KLASS ")" HS_RESOLVED_METHOD, FN_PTR(resolveMethod)},
{CC "getVtableIndexForInterfaceMethod", CC "(" HS_RESOLVED_KLASS HS_RESOLVED_METHOD ")I", FN_PTR(getVtableIndexForInterfaceMethod)},
{CC "getClassInitializer", CC "(" HS_RESOLVED_KLASS ")" HS_RESOLVED_METHOD, FN_PTR(getClassInitializer)},
{CC "hasFinalizableSubclass", CC "(" HS_RESOLVED_KLASS ")Z", FN_PTR(hasFinalizableSubclass)},
{CC "getMaxCallTargetOffset", CC "(J)J", FN_PTR(getMaxCallTargetOffset)},
{CC "getResolvedJavaMethodAtSlot", CC "(" CLASS "I)" HS_RESOLVED_METHOD, FN_PTR(getResolvedJavaMethodAtSlot)},
{CC "getResolvedJavaMethod", CC "(Ljava/lang/Object;J)" HS_RESOLVED_METHOD, FN_PTR(getResolvedJavaMethod)},
{CC "getConstantPool", CC "(Ljava/lang/Object;J)" HS_CONSTANT_POOL, FN_PTR(getConstantPool)},
{CC "getResolvedJavaType", CC "(Ljava/lang/Object;JZ)" HS_RESOLVED_KLASS, FN_PTR(getResolvedJavaType)},
{CC "initializeConfiguration", CC "(" HS_CONFIG ")J", FN_PTR(initializeConfiguration)},
{CC "installCode", CC "(" TARGET_DESCRIPTION HS_COMPILED_CODE INSTALLED_CODE HS_SPECULATION_LOG ")I", FN_PTR(installCode)},
{CC "getMetadata", CC "(" TARGET_DESCRIPTION HS_COMPILED_CODE HS_METADATA ")I", FN_PTR(getMetadata)},
{CC "resetCompilationStatistics", CC "()V", FN_PTR(resetCompilationStatistics)},
{CC "disassembleCodeBlob", CC "(" INSTALLED_CODE ")" STRING, FN_PTR(disassembleCodeBlob)},
{CC "executeInstalledCode", CC "([" OBJECT INSTALLED_CODE ")" OBJECT, FN_PTR(executeInstalledCode)},
{CC "getLineNumberTable", CC "(" HS_RESOLVED_METHOD ")[J", FN_PTR(getLineNumberTable)},
{CC "getLocalVariableTableStart", CC "(" HS_RESOLVED_METHOD ")J", FN_PTR(getLocalVariableTableStart)},
{CC "getLocalVariableTableLength", CC "(" HS_RESOLVED_METHOD ")I", FN_PTR(getLocalVariableTableLength)},
{CC "reprofile", CC "(" HS_RESOLVED_METHOD ")V", FN_PTR(reprofile)},
{CC "invalidateInstalledCode", CC "(" INSTALLED_CODE ")V", FN_PTR(invalidateInstalledCode)},
{CC "readUncompressedOop", CC "(J)" OBJECT, FN_PTR(readUncompressedOop)},
{CC "collectCounters", CC "()[J", FN_PTR(collectCounters)},
{CC "allocateCompileId", CC "(" HS_RESOLVED_METHOD "I)I", FN_PTR(allocateCompileId)},
{CC "isMature", CC "(" METASPACE_METHOD_DATA ")Z", FN_PTR(isMature)},
{CC "hasCompiledCodeForOSR", CC "(" HS_RESOLVED_METHOD "II)Z", FN_PTR(hasCompiledCodeForOSR)},
{CC "getSymbol", CC "(J)" STRING, FN_PTR(getSymbol)},
{CC "lookupSymbol", CC "(" STRING ")J", FN_PTR(lookupSymbol)},
{CC "getNextStackFrame", CC "(" HS_STACK_FRAME_REF "[" RESOLVED_METHOD "I)" HS_STACK_FRAME_REF, FN_PTR(getNextStackFrame)},
{CC "materializeVirtualObjects", CC "(" HS_STACK_FRAME_REF "Z)V", FN_PTR(materializeVirtualObjects)},
{CC "shouldDebugNonSafepoints", CC "()Z", FN_PTR(shouldDebugNonSafepoints)},
{CC "writeDebugOutput", CC "([BII)V", FN_PTR(writeDebugOutput)},
{CC "flushDebugOutput", CC "()V", FN_PTR(flushDebugOutput)},
{CC "methodDataProfileDataSize", CC "(JI)I", FN_PTR(methodDataProfileDataSize)},
{CC "interpreterFrameSize", CC "(" BYTECODE_FRAME ")I", FN_PTR(interpreterFrameSize)},
};
int CompilerToVM::methods_count() {

View File

@ -437,7 +437,7 @@ JVMCIEnv::CodeInstallResult JVMCIEnv::check_for_system_dictionary_modification(D
stringStream st(buffer, O_BUFLEN);
deps.print_dependency(witness, true, &st);
*failure_detail = st.as_string();
if (env == NULL || counter_changed) {
if (env == NULL || counter_changed || deps.type() == Dependencies::evol_method) {
return JVMCIEnv::dependencies_failed;
} else {
// The dependencies were invalid at the time of installation

View File

@ -264,6 +264,7 @@ class Method : public Metadata {
int highest_osr_comp_level() const;
void set_highest_osr_comp_level(int level);
#if defined(COMPILER2) || INCLUDE_JVMCI
// Count of times method was exited via exception while interpreting
void interpreter_throwout_increment(TRAPS) {
MethodCounters* mcs = get_method_counters(CHECK);
@ -271,6 +272,7 @@ class Method : public Metadata {
mcs->interpreter_throwout_increment();
}
}
#endif
int interpreter_throwout_count() const {
MethodCounters* mcs = method_counters();
@ -407,11 +409,13 @@ class Method : public Metadata {
return (mcs == NULL) ? 0 : mcs->interpreter_invocation_count();
}
}
#if defined(COMPILER2) || INCLUDE_JVMCI
int increment_interpreter_invocation_count(TRAPS) {
if (TieredCompilation) ShouldNotReachHere();
MethodCounters* mcs = get_method_counters(CHECK_0);
return (mcs == NULL) ? 0 : mcs->increment_interpreter_invocation_count();
}
#endif
#ifndef PRODUCT
int compiled_invocation_count() const { return _compiled_invocation_count; }

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2016 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -34,8 +34,10 @@ class MethodCounters: public MetaspaceObj {
friend class VMStructs;
friend class JVMCIVMStructs;
private:
#if defined(COMPILER2) || INCLUDE_JVMCI
int _interpreter_invocation_count; // Count of times invoked (reused as prev_event_count in tiered)
u2 _interpreter_throwout_count; // Count of times method was exited via exception while interpreting
#endif
u2 _number_of_breakpoints; // fullspeed debugging support
InvocationCounter _invocation_counter; // Incremented before each activation of the method - used to trigger frequency-based optimizations
InvocationCounter _backedge_counter; // Incremented before each backedge taken - used to trigger frequencey-based optimizations
@ -60,9 +62,7 @@ class MethodCounters: public MetaspaceObj {
u1 _highest_osr_comp_level; // Same for OSR level
#endif
MethodCounters(methodHandle mh) : _interpreter_invocation_count(0),
_interpreter_throwout_count(0),
_number_of_breakpoints(0),
MethodCounters(methodHandle mh) : _number_of_breakpoints(0),
_nmethod_age(INT_MAX)
#ifdef TIERED
, _rate(0),
@ -71,6 +71,8 @@ class MethodCounters: public MetaspaceObj {
_highest_osr_comp_level(0)
#endif
{
set_interpreter_invocation_count(0);
set_interpreter_throwout_count(0);
invocation_counter()->init();
backedge_counter()->init();
@ -109,6 +111,8 @@ class MethodCounters: public MetaspaceObj {
void clear_counters();
#if defined(COMPILER2) || INCLUDE_JVMCI
int interpreter_invocation_count() {
return _interpreter_invocation_count;
}
@ -131,6 +135,24 @@ class MethodCounters: public MetaspaceObj {
_interpreter_throwout_count = count;
}
#else // defined(COMPILER2) || INCLUDE_JVMCI
int interpreter_invocation_count() {
return 0;
}
void set_interpreter_invocation_count(int count) {
assert(count == 0, "count must be 0");
}
int interpreter_throwout_count() const {
return 0;
}
void set_interpreter_throwout_count(int count) {
assert(count == 0, "count must be 0");
}
#endif // defined(COMPILER2) || INCLUDE_JVMCI
u2 number_of_breakpoints() const { return _number_of_breakpoints; }
void incr_number_of_breakpoints() { ++_number_of_breakpoints; }
void decr_number_of_breakpoints() { --_number_of_breakpoints; }
@ -170,10 +192,25 @@ class MethodCounters: public MetaspaceObj {
return byte_offset_of(MethodCounters, _nmethod_age);
}
#if defined(COMPILER2) || INCLUDE_JVMCI
static ByteSize interpreter_invocation_counter_offset() {
return byte_offset_of(MethodCounters, _interpreter_invocation_count);
}
static int interpreter_invocation_counter_offset_in_bytes() {
return offset_of(MethodCounters, _interpreter_invocation_count);
}
#else // defined(COMPILER2) || INCLUDE_JVMCI
static ByteSize interpreter_invocation_counter_offset() {
ShouldNotReachHere();
return in_ByteSize(0);
}
#endif // defined(COMPILER2) || INCLUDE_JVMCI
static ByteSize invocation_counter_offset() {
return byte_offset_of(MethodCounters, _invocation_counter);
}
@ -182,10 +219,6 @@ class MethodCounters: public MetaspaceObj {
return byte_offset_of(MethodCounters, _backedge_counter);
}
static int interpreter_invocation_counter_offset_in_bytes() {
return offset_of(MethodCounters, _interpreter_invocation_count);
}
static ByteSize interpreter_invocation_limit_offset() {
return byte_offset_of(MethodCounters, _interpreter_invocation_limit);
}

View File

@ -194,6 +194,9 @@
"Map number of unrolls for main loop via " \
"Superword Level Parallelism analysis") \
\
product_pd(bool, PostLoopMultiversioning, \
"Multi versioned post loops to eliminate range checks") \
\
notproduct(bool, TraceSuperWordLoopUnrollAnalysis, false, \
"Trace what Superword Level Parallelism analysis applies") \
\
@ -229,21 +232,12 @@
develop(bool, TraceLoopOpts, false, \
"Trace executed loop optimizations") \
\
diagnostic(bool, LoopLimitCheck, true, \
"Generate a loop limits check for overflow") \
\
develop(bool, TraceLoopLimitCheck, false, \
"Trace generation of loop limits checks") \
\
diagnostic(bool, RangeLimitCheck, true, \
"Additional overflow checks during range check elimination") \
\
develop(bool, TraceRangeLimitCheck, false, \
"Trace additional overflow checks in RCE") \
\
diagnostic(bool, UnrollLimitCheck, true, \
"Additional overflow checks during loop unroll") \
\
/* OptimizeFill not yet supported on PowerPC. */ \
product(bool, OptimizeFill, true PPC64_ONLY(&& false), \
"convert fill/copy loops into intrinsic") \

View File

@ -1191,11 +1191,6 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
bool speculative) {
assert(!assert_null || null_control == NULL, "not both at once");
if (stopped()) return top();
if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
// For some performance testing, we may wish to suppress null checking.
value = cast_not_null(value); // Make it appear to be non-null (4962416).
return value;
}
NOT_PRODUCT(explicit_null_checks_inserted++);
// Construct NULL check
@ -1687,6 +1682,9 @@ Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAr
const Type* elemtype = arytype->elem();
BasicType elembt = elemtype->array_element_basic_type();
Node* adr = array_element_address(ary, idx, elembt, arytype->size());
if (elembt == T_NARROWOOP) {
elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
}
Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
return ld;
}
@ -3771,9 +3769,7 @@ void GraphKit::add_predicate(int nargs) {
add_predicate_impl(Deoptimization::Reason_predicate, nargs);
}
// loop's limit check predicate should be near the loop.
if (LoopLimitCheck) {
add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
}
add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
}
//----------------------------- store barriers ----------------------------

View File

@ -6273,7 +6273,20 @@ bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
//------------------------------get_key_start_from_aescrypt_object-----------------------
Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
#ifdef PPC64
// MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
// Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
// However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
// The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objSessionK == NULL) {
return (Node *) NULL;
}
Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
#else
Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
#endif // PPC64
assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objAESCryptKey == NULL) return (Node *) NULL;

View File

@ -313,11 +313,9 @@ Node* PhaseIdealLoop::clone_loop_predicates(Node* old_entry, Node* new_entry,
// Search original predicates
Node* entry = old_entry;
ProjNode* limit_check_proj = NULL;
if (LoopLimitCheck) {
limit_check_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (limit_check_proj != NULL) {
entry = entry->in(0)->in(0);
}
limit_check_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (limit_check_proj != NULL) {
entry = entry->in(0)->in(0);
}
if (UseLoopPredicate) {
ProjNode* predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
@ -353,11 +351,9 @@ Node* PhaseIdealLoop::clone_loop_predicates(Node* old_entry, Node* new_entry,
// Skip related predicates.
Node* PhaseIdealLoop::skip_loop_predicates(Node* entry) {
Node* predicate = NULL;
if (LoopLimitCheck) {
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate != NULL) {
entry = entry->in(0)->in(0);
}
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate != NULL) {
entry = entry->in(0)->in(0);
}
if (UseLoopPredicate) {
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
@ -393,11 +389,9 @@ ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimi
// Find a predicate
Node* PhaseIdealLoop::find_predicate(Node* entry) {
Node* predicate = NULL;
if (LoopLimitCheck) {
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate != NULL) { // right pattern that can be used by loop predication
return entry;
}
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate != NULL) { // right pattern that can be used by loop predication
return entry;
}
if (UseLoopPredicate) {
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
@ -646,19 +640,13 @@ BoolNode* PhaseIdealLoop::rc_predicate(IdealLoopTree *loop, Node* ctrl,
Node* max_idx_expr = init;
int stride_con = stride->get_int();
if ((stride_con > 0) == (scale > 0) == upper) {
if (LoopLimitCheck) {
// With LoopLimitCheck limit is not exact.
// Calculate exact limit here.
// Note, counted loop's test is '<' or '>'.
limit = exact_limit(loop);
max_idx_expr = new SubINode(limit, stride);
register_new_node(max_idx_expr, ctrl);
if (TraceLoopPredicate) predString->print("(limit - stride) ");
} else {
max_idx_expr = new SubINode(limit, stride);
register_new_node(max_idx_expr, ctrl);
if (TraceLoopPredicate) predString->print("(limit - stride) ");
}
// Limit is not exact.
// Calculate exact limit here.
// Note, counted loop's test is '<' or '>'.
limit = exact_limit(loop);
max_idx_expr = new SubINode(limit, stride);
register_new_node(max_idx_expr, ctrl);
if (TraceLoopPredicate) predString->print("(limit - stride) ");
} else {
if (TraceLoopPredicate) predString->print("init ");
}
@ -721,12 +709,9 @@ bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
Node* entry = head->in(LoopNode::EntryControl);
ProjNode *predicate_proj = NULL;
// Loop limit check predicate should be near the loop.
if (LoopLimitCheck) {
predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate_proj != NULL)
entry = predicate_proj->in(0)->in(0);
}
predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate_proj != NULL)
entry = predicate_proj->in(0)->in(0);
predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
if (!predicate_proj) {
#ifndef PRODUCT

View File

@ -1027,82 +1027,9 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
_igvn.replace_input_of(bol, 1, cmp);
}
//------------------------------
// Step A: Create Post-Loop.
Node* main_exit = main_end->proj_out(false);
assert( main_exit->Opcode() == Op_IfFalse, "" );
int dd_main_exit = dom_depth(main_exit);
// Step A1: Clone the loop body. The clone becomes the post-loop. The main
// loop pre-header illegally has 2 control users (old & new loops).
clone_loop( loop, old_new, dd_main_exit );
assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
post_head->set_post_loop(main_head);
// Reduce the post-loop trip count.
CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
post_end->_prob = PROB_FAIR;
// Build the main-loop normal exit.
IfFalseNode *new_main_exit = new IfFalseNode(main_end);
_igvn.register_new_node_with_optimizer( new_main_exit );
set_idom(new_main_exit, main_end, dd_main_exit );
set_loop(new_main_exit, loop->_parent);
// Step A2: Build a zero-trip guard for the post-loop. After leaving the
// main-loop, the post-loop may not execute at all. We 'opaque' the incr
// (the main-loop trip-counter exit value) because we will be changing
// the exit value (via unrolling) so we cannot constant-fold away the zero
// trip guard until all unrolling is done.
Node *zer_opaq = new Opaque1Node(C, incr);
Node *zer_cmp = new CmpINode( zer_opaq, limit );
Node *zer_bol = new BoolNode( zer_cmp, b_test );
register_new_node( zer_opaq, new_main_exit );
register_new_node( zer_cmp , new_main_exit );
register_new_node( zer_bol , new_main_exit );
// Build the IfNode
IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
_igvn.register_new_node_with_optimizer( zer_iff );
set_idom(zer_iff, new_main_exit, dd_main_exit);
set_loop(zer_iff, loop->_parent);
// Plug in the false-path, taken if we need to skip post-loop
_igvn.replace_input_of(main_exit, 0, zer_iff);
set_idom(main_exit, zer_iff, dd_main_exit);
set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
// Make the true-path, must enter the post loop
Node *zer_taken = new IfTrueNode( zer_iff );
_igvn.register_new_node_with_optimizer( zer_taken );
set_idom(zer_taken, zer_iff, dd_main_exit);
set_loop(zer_taken, loop->_parent);
// Plug in the true path
_igvn.hash_delete( post_head );
post_head->set_req(LoopNode::EntryControl, zer_taken);
set_idom(post_head, zer_taken, dd_main_exit);
Arena *a = Thread::current()->resource_area();
VectorSet visited(a);
Node_Stack clones(a, main_head->back_control()->outcnt());
// Step A3: Make the fall-in values to the post-loop come from the
// fall-out values of the main-loop.
for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
Node* main_phi = main_head->fast_out(i);
if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
Node *post_phi = old_new[main_phi->_idx];
Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
post_head->init_control(),
main_phi->in(LoopNode::LoopBackControl),
visited, clones);
_igvn.hash_delete(post_phi);
post_phi->set_req( LoopNode::EntryControl, fallmain );
}
}
// Update local caches for next stanza
main_exit = new_main_exit;
// Add the post loop
CountedLoopNode *post_head = NULL;
Node *main_exit = insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
//------------------------------
// Step B: Create Pre-Loop.
@ -1158,8 +1085,9 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
main_head->set_req(LoopNode::EntryControl, min_taken);
set_idom(main_head, min_taken, dd_main_head);
visited.Clear();
clones.clear();
Arena *a = Thread::current()->resource_area();
VectorSet visited(a);
Node_Stack clones(a, main_head->back_control()->outcnt());
// Step B3: Make the fall-in values to the main-loop come from the
// fall-out values of the pre-loop.
for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
@ -1185,12 +1113,8 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
// variable value and the induction variable Phi to preserve correct
// dependencies.
// CastII for the post loop:
bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
assert(inserted, "no castII inserted");
// CastII for the main loop:
inserted = cast_incr_before_loop(pre_incr, min_taken, main_head);
bool inserted = cast_incr_before_loop( pre_incr, min_taken, main_head );
assert(inserted, "no castII inserted");
// Step B4: Shorten the pre-loop to run only 1 iteration (for now).
@ -1298,19 +1222,82 @@ void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old
guarantee(main_end != NULL, "no loop exit node");
// diagnostic to show loop end is not properly formed
assert(main_end->outcnt() == 2, "1 true, 1 false path only");
uint dd_main_head = dom_depth(main_head);
uint max = main_head->outcnt();
// mark this loop as processed
main_head->mark_has_atomic_post_loop();
Node *pre_header = main_head->in(LoopNode::EntryControl);
Node *init = main_head->init_trip();
Node *incr = main_end->incr();
Node *limit = main_end->limit();
Node *stride = main_end->stride();
Node *cmp = main_end->cmp_node();
BoolTest::mask b_test = main_end->test_trip();
// In this case we throw away the result as we are not using it to connect anything else.
CountedLoopNode *post_head = NULL;
insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
// It's difficult to be precise about the trip-counts
// for post loops. They are usually very short,
// so guess that unit vector trips is a reasonable value.
post_head->set_profile_trip_cnt(cur_unroll);
// Now force out all loop-invariant dominating tests. The optimizer
// finds some, but we _know_ they are all useless.
peeled_dom_test_elim(loop, old_new);
loop->record_for_igvn();
}
//-------------------------insert_scalar_rced_post_loop------------------------
// Insert a copy of the rce'd main loop as a post loop,
// We have not unrolled the main loop, so this is the right time to inject this.
// Later we will examine the partner of this post loop pair which still has range checks
// to see inject code which tests at runtime if the range checks are applicable.
void PhaseIdealLoop::insert_scalar_rced_post_loop(IdealLoopTree *loop, Node_List &old_new) {
if (!loop->_head->is_CountedLoop()) return;
CountedLoopNode *cl = loop->_head->as_CountedLoop();
// only process RCE'd main loops
if (!cl->is_main_loop() || cl->range_checks_present()) return;
#ifndef PRODUCT
if (TraceLoopOpts) {
tty->print("PostScalarRce ");
loop->dump_head();
}
#endif
C->set_major_progress();
// Find common pieces of the loop being guarded with pre & post loops
CountedLoopNode *main_head = loop->_head->as_CountedLoop();
CountedLoopEndNode *main_end = main_head->loopexit();
guarantee(main_end != NULL, "no loop exit node");
// diagnostic to show loop end is not properly formed
assert(main_end->outcnt() == 2, "1 true, 1 false path only");
Node *incr = main_end->incr();
Node *limit = main_end->limit();
// In this case we throw away the result as we are not using it to connect anything else.
CountedLoopNode *post_head = NULL;
insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
// It's difficult to be precise about the trip-counts
// for post loops. They are usually very short,
// so guess that unit vector trips is a reasonable value.
post_head->set_profile_trip_cnt(4.0);
post_head->set_is_rce_post_loop();
// Now force out all loop-invariant dominating tests. The optimizer
// finds some, but we _know_ they are all useless.
peeled_dom_test_elim(loop, old_new);
loop->record_for_igvn();
}
//------------------------------insert_post_loop-------------------------------
// Insert post loops. Add a post loop to the given loop passed.
Node *PhaseIdealLoop::insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
CountedLoopNode *main_head, CountedLoopEndNode *main_end,
Node *incr, Node *limit, CountedLoopNode *&post_head) {
//------------------------------
// Step A: Create a new post-Loop.
@ -1322,7 +1309,7 @@ void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old
// The main loop pre-header illegally has 2 control users (old & new loops).
clone_loop(loop, old_new, dd_main_exit);
assert(old_new[main_end->_idx]->Opcode() == Op_CountedLoopEnd, "");
CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
post_head = old_new[main_head->_idx]->as_CountedLoop();
post_head->set_normal_loop();
post_head->set_post_loop(main_head);
@ -1336,14 +1323,14 @@ void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old
set_idom(new_main_exit, main_end, dd_main_exit);
set_loop(new_main_exit, loop->_parent);
// Step A2: Build a zero-trip guard for the vector post-loop. After leaving the
// main-loop, the vector post-loop may not execute at all. We 'opaque' the incr
// (the vectorized main-loop trip-counter exit value) because we will be changing
// Step A2: Build a zero-trip guard for the post-loop. After leaving the
// main-loop, the post-loop may not execute at all. We 'opaque' the incr
// (the previous loop trip-counter exit value) because we will be changing
// the exit value (via additional unrolling) so we cannot constant-fold away the zero
// trip guard until all unrolling is done.
Node *zer_opaq = new Opaque1Node(C, incr);
Node *zer_cmp = new CmpINode(zer_opaq, limit);
Node *zer_bol = new BoolNode(zer_cmp, b_test);
Node *zer_bol = new BoolNode(zer_cmp, main_end->test_trip());
register_new_node(zer_opaq, new_main_exit);
register_new_node(zer_cmp, new_main_exit);
register_new_node(zer_bol, new_main_exit);
@ -1354,11 +1341,11 @@ void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old
set_idom(zer_iff, new_main_exit, dd_main_exit);
set_loop(zer_iff, loop->_parent);
// Plug in the false-path, taken if we need to skip vector post-loop
// Plug in the false-path, taken if we need to skip this post-loop
_igvn.replace_input_of(main_exit, 0, zer_iff);
set_idom(main_exit, zer_iff, dd_main_exit);
set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
// Make the true-path, must enter the vector post loop
// Make the true-path, must enter this post loop
Node *zer_taken = new IfTrueNode(zer_iff);
_igvn.register_new_node_with_optimizer(zer_taken);
set_idom(zer_taken, zer_iff, dd_main_exit);
@ -1371,7 +1358,7 @@ void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old
Arena *a = Thread::current()->resource_area();
VectorSet visited(a);
Node_Stack clones(a, main_head->back_control()->outcnt());
// Step A3: Make the fall-in values to the vector post-loop come from the
// Step A3: Make the fall-in values to the post-loop come from the
// fall-out values of the main-loop.
for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
Node* main_phi = main_head->fast_out(i);
@ -1390,15 +1377,7 @@ void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old
bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
assert(inserted, "no castII inserted");
// It's difficult to be precise about the trip-counts
// for post loops. They are usually very short,
// so guess that unit vector trips is a reasonable value.
post_head->set_profile_trip_cnt((float)slp_max_unroll_factor);
// Now force out all loop-invariant dominating tests. The optimizer
// finds some, but we _know_ they are all useless.
peeled_dom_test_elim(loop, old_new);
loop->record_for_igvn();
return new_main_exit;
}
//------------------------------is_invariant-----------------------------
@ -1457,7 +1436,7 @@ void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool ad
// Check the shape of the graph at the loop entry. If an inappropriate
// graph shape is encountered, the compiler bails out loop unrolling;
// compilation of the method will still succeed.
if (!is_canonical_main_loop_entry(loop_head)) {
if (!is_canonical_loop_entry(loop_head)) {
return;
}
opaq = ctrl->in(0)->in(1)->in(1)->in(2);
@ -1468,209 +1447,156 @@ void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool ad
C->set_major_progress();
Node* new_limit = NULL;
if (UnrollLimitCheck) {
int stride_con = stride->get_int();
int stride_p = (stride_con > 0) ? stride_con : -stride_con;
uint old_trip_count = loop_head->trip_count();
// Verify that unroll policy result is still valid.
assert(old_trip_count > 1 &&
(!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
int stride_con = stride->get_int();
int stride_p = (stride_con > 0) ? stride_con : -stride_con;
uint old_trip_count = loop_head->trip_count();
// Verify that unroll policy result is still valid.
assert(old_trip_count > 1 &&
(!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
// Adjust loop limit to keep valid iterations number after unroll.
// Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
// which may overflow.
if (!adjust_min_trip) {
assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
"odd trip count for maximally unroll");
// Don't need to adjust limit for maximally unroll since trip count is even.
} else if (loop_head->has_exact_trip_count() && init->is_Con()) {
// Loop's limit is constant. Loop's init could be constant when pre-loop
// become peeled iteration.
jlong init_con = init->get_int();
// We can keep old loop limit if iterations count stays the same:
// old_trip_count == new_trip_count * 2
// Note: since old_trip_count >= 2 then new_trip_count >= 1
// so we also don't need to adjust zero trip test.
jlong limit_con = limit->get_int();
// (stride_con*2) not overflow since stride_con <= 8.
int new_stride_con = stride_con * 2;
int stride_m = new_stride_con - (stride_con > 0 ? 1 : -1);
jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
// New trip count should satisfy next conditions.
assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
uint new_trip_count = (uint)trip_count;
adjust_min_trip = (old_trip_count != new_trip_count*2);
}
// Adjust loop limit to keep valid iterations number after unroll.
// Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
// which may overflow.
if (!adjust_min_trip) {
assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
"odd trip count for maximally unroll");
// Don't need to adjust limit for maximally unroll since trip count is even.
} else if (loop_head->has_exact_trip_count() && init->is_Con()) {
// Loop's limit is constant. Loop's init could be constant when pre-loop
// become peeled iteration.
jlong init_con = init->get_int();
// We can keep old loop limit if iterations count stays the same:
// old_trip_count == new_trip_count * 2
// Note: since old_trip_count >= 2 then new_trip_count >= 1
// so we also don't need to adjust zero trip test.
jlong limit_con = limit->get_int();
// (stride_con*2) not overflow since stride_con <= 8.
int new_stride_con = stride_con * 2;
int stride_m = new_stride_con - (stride_con > 0 ? 1 : -1);
jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
// New trip count should satisfy next conditions.
assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
uint new_trip_count = (uint)trip_count;
adjust_min_trip = (old_trip_count != new_trip_count*2);
}
if (adjust_min_trip) {
// Step 2: Adjust the trip limit if it is called for.
// The adjustment amount is -stride. Need to make sure if the
// adjustment underflows or overflows, then the main loop is skipped.
Node* cmp = loop_end->cmp_node();
assert(cmp->in(2) == limit, "sanity");
assert(opaq != NULL && opaq->in(1) == limit, "sanity");
if (adjust_min_trip) {
// Step 2: Adjust the trip limit if it is called for.
// The adjustment amount is -stride. Need to make sure if the
// adjustment underflows or overflows, then the main loop is skipped.
Node* cmp = loop_end->cmp_node();
assert(cmp->in(2) == limit, "sanity");
assert(opaq != NULL && opaq->in(1) == limit, "sanity");
// Verify that policy_unroll result is still valid.
const TypeInt* limit_type = _igvn.type(limit)->is_int();
assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
// Verify that policy_unroll result is still valid.
const TypeInt* limit_type = _igvn.type(limit)->is_int();
assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
if (limit->is_Con()) {
// The check in policy_unroll and the assert above guarantee
// no underflow if limit is constant.
new_limit = _igvn.intcon(limit->get_int() - stride_con);
set_ctrl(new_limit, C->root());
if (limit->is_Con()) {
// The check in policy_unroll and the assert above guarantee
// no underflow if limit is constant.
new_limit = _igvn.intcon(limit->get_int() - stride_con);
set_ctrl(new_limit, C->root());
} else {
// Limit is not constant.
if (loop_head->unrolled_count() == 1) { // only for first unroll
// Separate limit by Opaque node in case it is an incremented
// variable from previous loop to avoid using pre-incremented
// value which could increase register pressure.
// Otherwise reorg_offsets() optimization will create a separate
// Opaque node for each use of trip-counter and as result
// zero trip guard limit will be different from loop limit.
assert(has_ctrl(opaq), "should have it");
Node* opaq_ctrl = get_ctrl(opaq);
limit = new Opaque2Node( C, limit );
register_new_node( limit, opaq_ctrl );
}
if (stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo) ||
stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi)) {
// No underflow.
new_limit = new SubINode(limit, stride);
} else {
// Limit is not constant.
if (loop_head->unrolled_count() == 1) { // only for first unroll
// Separate limit by Opaque node in case it is an incremented
// variable from previous loop to avoid using pre-incremented
// value which could increase register pressure.
// Otherwise reorg_offsets() optimization will create a separate
// Opaque node for each use of trip-counter and as result
// zero trip guard limit will be different from loop limit.
assert(has_ctrl(opaq), "should have it");
Node* opaq_ctrl = get_ctrl(opaq);
limit = new Opaque2Node( C, limit );
register_new_node( limit, opaq_ctrl );
}
if (stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo) ||
stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi)) {
// No underflow.
new_limit = new SubINode(limit, stride);
// (limit - stride) may underflow.
// Clamp the adjustment value with MININT or MAXINT:
//
// new_limit = limit-stride
// if (stride > 0)
// new_limit = (limit < new_limit) ? MININT : new_limit;
// else
// new_limit = (limit > new_limit) ? MAXINT : new_limit;
//
BoolTest::mask bt = loop_end->test_trip();
assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
set_ctrl(adj_max, C->root());
Node* old_limit = NULL;
Node* adj_limit = NULL;
Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
if (loop_head->unrolled_count() > 1 &&
limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
limit->in(CMoveNode::IfTrue) == adj_max &&
bol->as_Bool()->_test._test == bt &&
bol->in(1)->Opcode() == Op_CmpI &&
bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
// Loop was unrolled before.
// Optimize the limit to avoid nested CMove:
// use original limit as old limit.
old_limit = bol->in(1)->in(1);
// Adjust previous adjusted limit.
adj_limit = limit->in(CMoveNode::IfFalse);
adj_limit = new SubINode(adj_limit, stride);
} else {
// (limit - stride) may underflow.
// Clamp the adjustment value with MININT or MAXINT:
//
// new_limit = limit-stride
// if (stride > 0)
// new_limit = (limit < new_limit) ? MININT : new_limit;
// else
// new_limit = (limit > new_limit) ? MAXINT : new_limit;
//
BoolTest::mask bt = loop_end->test_trip();
assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
set_ctrl(adj_max, C->root());
Node* old_limit = NULL;
Node* adj_limit = NULL;
Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
if (loop_head->unrolled_count() > 1 &&
limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
limit->in(CMoveNode::IfTrue) == adj_max &&
bol->as_Bool()->_test._test == bt &&
bol->in(1)->Opcode() == Op_CmpI &&
bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
// Loop was unrolled before.
// Optimize the limit to avoid nested CMove:
// use original limit as old limit.
old_limit = bol->in(1)->in(1);
// Adjust previous adjusted limit.
adj_limit = limit->in(CMoveNode::IfFalse);
adj_limit = new SubINode(adj_limit, stride);
} else {
old_limit = limit;
adj_limit = new SubINode(limit, stride);
}
assert(old_limit != NULL && adj_limit != NULL, "");
register_new_node( adj_limit, ctrl ); // adjust amount
Node* adj_cmp = new CmpINode(old_limit, adj_limit);
register_new_node( adj_cmp, ctrl );
Node* adj_bool = new BoolNode(adj_cmp, bt);
register_new_node( adj_bool, ctrl );
new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
old_limit = limit;
adj_limit = new SubINode(limit, stride);
}
register_new_node(new_limit, ctrl);
assert(old_limit != NULL && adj_limit != NULL, "");
register_new_node( adj_limit, ctrl ); // adjust amount
Node* adj_cmp = new CmpINode(old_limit, adj_limit);
register_new_node( adj_cmp, ctrl );
Node* adj_bool = new BoolNode(adj_cmp, bt);
register_new_node( adj_bool, ctrl );
new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
}
assert(new_limit != NULL, "");
// Replace in loop test.
assert(loop_end->in(1)->in(1) == cmp, "sanity");
if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
// Don't need to create new test since only one user.
_igvn.hash_delete(cmp);
cmp->set_req(2, new_limit);
} else {
// Create new test since it is shared.
Node* ctrl2 = loop_end->in(0);
Node* cmp2 = cmp->clone();
cmp2->set_req(2, new_limit);
register_new_node(cmp2, ctrl2);
Node* bol2 = loop_end->in(1)->clone();
bol2->set_req(1, cmp2);
register_new_node(bol2, ctrl2);
_igvn.replace_input_of(loop_end, 1, bol2);
}
// Step 3: Find the min-trip test guaranteed before a 'main' loop.
// Make it a 1-trip test (means at least 2 trips).
// Guard test uses an 'opaque' node which is not shared. Hence I
// can edit it's inputs directly. Hammer in the new limit for the
// minimum-trip guard.
assert(opaq->outcnt() == 1, "");
_igvn.replace_input_of(opaq, 1, new_limit);
register_new_node(new_limit, ctrl);
}
assert(new_limit != NULL, "");
// Replace in loop test.
assert(loop_end->in(1)->in(1) == cmp, "sanity");
if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
// Don't need to create new test since only one user.
_igvn.hash_delete(cmp);
cmp->set_req(2, new_limit);
} else {
// Create new test since it is shared.
Node* ctrl2 = loop_end->in(0);
Node* cmp2 = cmp->clone();
cmp2->set_req(2, new_limit);
register_new_node(cmp2, ctrl2);
Node* bol2 = loop_end->in(1)->clone();
bol2->set_req(1, cmp2);
register_new_node(bol2, ctrl2);
_igvn.replace_input_of(loop_end, 1, bol2);
}
// Adjust max trip count. The trip count is intentionally rounded
// down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
// the main, unrolled, part of the loop will never execute as it is protected
// by the min-trip test. See bug 4834191 for a case where we over-unrolled
// and later determined that part of the unrolled loop was dead.
loop_head->set_trip_count(old_trip_count / 2);
// Double the count of original iterations in the unrolled loop body.
loop_head->double_unrolled_count();
} else { // LoopLimitCheck
// Adjust max trip count. The trip count is intentionally rounded
// down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
// the main, unrolled, part of the loop will never execute as it is protected
// by the min-trip test. See bug 4834191 for a case where we over-unrolled
// and later determined that part of the unrolled loop was dead.
loop_head->set_trip_count(loop_head->trip_count() / 2);
// Double the count of original iterations in the unrolled loop body.
loop_head->double_unrolled_count();
// -----------
// Step 2: Cut back the trip counter for an unroll amount of 2.
// Loop will normally trip (limit - init)/stride_con. Since it's a
// CountedLoop this is exact (stride divides limit-init exactly).
// We are going to double the loop body, so we want to knock off any
// odd iteration: (trip_cnt & ~1). Then back compute a new limit.
Node *span = new SubINode( limit, init );
register_new_node( span, ctrl );
Node *trip = new DivINode( 0, span, stride );
register_new_node( trip, ctrl );
Node *mtwo = _igvn.intcon(-2);
set_ctrl(mtwo, C->root());
Node *rond = new AndINode( trip, mtwo );
register_new_node( rond, ctrl );
Node *spn2 = new MulINode( rond, stride );
register_new_node( spn2, ctrl );
new_limit = new AddINode( spn2, init );
register_new_node( new_limit, ctrl );
// Hammer in the new limit
Node *ctrl2 = loop_end->in(0);
Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
register_new_node( cmp2, ctrl2 );
Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
register_new_node( bol2, ctrl2 );
_igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
// Step 3: Find the min-trip test guaranteed before a 'main' loop.
// Make it a 1-trip test (means at least 2 trips).
if( adjust_min_trip ) {
assert( new_limit != NULL, "" );
// Guard test uses an 'opaque' node which is not shared. Hence I
// can edit it's inputs directly. Hammer in the new limit for the
// minimum-trip guard.
assert( opaq->outcnt() == 1, "" );
_igvn.hash_delete(opaq);
opaq->set_req(1, new_limit);
}
} // LoopLimitCheck
// Guard test uses an 'opaque' node which is not shared. Hence I
// can edit it's inputs directly. Hammer in the new limit for the
// minimum-trip guard.
assert(opaq->outcnt() == 1, "");
_igvn.replace_input_of(opaq, 1, new_limit);
}
// Adjust max trip count. The trip count is intentionally rounded
// down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
// the main, unrolled, part of the loop will never execute as it is protected
// by the min-trip test. See bug 4834191 for a case where we over-unrolled
// and later determined that part of the unrolled loop was dead.
loop_head->set_trip_count(old_trip_count / 2);
// Double the count of original iterations in the unrolled loop body.
loop_head->double_unrolled_count();
// ---------
// Step 4: Clone the loop body. Move it inside the loop. This loop body
@ -1904,7 +1830,6 @@ void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset
// )
if (low_limit->get_int() == -max_jint) {
if (!RangeLimitCheck) return;
// We need this guard when scale*pre_limit+offset >= limit
// due to underflow. So we need execute pre-loop until
// scale*I+offset >= min_int. But (min_int-offset) will
@ -1956,7 +1881,6 @@ void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset
*pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
if (low_limit->get_int() == -max_jint) {
if (!RangeLimitCheck) return;
// We need this guard when scale*main_limit+offset >= limit
// due to underflow. So we need execute main-loop while
// scale*I+offset+1 > min_int. But (min_int-offset-1) will
@ -2091,7 +2015,7 @@ bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale,
//------------------------------do_range_check---------------------------------
// Eliminate range-checks and other trip-counter vs loop-invariant tests.
void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
int PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
#ifndef PRODUCT
if (PrintOpto && VerifyLoopOptimizations) {
tty->print("Range Check Elimination ");
@ -2103,10 +2027,12 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
#endif
assert(RangeCheckElimination, "");
CountedLoopNode *cl = loop->_head->as_CountedLoop();
// If we fail before trying to eliminate range checks, set multiversion state
int closed_range_checks = 1;
// protect against stride not being a constant
if (!cl->stride_is_con())
return;
return closed_range_checks;
// Find the trip counter; we are iteration splitting based on it
Node *trip_counter = cl->phi();
@ -2117,8 +2043,8 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// Check graph shape. Cannot optimize a loop if zero-trip
// Opaque1 node is optimized away and then another round
// of loop opts attempted.
if (!is_canonical_main_loop_entry(cl)) {
return;
if (!is_canonical_loop_entry(cl)) {
return closed_range_checks;
}
// Need to find the main-loop zero-trip guard
@ -2132,7 +2058,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
Node *p_f = iffm->in(0);
// pre loop may have been optimized out
if (p_f->Opcode() != Op_IfFalse) {
return;
return closed_range_checks;
}
CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
assert(pre_end->loopnode()->is_pre_loop(), "");
@ -2141,7 +2067,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// optimized away and then another round of loop opts attempted.
// We can not optimize this particular loop in that case.
if (pre_opaq1->Opcode() != Op_Opaque1)
return;
return closed_range_checks;
Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
Node *pre_limit = pre_opaq->in(1);
@ -2152,7 +2078,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// pre-loop Opaque1 node.
Node *orig_limit = pre_opaq->original_loop_limit();
if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
return;
return closed_range_checks;
// Must know if its a count-up or count-down loop
@ -2173,6 +2099,10 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// executed.
bool conditional_rc = false;
// Count number of range checks and reduce by load range limits, if zero,
// the loop is in canonical form to multiversion.
closed_range_checks = 0;
// Check loop body for tests of trip-counter plus loop-invariant vs
// loop-invariant.
for( uint i = 0; i < loop->_body.size(); i++ ) {
@ -2181,6 +2111,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
iff->Opcode() == Op_RangeCheck) { // Test?
// Test is an IfNode, has 2 projections. If BOTH are in the loop
// we need loop unswitching instead of iteration splitting.
closed_range_checks++;
Node *exit = loop->is_loop_exit(iff);
if( !exit ) continue;
int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
@ -2258,7 +2189,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
if (!conditional_rc) {
// (0-offset)/scale could be outside of loop iterations range.
conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
conditional_rc = !loop->dominates_backedge(iff);
}
} else {
if (PrintOpto) {
@ -2275,7 +2206,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
scale_con = -scale_con;
offset = new SubINode( zero, offset );
register_new_node( offset, pre_ctrl );
limit = new SubINode( zero, limit );
limit = new SubINode( zero, limit );
register_new_node( limit, pre_ctrl );
// Fall into LE case
case BoolTest::le:
@ -2294,7 +2225,7 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
// Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
// still be outside of loop range.
conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
conditional_rc = !loop->dominates_backedge(iff);
}
break;
default:
@ -2324,6 +2255,9 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
--imax;
}
}
if (limit->Opcode() == Op_LoadRange) {
closed_range_checks--;
}
} // End of is IF
@ -2340,26 +2274,6 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// Note:: we are making the main loop limit no longer precise;
// need to round up based on stride.
cl->set_nonexact_trip_count();
if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
// "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
// Hopefully, compiler will optimize for powers of 2.
Node *ctrl = get_ctrl(main_limit);
Node *stride = cl->stride();
Node *init = cl->init_trip()->uncast();
Node *span = new SubINode(main_limit,init);
register_new_node(span,ctrl);
Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
Node *add = new AddINode(span,rndup);
register_new_node(add,ctrl);
Node *div = new DivINode(0,add,stride);
register_new_node(div,ctrl);
Node *mul = new MulINode(div,stride);
register_new_node(mul,ctrl);
Node *newlim = new AddINode(mul,init);
register_new_node(newlim,ctrl);
main_limit = newlim;
}
Node *main_cle = cl->loopexit();
Node *main_bol = main_cle->in(1);
// Hacking loop bounds; need private copies of exit test
@ -2379,6 +2293,169 @@ void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
// The OpaqueNode is unshared by design
assert( opqzm->outcnt() == 1, "cannot hack shared node" );
_igvn.replace_input_of(opqzm, 1, main_limit);
return closed_range_checks;
}
//------------------------------has_range_checks-------------------------------
// Check to see if RCE cleaned the current loop of range-checks.
void PhaseIdealLoop::has_range_checks(IdealLoopTree *loop) {
assert(RangeCheckElimination, "");
// skip if not a counted loop
if (!loop->is_counted()) return;
CountedLoopNode *cl = loop->_head->as_CountedLoop();
// skip this loop if it is already checked
if (cl->has_been_range_checked()) return;
// Now check for existance of range checks
for (uint i = 0; i < loop->_body.size(); i++) {
Node *iff = loop->_body[i];
int iff_opc = iff->Opcode();
if (iff_opc == Op_If || iff_opc == Op_RangeCheck) {
cl->mark_has_range_checks();
break;
}
}
cl->set_has_been_range_checked();
}
//-------------------------multi_version_post_loops----------------------------
// Check the range checks that remain, if simple, use the bounds to guard
// which version to a post loop we execute, one with range checks or one without
bool PhaseIdealLoop::multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop) {
bool multi_version_succeeded = false;
assert(RangeCheckElimination, "");
CountedLoopNode *legacy_cl = legacy_loop->_head->as_CountedLoop();
assert(legacy_cl->is_post_loop(), "");
// Check for existance of range checks using the unique instance to make a guard with
Unique_Node_List worklist;
for (uint i = 0; i < legacy_loop->_body.size(); i++) {
Node *iff = legacy_loop->_body[i];
int iff_opc = iff->Opcode();
if (iff_opc == Op_If || iff_opc == Op_RangeCheck) {
worklist.push(iff);
}
}
// Find RCE'd post loop so that we can stage its guard.
if (!is_canonical_loop_entry(legacy_cl)) return multi_version_succeeded;
Node* ctrl = legacy_cl->in(LoopNode::EntryControl);
Node* iffm = ctrl->in(0);
// Now we test that both the post loops are connected
Node* post_loop_region = iffm->in(0);
if (post_loop_region == NULL) return multi_version_succeeded;
if (!post_loop_region->is_Region()) return multi_version_succeeded;
Node* covering_region = post_loop_region->in(RegionNode::Control+1);
if (covering_region == NULL) return multi_version_succeeded;
if (!covering_region->is_Region()) return multi_version_succeeded;
Node* p_f = covering_region->in(RegionNode::Control);
if (p_f == NULL) return multi_version_succeeded;
if (!p_f->is_IfFalse()) return multi_version_succeeded;
if (!p_f->in(0)->is_CountedLoopEnd()) return multi_version_succeeded;
CountedLoopEndNode* rce_loop_end = p_f->in(0)->as_CountedLoopEnd();
if (rce_loop_end == NULL) return multi_version_succeeded;
CountedLoopNode* rce_cl = rce_loop_end->loopnode();
if (rce_cl == NULL || !rce_cl->is_post_loop()) return multi_version_succeeded;
CountedLoopNode *known_rce_cl = rce_loop->_head->as_CountedLoop();
if (rce_cl != known_rce_cl) return multi_version_succeeded;
// Then we fetch the cover entry test
ctrl = rce_cl->in(LoopNode::EntryControl);
if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return multi_version_succeeded;
#ifndef PRODUCT
if (TraceLoopOpts) {
tty->print("PostMultiVersion\n");
rce_loop->dump_head();
legacy_loop->dump_head();
}
#endif
// Now fetch the limit we want to compare against
Node *limit = rce_cl->limit();
bool first_time = true;
// If we got this far, we identified the post loop which has been RCE'd and
// we have a work list. Now we will try to transform the if guard to cause
// the loop pair to be multi version executed with the determination left to runtime
// or the optimizer if full information is known about the given arrays at compile time.
Node *last_min = NULL;
multi_version_succeeded = true;
while (worklist.size()) {
Node* rc_iffm = worklist.pop();
if (rc_iffm->is_If()) {
Node *rc_bolzm = rc_iffm->in(1);
if (rc_bolzm->is_Bool()) {
Node *rc_cmpzm = rc_bolzm->in(1);
if (rc_cmpzm->is_Cmp()) {
Node *rc_left = rc_cmpzm->in(2);
if (rc_left->Opcode() != Op_LoadRange) {
multi_version_succeeded = false;
break;
}
if (first_time) {
last_min = rc_left;
first_time = false;
} else {
Node *cur_min = new MinINode(last_min, rc_left);
last_min = cur_min;
_igvn.register_new_node_with_optimizer(last_min);
}
}
}
}
}
// All we have to do is update the limit of the rce loop
// with the min of our expression and the current limit.
// We will use this expression to replace the current limit.
if (last_min && multi_version_succeeded) {
Node *cur_min = new MinINode(last_min, limit);
_igvn.register_new_node_with_optimizer(cur_min);
Node *cmp_node = rce_loop_end->cmp_node();
_igvn.replace_input_of(cmp_node, 2, cur_min);
set_idom(cmp_node, cur_min, dom_depth(ctrl));
set_ctrl(cur_min, ctrl);
set_loop(cur_min, rce_loop->_parent);
legacy_cl->mark_is_multiversioned();
rce_cl->mark_is_multiversioned();
multi_version_succeeded = true;
C->set_major_progress();
}
return multi_version_succeeded;
}
//-------------------------poison_rce_post_loop--------------------------------
// Causes the rce'd post loop to be optimized away if multiverioning fails
void PhaseIdealLoop::poison_rce_post_loop(IdealLoopTree *rce_loop) {
CountedLoopNode *rce_cl = rce_loop->_head->as_CountedLoop();
Node* ctrl = rce_cl->in(LoopNode::EntryControl);
if (ctrl->is_IfTrue() || ctrl->is_IfFalse()) {
Node* iffm = ctrl->in(0);
if (iffm->is_If()) {
Node* cur_bool = iffm->in(1);
if (cur_bool->is_Bool()) {
Node* cur_cmp = cur_bool->in(1);
if (cur_cmp->is_Cmp()) {
BoolTest::mask new_test = BoolTest::gt;
BoolNode *new_bool = new BoolNode(cur_cmp, new_test);
_igvn.replace_node(cur_bool, new_bool);
_igvn._worklist.push(new_bool);
Node* left_op = cur_cmp->in(1);
_igvn.replace_input_of(cur_cmp, 2, left_op);
C->set_major_progress();
}
}
}
}
}
//------------------------------DCE_loop_body----------------------------------
@ -2738,8 +2815,20 @@ bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
// Adjust the pre- and main-loop limits to let the pre and post loops run
// with full checks, but the main-loop with no checks. Remove said
// checks from the main body.
if (should_rce)
phase->do_range_check(this,old_new);
if (should_rce) {
if (phase->do_range_check(this, old_new) != 0) {
cl->mark_has_range_checks();
}
} else {
phase->has_range_checks(this);
}
if (should_unroll && !should_peel && PostLoopMultiversioning) {
// Try to setup multiversioning on main loops before they are unrolled
if (cl->is_main_loop() && (cl->unrolled_count() == 1)) {
phase->insert_scalar_rced_post_loop(this, old_new);
}
}
// Double loop body for unrolling. Adjust the minimum-trip test (will do
// twice as many iterations as before) and the main body limit (only do

View File

@ -138,7 +138,7 @@ void PhaseIdealLoop::do_unswitching (IdealLoopTree *loop, Node_List &old_new) {
Node* uniqc = proj_true->unique_ctrl_out();
Node* entry = head->in(LoopNode::EntryControl);
Node* predicate = find_predicate(entry);
if (predicate != NULL && LoopLimitCheck && UseLoopPredicate) {
if (predicate != NULL && UseLoopPredicate) {
// We may have two predicates, find first.
entry = find_predicate(entry->in(0)->in(0));
if (entry != NULL) predicate = entry;

View File

@ -464,8 +464,6 @@ bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
Node *hook = new Node(6);
if (LoopLimitCheck) {
// ===================================================
// Generate loop limit check to avoid integer overflow
// in cases like next (cyclic loops):
@ -594,103 +592,6 @@ bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
}
set_subtree_ctrl( limit );
} else { // LoopLimitCheck
// If compare points to incr, we are ok. Otherwise the compare
// can directly point to the phi; in this case adjust the compare so that
// it points to the incr by adjusting the limit.
if (cmp->in(1) == phi || cmp->in(2) == phi)
limit = gvn->transform(new AddINode(limit,stride));
// trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
// Final value for iterator should be: trip_count * stride + init_trip.
Node *one_p = gvn->intcon( 1);
Node *one_m = gvn->intcon(-1);
Node *trip_count = NULL;
switch( bt ) {
case BoolTest::eq:
ShouldNotReachHere();
case BoolTest::ne: // Ahh, the case we desire
if (stride_con == 1)
trip_count = gvn->transform(new SubINode(limit,init_trip));
else if (stride_con == -1)
trip_count = gvn->transform(new SubINode(init_trip,limit));
else
ShouldNotReachHere();
set_subtree_ctrl(trip_count);
//_loop.map(trip_count->_idx,loop(limit));
break;
case BoolTest::le: // Maybe convert to '<' case
limit = gvn->transform(new AddINode(limit,one_p));
set_subtree_ctrl( limit );
hook->init_req(4, limit);
bt = BoolTest::lt;
// Make the new limit be in the same loop nest as the old limit
//_loop.map(limit->_idx,limit_loop);
// Fall into next case
case BoolTest::lt: { // Maybe convert to '!=' case
if (stride_con < 0) // Count down loop rolls through MAXINT
ShouldNotReachHere();
Node *range = gvn->transform(new SubINode(limit,init_trip));
set_subtree_ctrl( range );
hook->init_req(0, range);
Node *bias = gvn->transform(new AddINode(range,stride));
set_subtree_ctrl( bias );
hook->init_req(1, bias);
Node *bias1 = gvn->transform(new AddINode(bias,one_m));
set_subtree_ctrl( bias1 );
hook->init_req(2, bias1);
trip_count = gvn->transform(new DivINode(0,bias1,stride));
set_subtree_ctrl( trip_count );
hook->init_req(3, trip_count);
break;
}
case BoolTest::ge: // Maybe convert to '>' case
limit = gvn->transform(new AddINode(limit,one_m));
set_subtree_ctrl( limit );
hook->init_req(4 ,limit);
bt = BoolTest::gt;
// Make the new limit be in the same loop nest as the old limit
//_loop.map(limit->_idx,limit_loop);
// Fall into next case
case BoolTest::gt: { // Maybe convert to '!=' case
if (stride_con > 0) // count up loop rolls through MININT
ShouldNotReachHere();
Node *range = gvn->transform(new SubINode(limit,init_trip));
set_subtree_ctrl( range );
hook->init_req(0, range);
Node *bias = gvn->transform(new AddINode(range,stride));
set_subtree_ctrl( bias );
hook->init_req(1, bias);
Node *bias1 = gvn->transform(new AddINode(bias,one_p));
set_subtree_ctrl( bias1 );
hook->init_req(2, bias1);
trip_count = gvn->transform(new DivINode(0,bias1,stride));
set_subtree_ctrl( trip_count );
hook->init_req(3, trip_count);
break;
}
} // switch( bt )
Node *span = gvn->transform(new MulINode(trip_count,stride));
set_subtree_ctrl( span );
hook->init_req(5, span);
limit = gvn->transform(new AddINode(span,init_trip));
set_subtree_ctrl( limit );
} // LoopLimitCheck
if (!UseCountedLoopSafepoints) {
// Check for SafePoint on backedge and remove
Node *sfpt = x->in(LoopNode::LoopBackControl);
@ -830,7 +731,7 @@ Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
CountedLoopNode *cl = loop->_head->as_CountedLoop();
assert(cl->is_valid_counted_loop(), "");
if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
if (ABS(cl->stride_con()) == 1 ||
cl->limit()->Opcode() == Op_LoopLimit) {
// Old code has exact limit (it could be incorrect in case of int overflow).
// Loop limit is exact with stride == 1. And loop may already have exact limit.
@ -1898,12 +1799,10 @@ void IdealLoopTree::dump_head( ) const {
tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
if (_irreducible) tty->print(" IRREDUCIBLE");
Node* entry = _head->in(LoopNode::EntryControl);
if (LoopLimitCheck) {
Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate != NULL ) {
tty->print(" limit_check");
entry = entry->in(0)->in(0);
}
Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
if (predicate != NULL ) {
tty->print(" limit_check");
entry = entry->in(0)->in(0);
}
if (UseLoopPredicate) {
entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
@ -1934,6 +1833,9 @@ void IdealLoopTree::dump_head( ) const {
if (cl->is_pre_loop ()) tty->print(" pre" );
if (cl->is_main_loop()) tty->print(" main");
if (cl->is_post_loop()) tty->print(" post");
if (cl->is_vectorized_loop()) tty->print(" vector");
if (cl->range_checks_present()) tty->print(" rc ");
if (cl->is_multiversioned()) tty->print(" multi ");
}
if (_has_call) tty->print(" has_call");
if (_has_sfpt) tty->print(" has_sfpt");
@ -2323,7 +2225,7 @@ void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts)
// Some parser-inserted loop predicates could never be used by loop
// predication or they were moved away from loop during some optimizations.
// For example, peeling. Eliminate them before next loop optimizations.
if (UseLoopPredicate || LoopLimitCheck) {
if (UseLoopPredicate) {
eliminate_useless_predicates();
}
@ -2452,7 +2354,30 @@ void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts)
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
IdealLoopTree* lpt = iter.current();
if (lpt->is_counted()) {
sw.transform_loop(lpt, true);
CountedLoopNode *cl = lpt->_head->as_CountedLoop();
if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
// Check that the rce'd post loop is encountered first, multiversion after all
// major main loop optimization are concluded
if (!C->major_progress()) {
IdealLoopTree *lpt_next = lpt->_next;
if (lpt_next && lpt_next->is_counted()) {
CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
has_range_checks(lpt_next);
if (cl->is_post_loop() && cl->range_checks_present()) {
if (!cl->is_multiversioned()) {
if (multi_version_post_loops(lpt, lpt_next) == false) {
// Cause the rce loop to be optimized away if we fail
cl->mark_is_multiversioned();
poison_rce_post_loop(lpt);
}
}
}
}
}
} else if (cl->is_main_loop()) {
sw.transform_loop(lpt, true);
}
}
}
}
@ -3286,8 +3211,10 @@ Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
// loop unswitching, and IGVN, or a combination of them) can freely change
// the graph's shape. As a result, the graph shape outlined below cannot
// be guaranteed anymore.
bool PhaseIdealLoop::is_canonical_main_loop_entry(CountedLoopNode* cl) {
assert(cl->is_main_loop(), "check should be applied to main loops");
bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
if (!cl->is_main_loop() && !cl->is_post_loop()) {
return false;
}
Node* ctrl = cl->in(LoopNode::EntryControl);
if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
return false;
@ -3304,8 +3231,16 @@ bool PhaseIdealLoop::is_canonical_main_loop_entry(CountedLoopNode* cl) {
if (cmpzm == NULL || !cmpzm->is_Cmp()) {
return false;
}
Node* opqzm = cmpzm->in(2);
if (opqzm == NULL || opqzm->Opcode() != Op_Opaque1) {
// compares can get conditionally flipped
bool found_opaque = false;
for (uint i = 1; i < cmpzm->req(); i++) {
Node* opnd = cmpzm->in(i);
if (opnd && opnd->Opcode() == Op_Opaque1) {
found_opaque = true;
break;
}
}
if (!found_opaque) {
return false;
}
return true;

View File

@ -69,9 +69,13 @@ protected:
PassedSlpAnalysis=512,
DoUnrollOnly=1024,
VectorizedLoop=2048,
HasAtomicPostLoop=4096 };
HasAtomicPostLoop=4096,
HasRangeChecks=8192,
IsMultiversioned=16384};
char _unswitch_count;
enum { _unswitch_max=3 };
char _postloop_flags;
enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
public:
// Names for edge indices
@ -80,9 +84,13 @@ public:
int is_inner_loop() const { return _loop_flags & InnerLoop; }
void set_inner_loop() { _loop_flags |= InnerLoop; }
int range_checks_present() const { return _loop_flags & HasRangeChecks; }
int is_multiversioned() const { return _loop_flags & IsMultiversioned; }
int is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
void mark_has_reductions() { _loop_flags |= HasReductions; }
void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
@ -90,15 +98,23 @@ public:
void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
void mark_has_range_checks() { _loop_flags |= HasRangeChecks; }
void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
int unswitch_max() { return _unswitch_max; }
int unswitch_count() { return _unswitch_count; }
int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
void set_unswitch_count(int val) {
assert (val <= unswitch_max(), "too many unswitches");
_unswitch_count = val;
}
LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
LoopNode(Node *entry, Node *backedge) : RegionNode(3), _loop_flags(0), _unswitch_count(0), _postloop_flags(0) {
init_class_id(Class_Loop);
init_req(EntryControl, entry);
init_req(LoopBackControl, backedge);
@ -225,7 +241,6 @@ public:
int has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
int do_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
int is_vectorized_loop () const { return (_loop_flags & VectorizedLoop) == VectorizedLoop; }
int has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
@ -657,7 +672,7 @@ class PhaseIdealLoop : public PhaseTransform {
public:
static bool is_canonical_main_loop_entry(CountedLoopNode* cl);
static bool is_canonical_loop_entry(CountedLoopNode* cl);
bool has_node( Node* n ) const {
guarantee(n != NULL, "No Node.");
@ -911,6 +926,15 @@ public:
// Add pre and post loops around the given loop. These loops are used
// during RCE, unrolling and aligning loops.
void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
// Add post loop after the given loop.
Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
CountedLoopNode *main_head, CountedLoopEndNode *main_end,
Node *incr, Node *limit, CountedLoopNode *&post_head);
// Add an RCE'd post loop which we will multi-version adapt for run time test path usage
void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
// Add a vector post loop between a vector main loop and the current post loop
void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
// If Node n lives in the back_ctrl block, we clone a private version of n
@ -983,7 +1007,17 @@ public:
}
// Eliminate range-checks and other trip-counter vs loop-invariant tests.
void do_range_check( IdealLoopTree *loop, Node_List &old_new );
int do_range_check( IdealLoopTree *loop, Node_List &old_new );
// Check to see if do_range_check(...) cleaned the main loop of range-checks
void has_range_checks(IdealLoopTree *loop);
// Process post loops which have range checks and try to build a multi-version
// guard to safely determine if we can execute the post loop which was RCE'd.
bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
// Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
void poison_rce_post_loop(IdealLoopTree *rce_loop);
// Create a slow version of the loop by cloning the loop
// and inserting an if to select fast-slow versions.

View File

@ -662,8 +662,7 @@ void Parse::do_all_blocks() {
// (Note that dead locals do not get phis built, ever.)
ensure_phis_everywhere();
if (block->is_SEL_head() &&
(UseLoopPredicate || LoopLimitCheck)) {
if (block->is_SEL_head() && UseLoopPredicate) {
// Add predicate to single entry (not irreducible) loop head.
assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
// Need correct bci for predicate.

View File

@ -3077,7 +3077,7 @@ void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
// The loop cannot be optimized if the graph shape at
// the loop entry is inappropriate.
if (!PhaseIdealLoop::is_canonical_main_loop_entry(cl)) {
if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
return NULL;
}

View File

@ -1373,8 +1373,8 @@ WB_ENTRY(jint, WB_ConstantPoolEncodeIndyIndex(JNIEnv* env, jobject wb, jint inde
return ConstantPool::encode_invokedynamic_index(index);
WB_END
WB_ENTRY(void, WB_ClearInlineCaches(JNIEnv* env, jobject wb))
VM_ClearICs clear_ics;
WB_ENTRY(void, WB_ClearInlineCaches(JNIEnv* env, jobject wb, jboolean preserve_static_stubs))
VM_ClearICs clear_ics(preserve_static_stubs == JNI_TRUE);
VMThread::execute(&clear_ics);
WB_END
@ -1754,7 +1754,7 @@ static JNINativeMethod methods[] = {
{CC"isShared", CC"(Ljava/lang/Object;)Z", (void*)&WB_IsShared },
{CC"isSharedClass", CC"(Ljava/lang/Class;)Z", (void*)&WB_IsSharedClass },
{CC"areSharedStringsIgnored", CC"()Z", (void*)&WB_AreSharedStringsIgnored },
{CC"clearInlineCaches", CC"()V", (void*)&WB_ClearInlineCaches },
{CC"clearInlineCaches0", CC"(Z)V", (void*)&WB_ClearInlineCaches },
{CC"addCompilerDirective", CC"(Ljava/lang/String;)I",
(void*)&WB_AddCompilerDirective },
{CC"removeCompilerDirective", CC"(I)V", (void*)&WB_RemoveCompilerDirective },

View File

@ -3659,6 +3659,11 @@ jint Arguments::finalize_vm_init_args(ArgumentBootClassPath* bcp_p, bool bcp_ass
}
#endif
#if !defined(COMPILER2) && !INCLUDE_JVMCI
UNSUPPORTED_OPTION(ProfileInterpreter);
NOT_PRODUCT(UNSUPPORTED_OPTION(TraceProfileInterpreter));
#endif
#ifndef TIERED
// Tiered compilation is undefined.
UNSUPPORTED_OPTION(TieredCompilation);

View File

@ -2500,9 +2500,6 @@ public:
"generate locking/unlocking code for synchronized methods and " \
"monitors") \
\
develop(bool, GenerateCompilerNullChecks, true, \
"Generate explicit null checks for loads/stores/calls") \
\
develop(bool, GenerateRangeChecks, true, \
"Generate range checks for array accesses") \
\

View File

@ -233,6 +233,14 @@ void SimpleThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel l
if (level == CompLevel_none) {
return;
}
#if INCLUDE_JVMCI
// We can't compile with a JVMCI compiler until the module system is initialized.
if (level == CompLevel_full_optimization && UseJVMCICompiler && !Universe::is_module_initialized()) {
return;
}
#endif
// Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
// in the interpreter and then compile with C2 (the transition function will request that,
// see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with

View File

@ -792,10 +792,6 @@ void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
handle_area()->oops_do(f);
}
void Thread::nmethods_do(CodeBlobClosure* cf) {
// no nmethods in a generic thread...
}
void Thread::metadata_handles_do(void f(Metadata*)) {
// Only walk the Handles in Thread.
if (metadata_handles() != NULL) {
@ -2828,8 +2824,6 @@ void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf)
}
void JavaThread::nmethods_do(CodeBlobClosure* cf) {
Thread::nmethods_do(cf); // (super method is a no-op)
assert((!has_last_Java_frame() && java_call_counter() == 0) ||
(has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
@ -3304,6 +3298,7 @@ CodeCacheSweeperThread::CodeCacheSweeperThread()
: JavaThread(&sweeper_thread_entry) {
_scanned_nmethod = NULL;
}
void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
JavaThread::oops_do(f, cld_f, cf);
if (_scanned_nmethod != NULL && cf != NULL) {
@ -3314,6 +3309,16 @@ void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobC
}
}
void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
JavaThread::nmethods_do(cf);
if (_scanned_nmethod != NULL && cf != NULL) {
// Safepoints can occur when the sweeper is scanning an nmethod so
// process it here to make sure it isn't unloaded in the middle of
// a scan.
cf->do_code_blob(_scanned_nmethod);
}
}
// ======= Threads ========
@ -4342,9 +4347,13 @@ void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
void Threads::nmethods_do(CodeBlobClosure* cf) {
ALL_JAVA_THREADS(p) {
p->nmethods_do(cf);
// This is used by the code cache sweeper to mark nmethods that are active
// on the stack of a Java thread. Ignore the sweeper thread itself to avoid
// marking CodeCacheSweeperThread::_scanned_nmethod as active.
if(!p->is_Code_cache_sweeper_thread()) {
p->nmethods_do(cf);
}
}
VMThread::vm_thread()->nmethods_do(cf);
}
void Threads::metadata_do(void f(Metadata*)) {

View File

@ -509,9 +509,6 @@ class Thread: public ThreadShadow {
}
}
// Sweeper support
void nmethods_do(CodeBlobClosure* cf);
// jvmtiRedefineClasses support
void metadata_handles_do(void f(Metadata*));
@ -1649,7 +1646,7 @@ class JavaThread: public Thread {
void oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf);
// Sweeper operations
void nmethods_do(CodeBlobClosure* cf);
virtual void nmethods_do(CodeBlobClosure* cf);
// RedefineClasses Support
void metadata_do(void f(Metadata*));
@ -1997,10 +1994,10 @@ class CodeCacheSweeperThread : public JavaThread {
bool is_hidden_from_external_view() const { return true; }
bool is_Code_cache_sweeper_thread() const { return true; }
// GC support
// Apply "f->do_oop" to all root oops in "this".
// Apply "cf->do_code_blob" (if !NULL) to all code blobs active in frames
// Prevent GC from unloading _scanned_nmethod
void oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf);
void nmethods_do(CodeBlobClosure* cf);
};
// A thread used for Compilation.

View File

@ -385,8 +385,8 @@ typedef CompactHashtable<Symbol*, char> SymbolCompactHashTable;
nonstatic_field(MethodCounters, _interpreter_profile_limit, int) \
nonstatic_field(MethodCounters, _invoke_mask, int) \
nonstatic_field(MethodCounters, _backedge_mask, int) \
nonstatic_field(MethodCounters, _interpreter_invocation_count, int) \
nonstatic_field(MethodCounters, _interpreter_throwout_count, u2) \
COMPILER2_OR_JVMCI_PRESENT(nonstatic_field(MethodCounters, _interpreter_invocation_count, int)) \
COMPILER2_OR_JVMCI_PRESENT(nonstatic_field(MethodCounters, _interpreter_throwout_count, u2)) \
nonstatic_field(MethodCounters, _number_of_breakpoints, u2) \
nonstatic_field(MethodCounters, _invocation_counter, InvocationCounter) \
nonstatic_field(MethodCounters, _backedge_counter, InvocationCounter) \

View File

@ -105,6 +105,14 @@ void VM_ThreadStop::doit() {
}
}
void VM_ClearICs::doit() {
if (_preserve_static_stubs) {
CodeCache::cleanup_inline_caches();
} else {
CodeCache::clear_inline_caches();
}
}
void VM_Deoptimize::doit() {
// We do not want any GCs to happen while we are in the middle of this VM operation
ResourceMark rm;

View File

@ -231,9 +231,11 @@ class VM_ThreadStop: public VM_Operation {
};
class VM_ClearICs: public VM_Operation {
private:
bool _preserve_static_stubs;
public:
VM_ClearICs() {}
void doit() { CodeCache::clear_inline_caches(); }
VM_ClearICs(bool preserve_static_stubs) { _preserve_static_stubs = preserve_static_stubs; }
void doit();
VMOp_Type type() const { return VMOp_ClearICs; }
};

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -206,6 +206,17 @@
#define NOT_COMPILER2(code) code
#endif // COMPILER2
// COMPILER2 or JVMCI
#if defined(COMPILER2) || INCLUDE_JVMCI
#define COMPILER2_OR_JVMCI 1
#define COMPILER2_OR_JVMCI_PRESENT(code) code
#define NOT_COMPILER2_OR_JVMCI(code)
#else
#define COMPILER2_OR_JVMCI 0
#define COMPILER2_OR_JVMCI_PRESENT(code)
#define NOT_COMPILER2_OR_JVMCI(code) code
#endif
#ifdef TIERED
#define TIERED_ONLY(code) code
#define NOT_TIERED(code)

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -21,25 +21,14 @@
* questions.
*/
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Collections;
import jdk.test.lib.*;
/*
* @test
* @bug 8050079
* @summary Compiles a monomorphic call to finalizeObject() on a modified java.lang.Object to test C1 CHA.
* @library /testlibrary
* @modules java.base/sun.misc
* java.management
* java.base/jdk.internal
* @ignore 8132924
* @compile -XDignore.symbol.file java/lang/Object.java TestMonomorphicObjectCall.java
* @run main TestMonomorphicObjectCall
* @build java.base/java.lang.Object
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -Xcomp -XX:-VerifyDependencies
* -XX:TieredStopAtLevel=1 -XX:CompileOnly=TestMonomorphicObjectCall::callFinalize
* -XX:CompileOnly=java.lang.Object::finalizeObject TestMonomorphicObjectCall
*/
public class TestMonomorphicObjectCall {
@ -51,32 +40,7 @@ public class TestMonomorphicObjectCall {
}
public static void main(String[] args) throws Throwable {
if (args.length == 0) {
byte[] bytecode = Files.readAllBytes(Paths.get(System.getProperty("test.classes") + File.separator +
"java" + File.separator + "lang" + File.separator + "Object.class"));
ClassFileInstaller.writeClassToDisk("java.lang.Object", bytecode, "mods/java.base");
// Execute new instance with modified java.lang.Object
executeTestJvm();
} else {
// Trigger compilation of 'callFinalize'
callFinalize(new Object());
}
}
public static void executeTestJvm() throws Throwable {
// Execute test with modified version of java.lang.Object
// in -Xbootclasspath.
String[] vmOpts = new String[] {
"-Xpatch:mods",
"-Xcomp",
"-XX:+IgnoreUnrecognizedVMOptions",
"-XX:-VerifyDependencies",
"-XX:CompileOnly=TestMonomorphicObjectCall::callFinalize",
"-XX:CompileOnly=Object::finalizeObject",
"-XX:TieredStopAtLevel=1",
TestMonomorphicObjectCall.class.getName(),
"true"};
OutputAnalyzer output = ProcessTools.executeTestJvm(vmOpts);
output.shouldHaveExitValue(0);
// Trigger compilation of 'callFinalize'
callFinalize(new Object());
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1994, 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1994, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it

View File

@ -0,0 +1,75 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8067247
* @library /test/lib /compiler/whitebox /
* @run main/bootclasspath -Xcomp -Xbatch
* -XX:CompileCommand=compileonly,InvokerGC::test
* -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI
* InvokerGC
*/
import java.lang.invoke.*;
import sun.hotspot.WhiteBox;
public class InvokerGC {
static final WhiteBox WB = WhiteBox.getWhiteBox();
static MethodHandle mh;
static {
try {
mh = MethodHandles.lookup().findStatic(InvokerGC.class, "dummy", MethodType.methodType(void.class));
} catch (Exception e) {
throw new Error(e);
}
}
static void dummy() {}
static void test() {
try {
mh.invoke();
} catch (Throwable e) {
throw new Error(e);
}
}
public static void main(String[] args) throws Throwable {
mh.invoke(); // Pre-generate an invoker for ()V signature
test(); // trigger method compilation
test();
WB.fullGC(); // WB.fullGC has always clear softref policy.
test();
WB.clearInlineCaches(true); // Preserve static stubs.
test(); // Trigger call site re-resolution. Invoker LambdaForm should stay the same.
System.out.println("TEST PASSED");
}
}

View File

@ -47,14 +47,20 @@
* compiler.jvmci.common.CTVMUtilities
* compiler.jvmci.common.testcases.SimpleClass
* jdk.test.lib.Asserts
* jdk.test.lib.Utils
* @run main/othervm -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI
* -Djvmci.compiler=EmptyCompiler -Xbootclasspath/a:. -Xmixed
* -XX:+UseJVMCICompiler -XX:-BootstrapJVMCI
* -Dcompiler.jvmci.events.JvmciNotifyInstallEventTest.noevent=false
* -Dcompiler.jvmci.events.JvmciNotifyInstallEventTest.failoninit=false
* compiler.jvmci.events.JvmciNotifyInstallEventTest
* @run main/othervm -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI
* -Djvmci.compiler=EmptyCompiler -Xbootclasspath/a:. -Xmixed
* -XX:+UseJVMCICompiler -XX:-BootstrapJVMCI -XX:JVMCINMethodSizeLimit=0
* -Dcompiler.jvmci.events.JvmciNotifyInstallEventTest.failoninit=false
* compiler.jvmci.events.JvmciNotifyInstallEventTest
* @run main/othervm -XX:+UnlockExperimentalVMOptions -XX:-EnableJVMCI
* -Djvmci.compiler=EmptyCompiler -Xbootclasspath/a:. -Xmixed
* -Dcompiler.jvmci.events.JvmciNotifyInstallEventTest.noevent=true
* -Dcompiler.jvmci.events.JvmciNotifyInstallEventTest.failoninit=true
* compiler.jvmci.events.JvmciNotifyInstallEventTest
*/
@ -64,6 +70,7 @@ import compiler.jvmci.common.CTVMUtilities;
import compiler.jvmci.common.testcases.SimpleClass;
import jdk.test.lib.Asserts;
import java.lang.reflect.Method;
import jdk.test.lib.Utils;
import jdk.vm.ci.hotspot.HotSpotVMEventListener;
import jdk.vm.ci.code.CompiledCode;
import jdk.vm.ci.code.InstalledCode;
@ -79,8 +86,8 @@ import jdk.vm.ci.hotspot.HotSpotResolvedJavaMethod;
public class JvmciNotifyInstallEventTest implements HotSpotVMEventListener {
private static final String METHOD_NAME = "testMethod";
private static final boolean IS_POSITIVE = !Boolean.getBoolean(
"compiler.jvmci.events.JvmciNotifyInstallEventTest.noevent");
private static final boolean FAIL_ON_INIT = !Boolean.getBoolean(
"compiler.jvmci.events.JvmciNotifyInstallEventTest.failoninit");
private static volatile int gotInstallNotification = 0;
public static void main(String args[]) {
@ -91,12 +98,12 @@ public class JvmciNotifyInstallEventTest implements HotSpotVMEventListener {
if (gotInstallNotification != 0) {
throw new Error("Got install notification before test actions");
}
HotSpotCodeCacheProvider codeCache = null;
HotSpotCodeCacheProvider codeCache;
try {
codeCache = (HotSpotCodeCacheProvider) HotSpotJVMCIRuntime.runtime()
.getHostJVMCIBackend().getCodeCache();
} catch (InternalError ie) {
if (IS_POSITIVE) {
if (FAIL_ON_INIT) {
throw new AssertionError(
"Got unexpected InternalError trying to get code cache",
ie);
@ -104,7 +111,7 @@ public class JvmciNotifyInstallEventTest implements HotSpotVMEventListener {
// passed
return;
}
Asserts.assertTrue(IS_POSITIVE,
Asserts.assertTrue(FAIL_ON_INIT,
"Haven't caught InternalError in negative case");
Method testMethod;
try {
@ -114,18 +121,30 @@ public class JvmciNotifyInstallEventTest implements HotSpotVMEventListener {
}
HotSpotResolvedJavaMethod method = CTVMUtilities
.getResolvedMethod(SimpleClass.class, testMethod);
HotSpotCompiledCode compiledCode = new HotSpotCompiledCode(METHOD_NAME, new byte[0], 0, new Site[0],
new Assumption[0], new ResolvedJavaMethod[]{method}, new Comment[0], new byte[0], 16,
new DataPatch[0], false, 0, null);
codeCache.installCode(method, compiledCode, /* installedCode = */ null, /* speculationLog = */ null,
/* isDefault = */ false);
HotSpotCompiledCode compiledCode = new HotSpotCompiledCode(METHOD_NAME,
new byte[0], 0, new Site[0], new Assumption[0],
new ResolvedJavaMethod[]{method}, new Comment[0], new byte[0],
16, new DataPatch[0], false, 0, null);
codeCache.installCode(method, compiledCode, /* installedCode = */ null,
/* speculationLog = */ null, /* isDefault = */ false);
Asserts.assertEQ(gotInstallNotification, 1,
"Got unexpected event count after 1st install attempt");
// since "empty" compilation result is ok, a second attempt should be ok
codeCache.installCode(method, compiledCode, /* installedCode = */ null, /* speculationLog = */ null,
/* isDefault = */ false);
codeCache.installCode(method, compiledCode, /* installedCode = */ null,
/* speculationLog = */ null, /* isDefault = */ false);
Asserts.assertEQ(gotInstallNotification, 2,
"Got unexpected event count after 2nd install attempt");
// and an incorrect cases
Utils.runAndCheckException(() -> {
codeCache.installCode(method, null, null, null, true);
}, NullPointerException.class);
Asserts.assertEQ(gotInstallNotification, 2,
"Got unexpected event count after 3rd install attempt");
Utils.runAndCheckException(() -> {
codeCache.installCode(null, null, null, null, true);
}, NullPointerException.class);
Asserts.assertEQ(gotInstallNotification, 2,
"Got unexpected event count after 4th install attempt");
}
@Override

View File

@ -26,10 +26,19 @@
* @test
* @bug 8073184
* @summary CastII that guards counted loops confuses range check elimination with LoopLimitCheck off
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+UnlockDiagnosticVMOptions -XX:-LoopLimitCheck -XX:CompileOnly=TestCastIINoLoopLimitCheck.m -Xcomp TestCastIINoLoopLimitCheck
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:CompileOnly=TestCastIINoLoopLimitCheck.m -Xcomp TestCastIINoLoopLimitCheck
*
*/
/*
* The test was originally run with
*
* -XX:+UnlockDiagnosticVMOptions -XX:-LoopLimitCheck
*
* to trigger a problem with code guarded with !LoopLimitCheck.
* JDK-8072422 has removed that code but kept the test because the
* test generates an interesting graph shape.
*/
public class TestCastIINoLoopLimitCheck {
static void m(int i, int index, char[] buf) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -164,21 +164,15 @@ public class JavaCodeVisitor implements Visitor<String> {
code.append(node.getChildren().stream()
.map(p -> p.accept(this))
.collect(Collectors.joining("][", "[", "]")));
code.append(";\n")
.append(PrintingUtils.align(node.getParent().getLevel()))
code.append(";\n");
if (!TypeList.isBuiltIn(arrayType)) {
code.append(PrintingUtils.align(node.getParent().getLevel()))
.append("java.util.Arrays.fill(")
.append(name)
.append(", ");
if (TypeList.find("boolean") == arrayType) {
code.append("false");
} else if (TypeList.isBuiltIn(arrayType)) {
code.append("0");
} else {
code.append("new ")
.append(", new ")
.append(type)
.append("()");
.append("());\n");
}
code.append(");\n");
return code.toString();
}