8032027: Add BigInteger square root methods
Add sqrt() and sqrtAndReminder() using Newton iteration Reviewed-by: darcy, lowasser
This commit is contained in:
parent
30abf404b3
commit
e5a6f24f64
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 1996, 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -2409,6 +2409,53 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the integer square root of this BigInteger. The integer square
|
||||
* root of the corresponding mathematical integer {@code n} is the largest
|
||||
* mathematical integer {@code s} such that {@code s*s <= n}. It is equal
|
||||
* to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the
|
||||
* real square root of {@code n} treated as a real. Note that the integer
|
||||
* square root will be less than the real square root if the latter is not
|
||||
* representable as an integral value.
|
||||
*
|
||||
* @return the integer square root of {@code this}
|
||||
* @throws ArithmeticException if {@code this} is negative. (The square
|
||||
* root of a negative integer {@code val} is
|
||||
* {@code (i * sqrt(-val))} where <i>i</i> is the
|
||||
* <i>imaginary unit</i> and is equal to
|
||||
* {@code sqrt(-1)}.)
|
||||
* @since 1.9
|
||||
*/
|
||||
public BigInteger sqrt() {
|
||||
if (this.signum < 0) {
|
||||
throw new ArithmeticException("Negative BigInteger");
|
||||
}
|
||||
|
||||
return new MutableBigInteger(this.mag).sqrt().toBigInteger();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an array of two BigIntegers containing the integer square root
|
||||
* {@code s} of {@code this} and its remainder {@code this - s*s},
|
||||
* respectively.
|
||||
*
|
||||
* @return an array of two BigIntegers with the integer square root at
|
||||
* offset 0 and the remainder at offset 1
|
||||
* @throws ArithmeticException if {@code this} is negative. (The square
|
||||
* root of a negative integer {@code val} is
|
||||
* {@code (i * sqrt(-val))} where <i>i</i> is the
|
||||
* <i>imaginary unit</i> and is equal to
|
||||
* {@code sqrt(-1)}.)
|
||||
* @see #sqrt()
|
||||
* @since 1.9
|
||||
*/
|
||||
public BigInteger[] sqrtAndRemainder() {
|
||||
BigInteger s = sqrt();
|
||||
BigInteger r = this.subtract(s.square());
|
||||
assert r.compareTo(BigInteger.ZERO) >= 0;
|
||||
return new BigInteger[] {s, r};
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a BigInteger whose value is the greatest common divisor of
|
||||
* {@code abs(this)} and {@code abs(val)}. Returns 0 if
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -1866,6 +1866,96 @@ class MutableBigInteger {
|
||||
return (r << 32) | (q & LONG_MASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the integer square root {@code floor(sqrt(this))} where
|
||||
* {@code sqrt(.)} denotes the mathematical square root. The contents of
|
||||
* {@code this} are <b>not</b> changed. The value of {@code this} is assumed
|
||||
* to be non-negative.
|
||||
*
|
||||
* @implNote The implementation is based on the material in Henry S. Warren,
|
||||
* Jr., <i>Hacker's Delight (2nd ed.)</i> (Addison Wesley, 2013), 279-282.
|
||||
*
|
||||
* @throws ArithmeticException if the value returned by {@code bitLength()}
|
||||
* overflows the range of {@code int}.
|
||||
* @return the integer square root of {@code this}
|
||||
* @since 1.9
|
||||
*/
|
||||
MutableBigInteger sqrt() {
|
||||
// Special cases.
|
||||
if (this.isZero()) {
|
||||
return new MutableBigInteger(0);
|
||||
} else if (this.value.length == 1
|
||||
&& (this.value[0] & LONG_MASK) < 4) { // result is unity
|
||||
return ONE;
|
||||
}
|
||||
|
||||
if (bitLength() <= 63) {
|
||||
// Initial estimate is the square root of the positive long value.
|
||||
long v = new BigInteger(this.value, 1).longValueExact();
|
||||
long xk = (long)Math.floor(Math.sqrt(v));
|
||||
|
||||
// Refine the estimate.
|
||||
do {
|
||||
long xk1 = (xk + v/xk)/2;
|
||||
|
||||
// Terminate when non-decreasing.
|
||||
if (xk1 >= xk) {
|
||||
return new MutableBigInteger(new int[] {
|
||||
(int)(xk >>> 32), (int)(xk & LONG_MASK)
|
||||
});
|
||||
}
|
||||
|
||||
xk = xk1;
|
||||
} while (true);
|
||||
} else {
|
||||
// Set up the initial estimate of the iteration.
|
||||
|
||||
// Obtain the bitLength > 63.
|
||||
int bitLength = (int) this.bitLength();
|
||||
if (bitLength != this.bitLength()) {
|
||||
throw new ArithmeticException("bitLength() integer overflow");
|
||||
}
|
||||
|
||||
// Determine an even valued right shift into positive long range.
|
||||
int shift = bitLength - 63;
|
||||
if (shift % 2 == 1) {
|
||||
shift++;
|
||||
}
|
||||
|
||||
// Shift the value into positive long range.
|
||||
MutableBigInteger xk = new MutableBigInteger(this);
|
||||
xk.rightShift(shift);
|
||||
xk.normalize();
|
||||
|
||||
// Use the square root of the shifted value as an approximation.
|
||||
double d = new BigInteger(xk.value, 1).doubleValue();
|
||||
BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d)));
|
||||
xk = new MutableBigInteger(bi.mag);
|
||||
|
||||
// Shift the approximate square root back into the original range.
|
||||
xk.leftShift(shift / 2);
|
||||
|
||||
// Refine the estimate.
|
||||
MutableBigInteger xk1 = new MutableBigInteger();
|
||||
do {
|
||||
// xk1 = (xk + n/xk)/2
|
||||
this.divide(xk, xk1, false);
|
||||
xk1.add(xk);
|
||||
xk1.rightShift(1);
|
||||
|
||||
// Terminate when non-decreasing.
|
||||
if (xk1.compare(xk) >= 0) {
|
||||
return xk;
|
||||
}
|
||||
|
||||
// xk = xk1
|
||||
xk.copyValue(xk1);
|
||||
|
||||
xk1.reset();
|
||||
} while (true);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate GCD of this and b. This and b are changed by the computation.
|
||||
*/
|
||||
|
@ -26,7 +26,7 @@
|
||||
* @library /lib/testlibrary/
|
||||
* @build jdk.testlibrary.*
|
||||
* @run main BigIntegerTest
|
||||
* @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 4837946 4026465 8074460 8078672
|
||||
* @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 4837946 4026465 8074460 8078672 8032027
|
||||
* @summary tests methods in BigInteger (use -Dseed=X to set PRNG seed)
|
||||
* @run main/timeout=400 BigIntegerTest
|
||||
* @author madbot
|
||||
@ -38,8 +38,15 @@ import java.io.FileInputStream;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.ObjectInputStream;
|
||||
import java.io.ObjectOutputStream;
|
||||
import java.math.BigDecimal;
|
||||
import java.math.BigInteger;
|
||||
import java.util.Random;
|
||||
import java.util.function.ToIntFunction;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.DoubleStream;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
import java.util.stream.Stream;
|
||||
import jdk.testlibrary.RandomFactory;
|
||||
|
||||
/**
|
||||
@ -243,6 +250,146 @@ public class BigIntegerTest {
|
||||
report("square for " + order + " bits", failCount1);
|
||||
}
|
||||
|
||||
private static void printErr(String msg) {
|
||||
System.err.println(msg);
|
||||
}
|
||||
|
||||
private static int checkResult(BigInteger expected, BigInteger actual,
|
||||
String failureMessage) {
|
||||
if (expected.compareTo(actual) != 0) {
|
||||
printErr(failureMessage + " - expected: " + expected
|
||||
+ ", actual: " + actual);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
private static void squareRootSmall() {
|
||||
int failCount = 0;
|
||||
|
||||
// A negative value should cause an exception.
|
||||
BigInteger n = BigInteger.ONE.negate();
|
||||
BigInteger s;
|
||||
try {
|
||||
s = n.sqrt();
|
||||
// If sqrt() does not throw an exception that is a failure.
|
||||
failCount++;
|
||||
printErr("sqrt() of negative number did not throw an exception");
|
||||
} catch (ArithmeticException expected) {
|
||||
// A negative value should cause an exception and is not a failure.
|
||||
}
|
||||
|
||||
// A zero value should return BigInteger.ZERO.
|
||||
failCount += checkResult(BigInteger.ZERO, BigInteger.ZERO.sqrt(),
|
||||
"sqrt(0) != BigInteger.ZERO");
|
||||
|
||||
// 1 <= value < 4 should return BigInteger.ONE.
|
||||
long[] smalls = new long[] {1, 2, 3};
|
||||
for (long small : smalls) {
|
||||
failCount += checkResult(BigInteger.ONE,
|
||||
BigInteger.valueOf(small).sqrt(), "sqrt("+small+") != 1");
|
||||
}
|
||||
|
||||
report("squareRootSmall", failCount);
|
||||
}
|
||||
|
||||
public static void squareRoot() {
|
||||
squareRootSmall();
|
||||
|
||||
ToIntFunction<BigInteger> f = (n) -> {
|
||||
int failCount = 0;
|
||||
|
||||
// square root of n^2 -> n
|
||||
BigInteger n2 = n.pow(2);
|
||||
failCount += checkResult(n, n2.sqrt(), "sqrt() n^2 -> n");
|
||||
|
||||
// square root of n^2 + 1 -> n
|
||||
BigInteger n2up = n2.add(BigInteger.ONE);
|
||||
failCount += checkResult(n, n2up.sqrt(), "sqrt() n^2 + 1 -> n");
|
||||
|
||||
// square root of (n + 1)^2 - 1 -> n
|
||||
BigInteger up =
|
||||
n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
|
||||
failCount += checkResult(n, up.sqrt(), "sqrt() (n + 1)^2 - 1 -> n");
|
||||
|
||||
// sqrt(n)^2 <= n
|
||||
BigInteger s = n.sqrt();
|
||||
if (s.multiply(s).compareTo(n) > 0) {
|
||||
failCount++;
|
||||
printErr("sqrt(n)^2 > n for n = " + n);
|
||||
}
|
||||
|
||||
// (sqrt(n) + 1)^2 > n
|
||||
if (s.add(BigInteger.ONE).pow(2).compareTo(n) <= 0) {
|
||||
failCount++;
|
||||
printErr("(sqrt(n) + 1)^2 <= n for n = " + n);
|
||||
}
|
||||
|
||||
return failCount;
|
||||
};
|
||||
|
||||
Stream.Builder<BigInteger> sb = Stream.builder();
|
||||
int maxExponent = Double.MAX_EXPONENT + 1;
|
||||
for (int i = 1; i <= maxExponent; i++) {
|
||||
BigInteger p2 = BigInteger.ONE.shiftLeft(i);
|
||||
sb.add(p2.subtract(BigInteger.ONE));
|
||||
sb.add(p2);
|
||||
sb.add(p2.add(BigInteger.ONE));
|
||||
}
|
||||
sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger());
|
||||
sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger().add(BigInteger.ONE));
|
||||
report("squareRoot for 2^N and 2^N - 1, 1 <= N <= Double.MAX_EXPONENT",
|
||||
sb.build().collect(Collectors.summingInt(f)));
|
||||
|
||||
IntStream ints = random.ints(SIZE, 4, Integer.MAX_VALUE);
|
||||
report("squareRoot for int", ints.mapToObj(x ->
|
||||
BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));
|
||||
|
||||
LongStream longs = random.longs(SIZE, (long)Integer.MAX_VALUE + 1L,
|
||||
Long.MAX_VALUE);
|
||||
report("squareRoot for long", longs.mapToObj(x ->
|
||||
BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));
|
||||
|
||||
DoubleStream doubles = random.doubles(SIZE,
|
||||
(double) Long.MAX_VALUE + 1.0, Math.sqrt(Double.MAX_VALUE));
|
||||
report("squareRoot for double", doubles.mapToObj(x ->
|
||||
BigDecimal.valueOf(x).toBigInteger()).collect(Collectors.summingInt(f)));
|
||||
}
|
||||
|
||||
public static void squareRootAndRemainder() {
|
||||
ToIntFunction<BigInteger> g = (n) -> {
|
||||
int failCount = 0;
|
||||
BigInteger n2 = n.pow(2);
|
||||
|
||||
// square root of n^2 -> n
|
||||
BigInteger[] actual = n2.sqrtAndRemainder();
|
||||
failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
|
||||
failCount += checkResult(BigInteger.ZERO, actual[1],
|
||||
"sqrtAndRemainder()[1]");
|
||||
|
||||
// square root of n^2 + 1 -> n
|
||||
BigInteger n2up = n2.add(BigInteger.ONE);
|
||||
actual = n2up.sqrtAndRemainder();
|
||||
failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
|
||||
failCount += checkResult(BigInteger.ONE, actual[1],
|
||||
"sqrtAndRemainder()[1]");
|
||||
|
||||
// square root of (n + 1)^2 - 1 -> n
|
||||
BigInteger up =
|
||||
n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
|
||||
actual = up.sqrtAndRemainder();
|
||||
failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
|
||||
BigInteger r = up.subtract(n2);
|
||||
failCount += checkResult(r, actual[1], "sqrtAndRemainder()[1]");
|
||||
|
||||
return failCount;
|
||||
};
|
||||
|
||||
IntStream bits = random.ints(SIZE, 3, Short.MAX_VALUE);
|
||||
report("sqrtAndRemainder", bits.mapToObj(x ->
|
||||
BigInteger.valueOf(x)).collect(Collectors.summingInt(g)));
|
||||
}
|
||||
|
||||
public static void arithmetic(int order) {
|
||||
int failCount = 0;
|
||||
|
||||
@ -1101,6 +1248,9 @@ public class BigIntegerTest {
|
||||
square(ORDER_KARATSUBA_SQUARE);
|
||||
square(ORDER_TOOM_COOK_SQUARE);
|
||||
|
||||
squareRoot();
|
||||
squareRootAndRemainder();
|
||||
|
||||
bitCount();
|
||||
bitLength();
|
||||
bitOps(order1);
|
||||
|
Loading…
x
Reference in New Issue
Block a user