/* * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import jdk.internal.HotSpotIntrinsicCandidate; import java.util.function.BiFunction; import java.util.function.Function; import java.util.function.Supplier; /** * This class consists of {@code static} utility methods for operating * on objects, or checking certain conditions before operation. These utilities * include {@code null}-safe or {@code null}-tolerant methods for computing the * hash code of an object, returning a string for an object, comparing two * objects, and checking if indexes or sub-range values are out-of-bounds. * * @apiNote * Static methods such as {@link Objects#checkIndex}, * {@link Objects#checkFromToIndex}, and {@link Objects#checkFromIndexSize} are * provided for the convenience of checking if values corresponding to indexes * and sub-ranges are out-of-bounds. * Variations of these static methods support customization of the runtime * exception, and corresponding exception detail message, that is thrown when * values are out-of-bounds. Such methods accept a functional interface * argument, instances of {@code BiFunction}, that maps out-of-bound values to a * runtime exception. Care should be taken when using such methods in * combination with an argument that is a lambda expression, method reference or * class that capture values. In such cases the cost of capture, related to * functional interface allocation, may exceed the cost of checking bounds. * * @since 1.7 */ public final class Objects { private Objects() { throw new AssertionError("No java.util.Objects instances for you!"); } /** * Returns {@code true} if the arguments are equal to each other * and {@code false} otherwise. * Consequently, if both arguments are {@code null}, {@code true} * is returned and if exactly one argument is {@code null}, {@code * false} is returned. Otherwise, equality is determined by using * the {@link Object#equals equals} method of the first * argument. * * @param a an object * @param b an object to be compared with {@code a} for equality * @return {@code true} if the arguments are equal to each other * and {@code false} otherwise * @see Object#equals(Object) */ public static boolean equals(Object a, Object b) { return (a == b) || (a != null && a.equals(b)); } /** * Returns {@code true} if the arguments are deeply equal to each other * and {@code false} otherwise. * * Two {@code null} values are deeply equal. If both arguments are * arrays, the algorithm in {@link Arrays#deepEquals(Object[], * Object[]) Arrays.deepEquals} is used to determine equality. * Otherwise, equality is determined by using the {@link * Object#equals equals} method of the first argument. * * @param a an object * @param b an object to be compared with {@code a} for deep equality * @return {@code true} if the arguments are deeply equal to each other * and {@code false} otherwise * @see Arrays#deepEquals(Object[], Object[]) * @see Objects#equals(Object, Object) */ public static boolean deepEquals(Object a, Object b) { if (a == b) return true; else if (a == null || b == null) return false; else return Arrays.deepEquals0(a, b); } /** * Returns the hash code of a non-{@code null} argument and 0 for * a {@code null} argument. * * @param o an object * @return the hash code of a non-{@code null} argument and 0 for * a {@code null} argument * @see Object#hashCode */ public static int hashCode(Object o) { return o != null ? o.hashCode() : 0; } /** * Generates a hash code for a sequence of input values. The hash * code is generated as if all the input values were placed into an * array, and that array were hashed by calling {@link * Arrays#hashCode(Object[])}. * *

This method is useful for implementing {@link * Object#hashCode()} on objects containing multiple fields. For * example, if an object that has three fields, {@code x}, {@code * y}, and {@code z}, one could write: * *

    * @Override public int hashCode() {
    *     return Objects.hash(x, y, z);
    * }
    * 
* * Warning: When a single object reference is supplied, the returned * value does not equal the hash code of that object reference. This * value can be computed by calling {@link #hashCode(Object)}. * * @param values the values to be hashed * @return a hash value of the sequence of input values * @see Arrays#hashCode(Object[]) * @see List#hashCode */ public static int hash(Object... values) { return Arrays.hashCode(values); } /** * Returns the result of calling {@code toString} for a non-{@code * null} argument and {@code "null"} for a {@code null} argument. * * @param o an object * @return the result of calling {@code toString} for a non-{@code * null} argument and {@code "null"} for a {@code null} argument * @see Object#toString * @see String#valueOf(Object) */ public static String toString(Object o) { return String.valueOf(o); } /** * Returns the result of calling {@code toString} on the first * argument if the first argument is not {@code null} and returns * the second argument otherwise. * * @param o an object * @param nullDefault string to return if the first argument is * {@code null} * @return the result of calling {@code toString} on the first * argument if it is not {@code null} and the second argument * otherwise. * @see Objects#toString(Object) */ public static String toString(Object o, String nullDefault) { return (o != null) ? o.toString() : nullDefault; } /** * Returns 0 if the arguments are identical and {@code * c.compare(a, b)} otherwise. * Consequently, if both arguments are {@code null} 0 * is returned. * *

Note that if one of the arguments is {@code null}, a {@code * NullPointerException} may or may not be thrown depending on * what ordering policy, if any, the {@link Comparator Comparator} * chooses to have for {@code null} values. * * @param the type of the objects being compared * @param a an object * @param b an object to be compared with {@code a} * @param c the {@code Comparator} to compare the first two arguments * @return 0 if the arguments are identical and {@code * c.compare(a, b)} otherwise. * @see Comparable * @see Comparator */ public static int compare(T a, T b, Comparator c) { return (a == b) ? 0 : c.compare(a, b); } /** * Checks that the specified object reference is not {@code null}. This * method is designed primarily for doing parameter validation in methods * and constructors, as demonstrated below: *

     * public Foo(Bar bar) {
     *     this.bar = Objects.requireNonNull(bar);
     * }
     * 
* * @param obj the object reference to check for nullity * @param the type of the reference * @return {@code obj} if not {@code null} * @throws NullPointerException if {@code obj} is {@code null} */ public static T requireNonNull(T obj) { if (obj == null) throw new NullPointerException(); return obj; } /** * Checks that the specified object reference is not {@code null} and * throws a customized {@link NullPointerException} if it is. This method * is designed primarily for doing parameter validation in methods and * constructors with multiple parameters, as demonstrated below: *
     * public Foo(Bar bar, Baz baz) {
     *     this.bar = Objects.requireNonNull(bar, "bar must not be null");
     *     this.baz = Objects.requireNonNull(baz, "baz must not be null");
     * }
     * 
* * @param obj the object reference to check for nullity * @param message detail message to be used in the event that a {@code * NullPointerException} is thrown * @param the type of the reference * @return {@code obj} if not {@code null} * @throws NullPointerException if {@code obj} is {@code null} */ public static T requireNonNull(T obj, String message) { if (obj == null) throw new NullPointerException(message); return obj; } /** * Returns {@code true} if the provided reference is {@code null} otherwise * returns {@code false}. * * @apiNote This method exists to be used as a * {@link java.util.function.Predicate}, {@code filter(Objects::isNull)} * * @param obj a reference to be checked against {@code null} * @return {@code true} if the provided reference is {@code null} otherwise * {@code false} * * @see java.util.function.Predicate * @since 1.8 */ public static boolean isNull(Object obj) { return obj == null; } /** * Returns {@code true} if the provided reference is non-{@code null} * otherwise returns {@code false}. * * @apiNote This method exists to be used as a * {@link java.util.function.Predicate}, {@code filter(Objects::nonNull)} * * @param obj a reference to be checked against {@code null} * @return {@code true} if the provided reference is non-{@code null} * otherwise {@code false} * * @see java.util.function.Predicate * @since 1.8 */ public static boolean nonNull(Object obj) { return obj != null; } /** * Returns the first argument if it is non-{@code null} and * otherwise returns the non-{@code null} second argument. * * @param obj an object * @param defaultObj a non-{@code null} object to return if the first argument * is {@code null} * @param the type of the reference * @return the first argument if it is non-{@code null} and * otherwise the second argument if it is non-{@code null} * @throws NullPointerException if both {@code obj} is null and * {@code defaultObj} is {@code null} * @since 9 */ public static T requireNonNullElse(T obj, T defaultObj) { return (obj != null) ? obj : requireNonNull(defaultObj, "defaultObj"); } /** * Returns the first argument if it is non-{@code null} and otherwise * returns the non-{@code null} value of {@code supplier.get()}. * * @param obj an object * @param supplier of a non-{@code null} object to return if the first argument * is {@code null} * @param the type of the first argument and return type * @return the first argument if it is non-{@code null} and otherwise * the value from {@code supplier.get()} if it is non-{@code null} * @throws NullPointerException if both {@code obj} is null and * either the {@code supplier} is {@code null} or * the {@code supplier.get()} value is {@code null} * @since 9 */ public static T requireNonNullElseGet(T obj, Supplier supplier) { return (obj != null) ? obj : requireNonNull(requireNonNull(supplier, "supplier").get(), "supplier.get()"); } /** * Checks that the specified object reference is not {@code null} and * throws a customized {@link NullPointerException} if it is. * *

Unlike the method {@link #requireNonNull(Object, String)}, * this method allows creation of the message to be deferred until * after the null check is made. While this may confer a * performance advantage in the non-null case, when deciding to * call this method care should be taken that the costs of * creating the message supplier are less than the cost of just * creating the string message directly. * * @param obj the object reference to check for nullity * @param messageSupplier supplier of the detail message to be * used in the event that a {@code NullPointerException} is thrown * @param the type of the reference * @return {@code obj} if not {@code null} * @throws NullPointerException if {@code obj} is {@code null} * @since 1.8 */ public static T requireNonNull(T obj, Supplier messageSupplier) { if (obj == null) throw new NullPointerException(messageSupplier.get()); return obj; } /** * Maps out-of-bounds values to a runtime exception. * * @param checkKind the kind of bounds check, whose name may correspond * to the name of one of the range check methods, checkIndex, * checkFromToIndex, checkFromIndexSize * @param args the out-of-bounds arguments that failed the range check. * If the checkKind corresponds a the name of a range check method * then the bounds arguments are those that can be passed in order * to the method. * @param oobef the exception formatter that when applied with a checkKind * and a list out-of-bounds arguments returns a runtime exception. * If {@code null} then, it is as if an exception formatter was * supplied that returns {@link IndexOutOfBoundsException} for any * given arguments. * @return the runtime exception */ private static RuntimeException outOfBounds( BiFunction, ? extends RuntimeException> oobef, String checkKind, Integer... args) { List largs = List.of(args); RuntimeException e = oobef == null ? null : oobef.apply(checkKind, largs); return e == null ? new IndexOutOfBoundsException(outOfBoundsMessage(checkKind, largs)) : e; } // Specific out-of-bounds exception producing methods that avoid // the varargs-based code in the critical methods there by reducing their // the byte code size, and therefore less likely to peturb inlining private static RuntimeException outOfBoundsCheckIndex( BiFunction, ? extends RuntimeException> oobe, int index, int length) { return outOfBounds(oobe, "checkIndex", index, length); } private static RuntimeException outOfBoundsCheckFromToIndex( BiFunction, ? extends RuntimeException> oobe, int fromIndex, int toIndex, int length) { return outOfBounds(oobe, "checkFromToIndex", fromIndex, toIndex, length); } private static RuntimeException outOfBoundsCheckFromIndexSize( BiFunction, ? extends RuntimeException> oobe, int fromIndex, int size, int length) { return outOfBounds(oobe, "checkFromIndexSize", fromIndex, size, length); } /** * Returns an out-of-bounds exception formatter from an given exception * factory. The exception formatter is a function that formats an * out-of-bounds message from its arguments and applies that message to the * given exception factory to produce and relay an exception. * *

The exception formatter accepts two arguments: a {@code String} * describing the out-of-bounds range check that failed, referred to as the * check kind; and a {@code List} containing the * out-of-bound integer values that failed the check. The list of * out-of-bound values is not modified. * *

Three check kinds are supported {@code checkIndex}, * {@code checkFromToIndex} and {@code checkFromIndexSize} corresponding * respectively to the specified application of an exception formatter as an * argument to the out-of-bounds range check methods * {@link #checkIndex(int, int, BiFunction) checkIndex}, * {@link #checkFromToIndex(int, int, int, BiFunction) checkFromToIndex}, and * {@link #checkFromIndexSize(int, int, int, BiFunction) checkFromIndexSize}. * Thus a supported check kind corresponds to a method name and the * out-of-bound integer values correspond to method argument values, in * order, preceding the exception formatter argument (similar in many * respects to the form of arguments required for a reflective invocation of * such a range check method). * *

Formatter arguments conforming to such supported check kinds will * produce specific exception messages describing failed out-of-bounds * checks. Otherwise, more generic exception messages will be produced in * any of the following cases: the check kind is supported but fewer * or more out-of-bounds values are supplied, the check kind is not * supported, the check kind is {@code null}, or the list of out-of-bound * values is {@code null}. * * @apiNote * This method produces an out-of-bounds exception formatter that can be * passed as an argument to any of the supported out-of-bounds range check * methods declared by {@code Objects}. For example, a formatter producing * an {@code ArrayIndexOutOfBoundsException} may be produced and stored on a * {@code static final} field as follows: *

{@code
     * static final
     * BiFunction, ArrayIndexOutOfBoundsException> AIOOBEF =
     *     outOfBoundsExceptionFormatter(ArrayIndexOutOfBoundsException::new);
     * }
* The formatter instance {@code AIOOBEF} may be passed as an argument to an * out-of-bounds range check method, such as checking if an {@code index} * is within the bounds of a {@code limit}: *
{@code
     * checkIndex(index, limit, AIOOBEF);
     * }
* If the bounds check fails then the range check method will throw an * {@code ArrayIndexOutOfBoundsException} with an appropriate exception * message that is a produced from {@code AIOOBEF} as follows: *
{@code
     * AIOOBEF.apply("checkIndex", List.of(index, limit));
     * }
* * @param f the exception factory, that produces an exception from a message * where the message is produced and formatted by the returned * exception formatter. If this factory is stateless and side-effect * free then so is the returned formatter. * Exceptions thrown by the factory are relayed to the caller * of the returned formatter. * @param the type of runtime exception to be returned by the given * exception factory and relayed by the exception formatter * @return the out-of-bounds exception formatter */ public static BiFunction, X> outOfBoundsExceptionFormatter(Function f) { // Use anonymous class to avoid bootstrap issues if this method is // used early in startup return new BiFunction, X>() { @Override public X apply(String checkKind, List args) { return f.apply(outOfBoundsMessage(checkKind, args)); } }; } private static String outOfBoundsMessage(String checkKind, List args) { if (checkKind == null && args == null) { return String.format("Range check failed"); } else if (checkKind == null) { return String.format("Range check failed: %s", args); } else if (args == null) { return String.format("Range check failed: %s", checkKind); } int argSize = 0; switch (checkKind) { case "checkIndex": argSize = 2; break; case "checkFromToIndex": case "checkFromIndexSize": argSize = 3; break; default: } // Switch to default if fewer or more arguments than required are supplied switch ((args.size() != argSize) ? "" : checkKind) { case "checkIndex": return String.format("Index %d out-of-bounds for length %d", args.get(0), args.get(1)); case "checkFromToIndex": return String.format("Range [%d, %d) out-of-bounds for length %d", args.get(0), args.get(1), args.get(2)); case "checkFromIndexSize": return String.format("Range [%d, %The {@code index} is defined to be out-of-bounds if any of the * following inequalities is true: *
    *
  • {@code index < 0}
  • *
  • {@code index >= length}
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* *

This method behaves as if {@link #checkIndex(int, int, BiFunction)} * was called with same out-of-bounds arguments and an exception formatter * argument produced from an invocation of * {@code outOfBoundsExceptionFormatter(IndexOutOfBounds::new)} (though it may * be more efficient). * * @param index the index * @param length the upper-bound (exclusive) of the range * @return {@code index} if it is within bounds of the range * @throws IndexOutOfBoundsException if the {@code index} is out-of-bounds * @since 9 */ public static int checkIndex(int index, int length) { return checkIndex(index, length, null); } /** * Checks if the {@code index} is within the bounds of the range from * {@code 0} (inclusive) to {@code length} (exclusive). * *

The {@code index} is defined to be out-of-bounds if any of the * following inequalities is true: *

    *
  • {@code index < 0}
  • *
  • {@code index >= length}
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* *

If the {@code index} is out-of-bounds, then a runtime exception is * thrown that is the result of applying the following arguments to the * exception formatter: the name of this method, {@code checkIndex}; * and an unmodifiable list integers whose values are, in order, the * out-of-bounds arguments {@code index} and {@code length}. * * @param the type of runtime exception to throw if the arguments are * out-of-bounds * @param index the index * @param length the upper-bound (exclusive) of the range * @param oobef the exception formatter that when applied with this * method name and out-of-bounds arguments returns a runtime * exception. If {@code null} or returns {@code null} then, it is as * if an exception formatter produced from an invocation of * {@code outOfBoundsExceptionFormatter(IndexOutOfBounds::new)} is used * instead (though it may be more efficient). * Exceptions thrown by the formatter are relayed to the caller. * @return {@code index} if it is within bounds of the range * @throws X if the {@code index} is out-of-bounds and the exception * formatter is non-{@code null} * @throws IndexOutOfBoundsException if the {@code index} is out-of-bounds * and the exception formatter is {@code null} * @since 9 * * @implNote * This method is made intrinsic in optimizing compilers to guide them to * perform unsigned comparisons of the index and length when it is known the * length is a non-negative value (such as that of an array length or from * the upper bound of a loop) */ @HotSpotIntrinsicCandidate public static int checkIndex(int index, int length, BiFunction, X> oobef) { if (index < 0 || index >= length) throw outOfBoundsCheckIndex(oobef, index, length); return index; } /** * Checks if the sub-range from {@code fromIndex} (inclusive) to * {@code toIndex} (exclusive) is within the bounds of range from {@code 0} * (inclusive) to {@code length} (exclusive). * *

The sub-range is defined to be out-of-bounds if any of the following * inequalities is true: *

    *
  • {@code fromIndex < 0}
  • *
  • {@code fromIndex > toIndex}
  • *
  • {@code toIndex > length}
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* *

This method behaves as if {@link #checkFromToIndex(int, int, int, BiFunction)} * was called with same out-of-bounds arguments and an exception formatter * argument produced from an invocation of * {@code outOfBoundsExceptionFormatter(IndexOutOfBounds::new)} (though it may * be more efficient). * * @param fromIndex the lower-bound (inclusive) of the sub-range * @param toIndex the upper-bound (exclusive) of the sub-range * @param length the upper-bound (exclusive) the range * @return {@code fromIndex} if the sub-range within bounds of the range * @throws IndexOutOfBoundsException if the sub-range is out-of-bounds * @since 9 */ public static int checkFromToIndex(int fromIndex, int toIndex, int length) { return checkFromToIndex(fromIndex, toIndex, length, null); } /** * Checks if the sub-range from {@code fromIndex} (inclusive) to * {@code toIndex} (exclusive) is within the bounds of range from {@code 0} * (inclusive) to {@code length} (exclusive). * *

The sub-range is defined to be out-of-bounds if any of the following * inequalities is true: *

    *
  • {@code fromIndex < 0}
  • *
  • {@code fromIndex > toIndex}
  • *
  • {@code toIndex > length}
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* *

If the sub-range is out-of-bounds, then a runtime exception is * thrown that is the result of applying the following arguments to the * exception formatter: the name of this method, {@code checkFromToIndex}; * and an unmodifiable list integers whose values are, in order, the * out-of-bounds arguments {@code fromIndex}, {@code toIndex}, and {@code length}. * * @param the type of runtime exception to throw if the arguments are * out-of-bounds * @param fromIndex the lower-bound (inclusive) of the sub-range * @param toIndex the upper-bound (exclusive) of the sub-range * @param length the upper-bound (exclusive) the range * @param oobef the exception formatter that when applied with this * method name and out-of-bounds arguments returns a runtime * exception. If {@code null} or returns {@code null} then, it is as * if an exception formatter produced from an invocation of * {@code outOfBoundsExceptionFormatter(IndexOutOfBounds::new)} is used * instead (though it may be more efficient). * Exceptions thrown by the formatter are relayed to the caller. * @return {@code fromIndex} if the sub-range within bounds of the range * @throws X if the sub-range is out-of-bounds and the exception factory * function is non-{@code null} * @throws IndexOutOfBoundsException if the sub-range is out-of-bounds and * the exception factory function is {@code null} * @since 9 */ public static int checkFromToIndex(int fromIndex, int toIndex, int length, BiFunction, X> oobef) { if (fromIndex < 0 || fromIndex > toIndex || toIndex > length) throw outOfBoundsCheckFromToIndex(oobef, fromIndex, toIndex, length); return fromIndex; } /** * Checks if the sub-range from {@code fromIndex} (inclusive) to * {@code fromIndex + size} (exclusive) is within the bounds of range from * {@code 0} (inclusive) to {@code length} (exclusive). * *

The sub-range is defined to be out-of-bounds if any of the following * inequalities is true: *

    *
  • {@code fromIndex < 0}
  • *
  • {@code size < 0}
  • *
  • {@code fromIndex + size > length}, taking into account integer overflow
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* *

This method behaves as if {@link #checkFromIndexSize(int, int, int, BiFunction)} * was called with same out-of-bounds arguments and an exception formatter * argument produced from an invocation of * {@code outOfBoundsExceptionFormatter(IndexOutOfBounds::new)} (though it may * be more efficient). * * @param fromIndex the lower-bound (inclusive) of the sub-interval * @param size the size of the sub-range * @param length the upper-bound (exclusive) of the range * @return {@code fromIndex} if the sub-range within bounds of the range * @throws IndexOutOfBoundsException if the sub-range is out-of-bounds * @since 9 */ public static int checkFromIndexSize(int fromIndex, int size, int length) { return checkFromIndexSize(fromIndex, size, length, null); } /** * Checks if the sub-range from {@code fromIndex} (inclusive) to * {@code fromIndex + size} (exclusive) is within the bounds of range from * {@code 0} (inclusive) to {@code length} (exclusive). * *

The sub-range is defined to be out-of-bounds if any of the following * inequalities is true: *

    *
  • {@code fromIndex < 0}
  • *
  • {@code size < 0}
  • *
  • {@code fromIndex + size > length}, taking into account integer overflow
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* *

If the sub-range is out-of-bounds, then a runtime exception is * thrown that is the result of applying the following arguments to the * exception formatter: the name of this method, {@code checkFromIndexSize}; * and an unmodifiable list integers whose values are, in order, the * out-of-bounds arguments {@code fromIndex}, {@code size}, and * {@code length}. * * @param the type of runtime exception to throw if the arguments are * out-of-bounds * @param fromIndex the lower-bound (inclusive) of the sub-interval * @param size the size of the sub-range * @param length the upper-bound (exclusive) of the range * @param oobef the exception formatter that when applied with this * method name and out-of-bounds arguments returns a runtime * exception. If {@code null} or returns {@code null} then, it is as * if an exception formatter produced from an invocation of * {@code outOfBoundsExceptionFormatter(IndexOutOfBounds::new)} is used * instead (though it may be more efficient). * Exceptions thrown by the formatter are relayed to the caller. * @return {@code fromIndex} if the sub-range within bounds of the range * @throws X if the sub-range is out-of-bounds and the exception factory * function is non-{@code null} * @throws IndexOutOfBoundsException if the sub-range is out-of-bounds and * the exception factory function is {@code null} * @since 9 */ public static int checkFromIndexSize(int fromIndex, int size, int length, BiFunction, X> oobef) { if ((length | fromIndex | size) < 0 || size > length - fromIndex) throw outOfBoundsCheckFromIndexSize(oobef, fromIndex, size, length); return fromIndex; } }