/* * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. * Copyright 2007, 2008, 2009, 2010 Red Hat, Inc. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "asm/assembler.inline.hpp" #include "atomic_linux_zero.hpp" #include "classfile/vmSymbols.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "jvm.h" #include "memory/allocation.inline.hpp" #include "nativeInst_zero.hpp" #include "os_linux.hpp" #include "os_posix.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/javaThread.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/timer.hpp" #include "signals_posix.hpp" #include "utilities/align.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" address os::current_stack_pointer() { // return the address of the current function return (address)__builtin_frame_address(0); } frame os::get_sender_for_C_frame(frame* fr) { ShouldNotCallThis(); return frame(NULL, NULL); // silence compile warning. } frame os::current_frame() { // The only thing that calls this is the stack printing code in // VMError::report: // - Step 110 (printing stack bounds) uses the sp in the frame // to determine the amount of free space on the stack. We // set the sp to a close approximation of the real value in // order to allow this step to complete. // - Step 120 (printing native stack) tries to walk the stack. // The frame we create has a NULL pc, which is ignored as an // invalid frame. frame dummy = frame(); dummy.set_sp((intptr_t *) current_stack_pointer()); return dummy; } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). // This is the value for x86; works pretty well for PPC too. return (char *) -1; } address os::Posix::ucontext_get_pc(const ucontext_t* uc) { if (DecodeErrorContext) { #if defined(IA32) return (address)uc->uc_mcontext.gregs[REG_EIP]; #elif defined(AMD64) return (address)uc->uc_mcontext.gregs[REG_RIP]; #elif defined(ARM) return (address)uc->uc_mcontext.arm_pc; #elif defined(AARCH64) return (address)uc->uc_mcontext.pc; #elif defined(PPC) return (address)uc->uc_mcontext.regs->nip; #elif defined(RISCV) return (address)uc->uc_mcontext.__gregs[REG_PC]; #elif defined(S390) return (address)uc->uc_mcontext.psw.addr; #else // Non-arch-specific Zero code does not really know the PC. // If possible, add the arch-specific definition in this method. fatal("Cannot handle ucontext_get_pc"); #endif } // Answer the default and hope for the best return nullptr; } void os::Posix::ucontext_set_pc(ucontext_t* uc, address pc) { ShouldNotCallThis(); } intptr_t* os::Linux::ucontext_get_sp(const ucontext_t* uc) { if (DecodeErrorContext) { #if defined(IA32) return (intptr_t*)uc->uc_mcontext.gregs[REG_UESP]; #elif defined(AMD64) return (intptr_t*)uc->uc_mcontext.gregs[REG_RSP]; #elif defined(ARM) return (intptr_t*)uc->uc_mcontext.arm_sp; #elif defined(AARCH64) return (intptr_t*)uc->uc_mcontext.sp; #elif defined(PPC) return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/]; #elif defined(RISCV) return (intptr_t*)uc->uc_mcontext.__gregs[REG_SP]; #elif defined(S390) return (intptr_t*)uc->uc_mcontext.gregs[15/*REG_SP*/]; #else // Non-arch-specific Zero code does not really know the SP. // If possible, add the arch-specific definition in this method. fatal("Cannot handle ucontext_get_sp"); #endif } // Answer the default and hope for the best return nullptr; } intptr_t* os::Linux::ucontext_get_fp(const ucontext_t* uc) { if (DecodeErrorContext) { #if defined(IA32) return (intptr_t*)uc->uc_mcontext.gregs[REG_EBP]; #elif defined(AMD64) return (intptr_t*)uc->uc_mcontext.gregs[REG_RBP]; #elif defined(ARM) return (intptr_t*)uc->uc_mcontext.arm_fp; #elif defined(AARCH64) return (intptr_t*)uc->uc_mcontext.regs[29 /* REG_FP */]; #elif defined(PPC) return nullptr; #elif defined(RISCV) return (intptr_t*)uc->uc_mcontext.__gregs[8 /* REG_FP */]; #elif defined(S390) return nullptr; #else // Non-arch-specific Zero code does not really know the FP. // If possible, add the arch-specific definition in this method. fatal("Cannot handle ucontext_get_fp"); #endif } // Answer the default and hope for the best return nullptr; } address os::fetch_frame_from_context(const void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { address epc; const ucontext_t* uc = (const ucontext_t*)ucVoid; if (uc != NULL) { epc = os::Posix::ucontext_get_pc(uc); if (ret_sp) { *ret_sp = (intptr_t*) os::Linux::ucontext_get_sp(uc); } if (ret_fp) { *ret_fp = (intptr_t*) os::Linux::ucontext_get_fp(uc); } } else { epc = NULL; if (ret_sp) { *ret_sp = nullptr; } if (ret_fp) { *ret_fp = nullptr; } } return epc; } frame os::fetch_frame_from_context(const void* ucVoid) { // This code is only called from error handler to get PC and SP. // We don't have the ready ZeroFrame* at this point, so fake the // frame with bare minimum. if (ucVoid != NULL) { const ucontext_t* uc = (const ucontext_t*)ucVoid; frame dummy = frame(); dummy.set_pc(os::Posix::ucontext_get_pc(uc)); dummy.set_sp((intptr_t*)os::Linux::ucontext_get_sp(uc)); return dummy; } else { return frame(nullptr, nullptr); } } bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info, ucontext_t* uc, JavaThread* thread) { if (info != NULL && thread != NULL) { // Handle ALL stack overflow variations here if (sig == SIGSEGV) { address addr = (address) info->si_addr; // check if fault address is within thread stack if (thread->is_in_full_stack(addr)) { StackOverflow* overflow_state = thread->stack_overflow_state(); // stack overflow if (overflow_state->in_stack_yellow_reserved_zone(addr)) { overflow_state->disable_stack_yellow_reserved_zone(); ShouldNotCallThis(); } else if (overflow_state->in_stack_red_zone(addr)) { overflow_state->disable_stack_red_zone(); ShouldNotCallThis(); } else { // Accessing stack address below sp may cause SEGV if // current thread has MAP_GROWSDOWN stack. This should // only happen when current thread was created by user // code with MAP_GROWSDOWN flag and then attached to VM. // See notes in os_linux.cpp. if (thread->osthread()->expanding_stack() == 0) { thread->osthread()->set_expanding_stack(); if (os::Linux::manually_expand_stack(thread, addr)) { thread->osthread()->clear_expanding_stack(); return true; } thread->osthread()->clear_expanding_stack(); } else { fatal("recursive segv. expanding stack."); } } } } /*if (thread->thread_state() == _thread_in_Java) { ShouldNotCallThis(); } else*/ if ((thread->thread_state() == _thread_in_vm || thread->thread_state() == _thread_in_native) && sig == SIGBUS && thread->doing_unsafe_access()) { ShouldNotCallThis(); } // jni_fast_GetField can trap at certain pc's if a GC // kicks in and the heap gets shrunk before the field access. /*if (sig == SIGSEGV || sig == SIGBUS) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } }*/ } return false; // Fatal error } void os::Linux::init_thread_fpu_state(void) { // Nothing to do } int os::Linux::get_fpu_control_word() { ShouldNotCallThis(); return -1; // silence compile warnings } void os::Linux::set_fpu_control_word(int fpu) { ShouldNotCallThis(); } /////////////////////////////////////////////////////////////////////////////// // thread stack size_t os::_compiler_thread_min_stack_allowed = 64 * K; size_t os::_java_thread_min_stack_allowed = 64 * K; size_t os::_vm_internal_thread_min_stack_allowed = 64 * K; size_t os::Posix::default_stack_size(os::ThreadType thr_type) { #ifdef _LP64 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); #else size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K); #endif // _LP64 return s; } static void current_stack_region(address *bottom, size_t *size) { if (os::is_primordial_thread()) { // primordial thread needs special handling because pthread_getattr_np() // may return bogus value. address stack_bottom = os::Linux::initial_thread_stack_bottom(); size_t stack_bytes = os::Linux::initial_thread_stack_size(); assert(os::current_stack_pointer() >= stack_bottom, "should do"); assert(os::current_stack_pointer() < stack_bottom + stack_bytes, "should do"); *bottom = stack_bottom; *size = stack_bytes; return; } pthread_attr_t attr; int res = pthread_getattr_np(pthread_self(), &attr); if (res != 0) { if (res == ENOMEM) { vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np"); } else { fatal("pthread_getattr_np failed with error = %d", res); } } address stack_bottom; size_t stack_bytes; res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes); if (res != 0) { fatal("pthread_attr_getstack failed with error = %d", res); } address stack_top = stack_bottom + stack_bytes; // The block of memory returned by pthread_attr_getstack() includes // guard pages where present. We need to trim these off. size_t page_bytes = os::vm_page_size(); assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack"); size_t guard_bytes; res = pthread_attr_getguardsize(&attr, &guard_bytes); if (res != 0) { fatal("pthread_attr_getguardsize failed with errno = %d", res); } int guard_pages = align_up(guard_bytes, page_bytes) / page_bytes; assert(guard_bytes == guard_pages * page_bytes, "unaligned guard"); #ifdef IA64 // IA64 has two stacks sharing the same area of memory, a normal // stack growing downwards and a register stack growing upwards. // Guard pages, if present, are in the centre. This code splits // the stack in two even without guard pages, though in theory // there's nothing to stop us allocating more to the normal stack // or more to the register stack if one or the other were found // to grow faster. int total_pages = align_down(stack_bytes, page_bytes) / page_bytes; stack_bottom += (total_pages - guard_pages) / 2 * page_bytes; #endif // IA64 stack_bottom += guard_bytes; pthread_attr_destroy(&attr); assert(os::current_stack_pointer() >= stack_bottom, "should do"); assert(os::current_stack_pointer() < stack_top, "should do"); *bottom = stack_bottom; *size = stack_top - stack_bottom; } address os::current_stack_base() { address bottom; size_t size; current_stack_region(&bottom, &size); return bottom + size; } size_t os::current_stack_size() { // stack size includes normal stack and HotSpot guard pages address bottom; size_t size; current_stack_region(&bottom, &size); return size; } ///////////////////////////////////////////////////////////////////////////// // helper functions for fatal error handler void os::print_context(outputStream* st, const void* ucVoid) { st->print_cr("No context information."); } void os::print_tos_pc(outputStream *st, const void* ucVoid) { const ucontext_t* uc = (const ucontext_t*)ucVoid; address sp = (address)os::Linux::ucontext_get_sp(uc); print_tos(st, sp); st->cr(); // Note: it may be unsafe to inspect memory near pc. For example, pc may // point to garbage if entry point in an nmethod is corrupted. Leave // this at the end, and hope for the best. address pc = os::Posix::ucontext_get_pc(uc); print_instructions(st, pc, sizeof(char)); st->cr(); } void os::print_register_info(outputStream *st, const void* ucVoid) { st->print_cr("No register info."); } ///////////////////////////////////////////////////////////////////////////// // Stubs for things that would be in linux_zero.s if it existed. // You probably want to disassemble these monkeys to check they're ok. extern "C" { int SpinPause() { return -1; // silence compile warnings } void _Copy_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t count) { if (from > to) { const jshort *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { const jshort *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jints_atomic(const jint* from, jint* to, size_t count) { if (from > to) { const jint *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { const jint *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) { if (from > to) { const jlong *end = from + count; while (from < end) atomic_copy64(from++, to++); } else if (from < to) { const jlong *end = from; from += count - 1; to += count - 1; while (from >= end) atomic_copy64(from--, to--); } } void _Copy_arrayof_conjoint_bytes(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count); } void _Copy_arrayof_conjoint_jshorts(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 2); } void _Copy_arrayof_conjoint_jints(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 4); } void _Copy_arrayof_conjoint_jlongs(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 8); } }; ///////////////////////////////////////////////////////////////////////////// // Implementations of atomic operations not supported by processors. // -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html #ifndef _LP64 extern "C" { long long unsigned int __sync_val_compare_and_swap_8( volatile void *ptr, long long unsigned int oldval, long long unsigned int newval) { ShouldNotCallThis(); return 0; // silence compiler warnings } }; #endif // !_LP64 #ifndef PRODUCT void os::verify_stack_alignment() { } #endif int os::extra_bang_size_in_bytes() { // Zero does not require an additional stack banging. return 0; } void os::setup_fpu() {}