openjdk/test/hotspot/jtreg/compiler/gcbarriers/TestImplicitNullChecks.java
Martin Doerr abc76c6b5b 8359126: [AIX] new test TestImplicitNullChecks.java fails
Reviewed-by: rcastanedalo, dbriemann
2025-06-11 08:28:31 +00:00

235 lines
7.9 KiB
Java

/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.gcbarriers;
import compiler.lib.ir_framework.*;
import java.lang.invoke.VarHandle;
import java.lang.invoke.MethodHandles;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;
import jdk.test.lib.Asserts;
/**
* @test
* @summary Test that implicit null checks are generated as expected for
different GC memory accesses.
* @library /test/lib /
* @run driver compiler.gcbarriers.TestImplicitNullChecks
*/
public class TestImplicitNullChecks {
static class Outer {
Object f;
}
static class OuterWithVolatileField {
volatile Object f;
}
static final VarHandle fVarHandle;
static {
MethodHandles.Lookup l = MethodHandles.lookup();
try {
fVarHandle = l.findVarHandle(Outer.class, "f", Object.class);
} catch (Exception e) {
throw new Error(e);
}
}
public static void main(String[] args) {
TestFramework.runWithFlags("-XX:CompileCommand=inline,java.lang.ref.*::*",
"-XX:-TieredCompilation");
}
@Test
// On AIX, implicit null checks are limited because the zero page is
// readable (but not writable). See os::zero_page_read_protected().
@IR(applyIfPlatform = {"aix", "false"},
applyIfOr = {"UseZGC", "true", "UseG1GC", "true"},
counts = {IRNode.NULL_CHECK, "1"},
phase = CompilePhase.FINAL_CODE)
static Object testLoad(Outer o) {
return o.f;
}
@Test
// On aarch64, volatile loads always use indirect memory operands, which
// leads to a pattern that cannot be exploited by the current C2 analysis.
// On PPC64, volatile loads are preceded by membar_volatile instructions,
// which also inhibits the current C2 analysis.
@IR(applyIfPlatformAnd = {"aarch64", "false", "ppc", "false"},
applyIfOr = {"UseZGC", "true", "UseG1GC", "true"},
counts = {IRNode.NULL_CHECK, "1"},
phase = CompilePhase.FINAL_CODE)
static Object testLoadVolatile(OuterWithVolatileField o) {
return o.f;
}
@Run(test = {"testLoad",
"testLoadVolatile"},
mode = RunMode.STANDALONE)
static void runLoadTests() {
{
Outer o = new Outer();
// Trigger compilation with implicit null check.
for (int i = 0; i < 10_000; i++) {
testLoad(o);
}
// Trigger null pointer exception.
o = null;
boolean nullPointerException = false;
try {
testLoad(o);
} catch (NullPointerException e) { nullPointerException = true; }
Asserts.assertTrue(nullPointerException);
}
{
OuterWithVolatileField o = new OuterWithVolatileField();
// Trigger compilation with implicit null check.
for (int i = 0; i < 10_000; i++) {
testLoadVolatile(o);
}
// Trigger null pointer exception.
o = null;
boolean nullPointerException = false;
try {
testLoadVolatile(o);
} catch (NullPointerException e) { nullPointerException = true; }
Asserts.assertTrue(nullPointerException);
}
}
@Test
// G1 and ZGC stores cannot be currently used to implement implicit null
// checks, because they expand into multiple memory access instructions that
// are not necessarily located at the initial instruction start address.
@IR(applyIfOr = {"UseZGC", "true", "UseG1GC", "true"},
failOn = IRNode.NULL_CHECK,
phase = CompilePhase.FINAL_CODE)
static void testStore(Outer o, Object o1) {
o.f = o1;
}
@Run(test = {"testStore"})
static void runStoreTests() {
{
Outer o = new Outer();
Object o1 = new Object();
testStore(o, o1);
}
}
@Test
// G1 and ZGC compare-and-exchange operations cannot be currently used to
// implement implicit null checks, because they expand into multiple memory
// access instructions that are not necessarily located at the initial
// instruction start address. The same holds for testCompareAndSwap and
// testGetAndSet below.
@IR(applyIfOr = {"UseZGC", "true", "UseG1GC", "true"},
failOn = IRNode.NULL_CHECK,
phase = CompilePhase.FINAL_CODE)
static Object testCompareAndExchange(Outer o, Object oldVal, Object newVal) {
return fVarHandle.compareAndExchange(o, oldVal, newVal);
}
@Test
@IR(applyIfOr = {"UseZGC", "true", "UseG1GC", "true"},
failOn = IRNode.NULL_CHECK,
phase = CompilePhase.FINAL_CODE)
static boolean testCompareAndSwap(Outer o, Object oldVal, Object newVal) {
return fVarHandle.compareAndSet(o, oldVal, newVal);
}
@Test
@IR(applyIfOr = {"UseZGC", "true", "UseG1GC", "true"},
failOn = IRNode.NULL_CHECK,
phase = CompilePhase.FINAL_CODE)
static Object testGetAndSet(Outer o, Object newVal) {
return fVarHandle.getAndSet(o, newVal);
}
@Run(test = {"testCompareAndExchange",
"testCompareAndSwap",
"testGetAndSet"})
static void runAtomicTests() {
{
Outer o = new Outer();
Object oldVal = new Object();
Object newVal = new Object();
testCompareAndExchange(o, oldVal, newVal);
}
{
Outer o = new Outer();
Object oldVal = new Object();
Object newVal = new Object();
testCompareAndSwap(o, oldVal, newVal);
}
{
Outer o = new Outer();
Object oldVal = new Object();
Object newVal = new Object();
testGetAndSet(o, newVal);
}
}
@Test
// G1 reference loads use indirect memory operands, which leads to a pattern
// that cannot be exploited by the current C2 analysis. The same holds for
// testLoadWeakReference.
@IR(applyIf = {"UseZGC", "true"},
counts = {IRNode.NULL_CHECK, "1"},
phase = CompilePhase.FINAL_CODE)
static Object testLoadSoftReference(SoftReference<Object> ref) {
return ref.get();
}
@Test
@IR(applyIf = {"UseZGC", "true"},
counts = {IRNode.NULL_CHECK, "1"},
phase = CompilePhase.FINAL_CODE)
static Object testLoadWeakReference(WeakReference<Object> ref) {
return ref.get();
}
@Run(test = {"testLoadSoftReference",
"testLoadWeakReference"})
static void runReferenceTests() {
{
Object o1 = new Object();
SoftReference<Object> sref = new SoftReference<Object>(o1);
Object o2 = testLoadSoftReference(sref);
}
{
Object o1 = new Object();
WeakReference<Object> wref = new WeakReference<Object>(o1);
Object o2 = testLoadWeakReference(wref);
}
}
}