openjdk/src/hotspot/share/gc/shared/collectedHeap.hpp

547 lines
20 KiB
C++

/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
#define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
#include "gc/shared/gcCause.hpp"
#include "gc/shared/gcWhen.hpp"
#include "gc/shared/softRefPolicy.hpp"
#include "gc/shared/verifyOption.hpp"
#include "memory/allocation.hpp"
#include "memory/metaspace.hpp"
#include "memory/universe.hpp"
#include "oops/stackChunkOop.hpp"
#include "runtime/handles.hpp"
#include "runtime/perfDataTypes.hpp"
#include "runtime/safepoint.hpp"
#include "services/memoryUsage.hpp"
#include "utilities/debug.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/growableArray.hpp"
// A "CollectedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
class GCHeapLog;
class GCHeapSummary;
class GCMemoryManager;
class GCMetaspaceLog;
class GCTimer;
class GCTracer;
class MemoryPool;
class MetaspaceSummary;
class ReservedHeapSpace;
class Thread;
class ThreadClosure;
class VirtualSpaceSummary;
class WorkerThreads;
class nmethod;
class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
public:
virtual ~ParallelObjectIteratorImpl() {}
virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
};
// User facing parallel object iterator. This is a StackObj, which ensures that
// the _impl is allocated and deleted in the scope of this object. This ensures
// the life cycle of the implementation is as required by ThreadsListHandle,
// which is sometimes used by the root iterators.
class ParallelObjectIterator : public StackObj {
ParallelObjectIteratorImpl* _impl;
public:
ParallelObjectIterator(uint thread_num);
~ParallelObjectIterator();
void object_iterate(ObjectClosure* cl, uint worker_id);
};
//
// CollectedHeap
// SerialHeap
// G1CollectedHeap
// ParallelScavengeHeap
// ShenandoahHeap
// ZCollectedHeap
//
class CollectedHeap : public CHeapObj<mtGC> {
friend class VMStructs;
friend class JVMCIVMStructs;
friend class IsSTWGCActiveMark; // Block structured external access to _is_stw_gc_active
friend class MemAllocator;
private:
GCHeapLog* _heap_log;
GCMetaspaceLog* _metaspace_log;
// Historic gc information
size_t _capacity_at_last_gc;
size_t _used_at_last_gc;
SoftRefPolicy _soft_ref_policy;
// First, set it to java_lang_Object.
// Then, set it to FillerObject after the FillerObject_klass loading is complete.
static Klass* _filler_object_klass;
protected:
// Not used by all GCs
MemRegion _reserved;
bool _is_stw_gc_active;
// (Minimum) Alignment reserve for TLABs and PLABs.
static size_t _lab_alignment_reserve;
// Used for filler objects (static, but initialized in ctor).
static size_t _filler_array_max_size;
static size_t _stack_chunk_max_size; // 0 for no limit
// Last time the whole heap has been examined in support of RMI
// MaxObjectInspectionAge.
// This timestamp must be monotonically non-decreasing to avoid
// time-warp warnings.
jlong _last_whole_heap_examined_time_ns;
unsigned int _total_collections; // ... started
unsigned int _total_full_collections; // ... started
NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
static jlong _vm_vtime;
// Reason for current garbage collection. Should be set to
// a value reflecting no collection between collections.
GCCause::Cause _gc_cause;
GCCause::Cause _gc_lastcause;
PerfStringVariable* _perf_gc_cause;
PerfStringVariable* _perf_gc_lastcause;
// Constructor
CollectedHeap();
// Create a new tlab. All TLAB allocations must go through this.
// To allow more flexible TLAB allocations min_size specifies
// the minimum size needed, while requested_size is the requested
// size based on ergonomics. The actually allocated size will be
// returned in actual_size.
virtual HeapWord* allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size) = 0;
// Reinitialize tlabs before resuming mutators.
virtual void resize_all_tlabs();
// Raw memory allocation facilities
// The obj and array allocate methods are covers for these methods.
// mem_allocate() should never be
// called to allocate TLABs, only individual objects.
virtual HeapWord* mem_allocate(size_t size,
bool* gc_overhead_limit_was_exceeded) = 0;
// Filler object utilities.
static inline size_t filler_array_hdr_size();
static size_t filler_array_min_size();
protected:
static inline void zap_filler_array_with(HeapWord* start, size_t words, juint value);
DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
// Fill with a single array; caller must ensure filler_array_min_size() <=
// words <= filler_array_max_size().
static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
// Fill with a single object (either an int array or a java.lang.Object).
static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
// Verification functions
DEBUG_ONLY(static void check_for_valid_allocation_state();)
public:
enum Name {
None,
Serial,
Parallel,
G1,
Epsilon,
Z,
Shenandoah
};
protected:
// Get a pointer to the derived heap object. Used to implement
// derived class heap() functions rather than being called directly.
template<typename T>
static T* named_heap(Name kind) {
CollectedHeap* heap = Universe::heap();
assert(heap != nullptr, "Uninitialized heap");
assert(kind == heap->kind(), "Heap kind %u should be %u",
static_cast<uint>(heap->kind()), static_cast<uint>(kind));
return static_cast<T*>(heap);
}
public:
static inline size_t filler_array_max_size() {
return _filler_array_max_size;
}
static inline size_t stack_chunk_max_size() {
return _stack_chunk_max_size;
}
static inline Klass* filler_object_klass() {
return _filler_object_klass;
}
static inline void set_filler_object_klass(Klass* k) {
_filler_object_klass = k;
}
virtual Name kind() const = 0;
virtual const char* name() const = 0;
/**
* Returns JNI error code JNI_ENOMEM if memory could not be allocated,
* and JNI_OK on success.
*/
virtual jint initialize() = 0;
// In many heaps, there will be a need to perform some initialization activities
// after the Universe is fully formed, but before general heap allocation is allowed.
// This is the correct place to place such initialization methods.
virtual void post_initialize();
// Stop any onging concurrent work and prepare for exit.
virtual void stop() {}
// Stop and resume concurrent GC threads interfering with safepoint operations
virtual void safepoint_synchronize_begin() {}
virtual void safepoint_synchronize_end() {}
static jlong vm_vtime() {
return _vm_vtime;
}
static void add_vm_vtime(jlong time) {
_vm_vtime += time;
}
void initialize_reserved_region(const ReservedHeapSpace& rs);
virtual size_t capacity() const = 0;
virtual size_t used() const = 0;
// Returns unused capacity.
virtual size_t unused() const;
// Historic gc information
size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
size_t used_at_last_gc() const { return _used_at_last_gc; }
void update_capacity_and_used_at_gc();
// Support for java.lang.Runtime.maxMemory(): return the maximum amount of
// memory that the vm could make available for storing 'normal' java objects.
// This is based on the reserved address space, but should not include space
// that the vm uses internally for bookkeeping or temporary storage
// (e.g., in the case of the young gen, one of the survivor
// spaces).
virtual size_t max_capacity() const = 0;
// Returns "TRUE" iff "p" points into the committed areas of the heap.
// This method can be expensive so avoid using it in performance critical
// code.
virtual bool is_in(const void* p) const = 0;
DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == nullptr || is_in(p); })
void set_gc_cause(GCCause::Cause v);
GCCause::Cause gc_cause() { return _gc_cause; }
oop obj_allocate(Klass* klass, size_t size, TRAPS);
virtual oop array_allocate(Klass* klass, size_t size, int length, bool do_zero, TRAPS);
oop class_allocate(Klass* klass, size_t size, TRAPS);
// Utilities for turning raw memory into filler objects.
//
// min_fill_size() is the smallest region that can be filled.
// fill_with_objects() can fill arbitrary-sized regions of the heap using
// multiple objects. fill_with_object() is for regions known to be smaller
// than the largest array of integers; it uses a single object to fill the
// region and has slightly less overhead.
static size_t min_fill_size() {
return size_t(align_object_size(oopDesc::header_size()));
}
static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
static void fill_with_object(MemRegion region, bool zap = true) {
fill_with_object(region.start(), region.word_size(), zap);
}
static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
fill_with_object(start, pointer_delta(end, start), zap);
}
virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
static size_t min_dummy_object_size() {
return oopDesc::header_size();
}
static size_t lab_alignment_reserve() {
assert(_lab_alignment_reserve != SIZE_MAX, "uninitialized");
return _lab_alignment_reserve;
}
// Some heaps may be in an unparseable state at certain times between
// collections. This may be necessary for efficient implementation of
// certain allocation-related activities. Calling this function before
// attempting to parse a heap ensures that the heap is in a parsable
// state (provided other concurrent activity does not introduce
// unparsability). It is normally expected, therefore, that this
// method is invoked with the world stopped.
// NOTE: if you override this method, make sure you call
// super::ensure_parsability so that the non-generational
// part of the work gets done. See implementation of
// CollectedHeap::ensure_parsability and, for instance,
// that of ParallelScavengeHeap::ensure_parsability().
// The argument "retire_tlabs" controls whether existing TLABs
// are merely filled or also retired, thus preventing further
// allocation from them and necessitating allocation of new TLABs.
virtual void ensure_parsability(bool retire_tlabs);
// The amount of space available for thread-local allocation buffers.
virtual size_t tlab_capacity(Thread *thr) const = 0;
// The amount of used space for thread-local allocation buffers for the given thread.
virtual size_t tlab_used(Thread *thr) const = 0;
virtual size_t max_tlab_size() const;
// An estimate of the maximum allocation that could be performed
// for thread-local allocation buffers without triggering any
// collection or expansion activity.
virtual size_t unsafe_max_tlab_alloc(Thread *thr) const = 0;
// Perform a collection of the heap; intended for use in implementing
// "System.gc". This probably implies as full a collection as the
// "CollectedHeap" supports.
virtual void collect(GCCause::Cause cause) = 0;
// Perform a full collection
virtual void do_full_collection(bool clear_all_soft_refs) = 0;
// This interface assumes that it's being called by the
// vm thread. It collects the heap assuming that the
// heap lock is already held and that we are executing in
// the context of the vm thread.
virtual void collect_as_vm_thread(GCCause::Cause cause);
virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
size_t size,
Metaspace::MetadataType mdtype);
// Return true, if accesses to the object would require barriers.
// This is used by continuations to copy chunks of a thread stack into StackChunk object or out of a StackChunk
// object back into the thread stack. These chunks may contain references to objects. It is crucial that
// the GC does not attempt to traverse the object while we modify it, because its structure (oopmap) is changed
// when stack chunks are stored into it.
// StackChunk objects may be reused, the GC must not assume that a StackChunk object is always a freshly
// allocated object.
virtual bool requires_barriers(stackChunkOop obj) const = 0;
// Returns "true" iff there is a stop-world GC in progress.
bool is_stw_gc_active() const { return _is_stw_gc_active; }
// Total number of GC collections (started)
unsigned int total_collections() const { return _total_collections; }
unsigned int total_full_collections() const { return _total_full_collections;}
// Increment total number of GC collections (started)
void increment_total_collections(bool full = false) {
_total_collections++;
if (full) {
_total_full_collections++;
}
}
// Return the SoftRefPolicy for the heap;
SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
virtual MemoryUsage memory_usage();
virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
virtual GrowableArray<MemoryPool*> memory_pools() = 0;
// Iterate over all objects, calling "cl.do_object" on each.
virtual void object_iterate(ObjectClosure* cl) = 0;
virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
return nullptr;
}
// Keep alive an object that was loaded with AS_NO_KEEPALIVE.
virtual void keep_alive(oop obj) {}
// Perform any cleanup actions necessary before allowing a verification.
virtual void prepare_for_verify() = 0;
// Returns the longest time (in ms) that has elapsed since the last
// time that the whole heap has been examined by a garbage collection.
jlong millis_since_last_whole_heap_examined();
// GC should call this when the next whole heap analysis has completed to
// satisfy above requirement.
void record_whole_heap_examined_timestamp();
private:
// Generate any dumps preceding or following a full gc
void full_gc_dump(GCTimer* timer, bool before);
virtual void initialize_serviceability() = 0;
void print_relative_to_gc(GCWhen::Type when) const;
public:
void pre_full_gc_dump(GCTimer* timer);
void post_full_gc_dump(GCTimer* timer);
virtual VirtualSpaceSummary create_heap_space_summary();
GCHeapSummary create_heap_summary();
MetaspaceSummary create_metaspace_summary();
// GCs are free to represent the bit representation for null differently in memory,
// which is typically not observable when using the Access API. However, if for
// some reason a context doesn't allow using the Access API, then this function
// explicitly checks if the given memory location contains a null value.
virtual bool contains_null(const oop* p) const;
void print_invocation_on(outputStream* st, const char* type, GCWhen::Type when) const;
// Print heap information.
virtual void print_heap_on(outputStream* st) const = 0;
// Print additional information about the GC that is not included in print_heap_on().
virtual void print_gc_on(outputStream* st) const = 0;
// The default behavior is to call print_heap_on() and print_gc_on() on tty.
virtual void print() const;
// Used to print information about locations in the hs_err file.
virtual bool print_location(outputStream* st, void* addr) const = 0;
// Iterator for all GC threads (other than VM thread)
virtual void gc_threads_do(ThreadClosure* tc) const = 0;
// Print any relevant tracing info that flags imply.
// Default implementation does nothing.
virtual void print_tracing_info() const = 0;
virtual double elapsed_gc_vtime();
void log_gc_vtime();
void print_before_gc() const;
void print_after_gc() const;
// Registering and unregistering an nmethod (compiled code) with the heap.
virtual void register_nmethod(nmethod* nm) = 0;
virtual void unregister_nmethod(nmethod* nm) = 0;
virtual void verify_nmethod(nmethod* nm) = 0;
void trace_heap_before_gc(const GCTracer* gc_tracer);
void trace_heap_after_gc(const GCTracer* gc_tracer);
// Heap verification
virtual void verify(VerifyOption option) = 0;
// Return true if concurrent gc control via WhiteBox is supported by
// this collector. The default implementation returns false.
virtual bool supports_concurrent_gc_breakpoints() const;
// Workers used in non-GC safepoints for parallel safepoint cleanup. If this
// method returns null, cleanup tasks are done serially in the VMThread. See
// `SafepointSynchronize::do_cleanup_tasks` for details.
// GCs using a GC worker thread pool inside GC safepoints may opt to share
// that pool with non-GC safepoints, avoiding creating extraneous threads.
// Such sharing is safe, because GC safepoints and non-GC safepoints never
// overlap. For example, `G1CollectedHeap::workers()` (for GC safepoints) and
// `G1CollectedHeap::safepoint_workers()` (for non-GC safepoints) return the
// same thread-pool.
virtual WorkerThreads* safepoint_workers() { return nullptr; }
// Support for object pinning. This is used by JNI Get*Critical()
// and Release*Critical() family of functions. The GC must guarantee
// that pinned objects never move and don't get reclaimed as garbage.
// These functions are potentially safepointing.
virtual void pin_object(JavaThread* thread, oop obj) = 0;
virtual void unpin_object(JavaThread* thread, oop obj) = 0;
// Support for loading objects from CDS archive into the heap
// (usually as a snapshot of the old generation).
virtual bool can_load_archived_objects() const { return false; }
virtual HeapWord* allocate_loaded_archive_space(size_t size) { return nullptr; }
virtual void complete_loaded_archive_space(MemRegion archive_space) { }
virtual bool is_oop(oop object) const;
// Non product verification and debugging.
#ifndef PRODUCT
// Support for PromotionFailureALot. Return true if it's time to cause a
// promotion failure. The no-argument version uses
// this->_promotion_failure_alot_count as the counter.
bool promotion_should_fail(volatile size_t* count);
bool promotion_should_fail();
// Reset the PromotionFailureALot counters. Should be called at the end of a
// GC in which promotion failure occurred.
void reset_promotion_should_fail(volatile size_t* count);
void reset_promotion_should_fail();
#endif // #ifndef PRODUCT
};
// Class to set and reset the GC cause for a CollectedHeap.
class GCCauseSetter : StackObj {
CollectedHeap* _heap;
GCCause::Cause _previous_cause;
public:
GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
_heap = heap;
_previous_cause = _heap->gc_cause();
_heap->set_gc_cause(cause);
}
~GCCauseSetter() {
_heap->set_gc_cause(_previous_cause);
}
};
#endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP