2546 lines
111 KiB
Java
2546 lines
111 KiB
Java
/*
|
|
* Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
package java.text;
|
|
|
|
import java.io.IOException;
|
|
import java.io.InvalidObjectException;
|
|
import java.io.ObjectInputStream;
|
|
import java.math.BigDecimal;
|
|
import java.math.BigInteger;
|
|
import java.math.RoundingMode;
|
|
import java.util.ArrayList;
|
|
import java.util.Arrays;
|
|
import java.util.HashMap;
|
|
import java.util.List;
|
|
import java.util.Locale;
|
|
import java.util.Map;
|
|
import java.util.Objects;
|
|
import java.util.concurrent.atomic.AtomicInteger;
|
|
import java.util.concurrent.atomic.AtomicLong;
|
|
import java.util.regex.Matcher;
|
|
import java.util.regex.Pattern;
|
|
import java.util.stream.Collectors;
|
|
|
|
|
|
/**
|
|
* <p>
|
|
* {@code CompactNumberFormat} is a concrete subclass of {@code NumberFormat}
|
|
* that formats a decimal number in its compact form.
|
|
*
|
|
* The compact number formatting is designed for the environment where the space
|
|
* is limited, and the formatted string can be displayed in that limited space.
|
|
* It is defined by LDML's specification for
|
|
* <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Compact_Number_Formats">
|
|
* Compact Number Formats</a>. A compact number formatting refers
|
|
* to the representation of a number in a shorter form, based on the patterns
|
|
* provided for a given locale.
|
|
*
|
|
* <p>
|
|
* For example:
|
|
* <br>In the {@link java.util.Locale#US US locale}, {@code 1000} can be formatted
|
|
* as {@code "1K"}, and {@code 1000000} as {@code "1M"}, depending upon the
|
|
* <a href = "#compact_number_style" >style</a> used.
|
|
* <br>In the {@code "hi_IN"} locale, {@code 1000} can be formatted as
|
|
* "1 \u0939\u091C\u093C\u093E\u0930", and {@code 50000000} as "5 \u0915.",
|
|
* depending upon the <a href = "#compact_number_style" >style</a> used.
|
|
*
|
|
* <p>
|
|
* To obtain a {@code CompactNumberFormat} for a locale, use one
|
|
* of the factory methods given by {@code NumberFormat} for compact number
|
|
* formatting. For example,
|
|
* {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
|
|
*
|
|
* <blockquote><pre>
|
|
* NumberFormat fmt = NumberFormat.getCompactNumberInstance(
|
|
* Locale.forLanguageTag("hi-IN"), NumberFormat.Style.SHORT);
|
|
* String result = fmt.format(1000);
|
|
* </pre></blockquote>
|
|
*
|
|
* <h2><a id="compact_number_style">Style</a></h2>
|
|
* <p>
|
|
* A number can be formatted in the compact forms with two different
|
|
* styles, {@link NumberFormat.Style#SHORT SHORT}
|
|
* and {@link NumberFormat.Style#LONG LONG}. Use
|
|
* {@link NumberFormat#getCompactNumberInstance(Locale, Style)} for formatting and
|
|
* parsing a number in {@link NumberFormat.Style#SHORT SHORT} or
|
|
* {@link NumberFormat.Style#LONG LONG} compact form,
|
|
* where the given {@code Style} parameter requests the desired
|
|
* format. A {@link NumberFormat.Style#SHORT SHORT} style
|
|
* compact number instance in the {@link java.util.Locale#US US locale} formats
|
|
* {@code 10000} as {@code "10K"}. However, a
|
|
* {@link NumberFormat.Style#LONG LONG} style instance in same locale
|
|
* formats {@code 10000} as {@code "10 thousand"}.
|
|
*
|
|
* <h2><a id="compact_number_patterns">Compact Number Patterns</a></h2>
|
|
* <p>
|
|
* The compact number patterns are represented in a series of patterns where each
|
|
* pattern is used to format a range of numbers. An example of
|
|
* {@link NumberFormat.Style#SHORT SHORT} styled compact number patterns
|
|
* for the {@link java.util.Locale#US US locale} is {@code {"", "", "", "0K",
|
|
* "00K", "000K", "0M", "00M", "000M", "0B", "00B", "000B", "0T", "00T", "000T"}},
|
|
* ranging from {@code 10}<sup>{@code 0}</sup> to {@code 10}<sup>{@code 14}</sup>.
|
|
* There can be any number of patterns and they are
|
|
* strictly index based starting from the range {@code 10}<sup>{@code 0}</sup>.
|
|
* For example, in the above patterns, pattern at index 3
|
|
* ({@code "0K"}) is used for formatting {@code number >= 1000 and number < 10000},
|
|
* pattern at index 4 ({@code "00K"}) is used for formatting
|
|
* {@code number >= 10000 and number < 100000} and so on. In most of the locales,
|
|
* patterns with the range
|
|
* {@code 10}<sup>{@code 0}</sup>-{@code 10}<sup>{@code 2}</sup> are empty
|
|
* strings, which implicitly means a special pattern {@code "0"}.
|
|
* A special pattern {@code "0"} is used for any range which does not contain
|
|
* a compact pattern. This special pattern can appear explicitly for any specific
|
|
* range, or considered as a default pattern for an empty string.
|
|
*
|
|
* <p>
|
|
* A compact pattern contains a positive and negative subpattern
|
|
* separated by a subpattern boundary character {@code ';' (U+003B)},
|
|
* for example, {@code "0K;-0K"}. Each subpattern has a prefix,
|
|
* minimum integer digits, and suffix. The negative subpattern
|
|
* is optional, if absent, then the positive subpattern prefixed with the
|
|
* minus sign ({@code '-' U+002D HYPHEN-MINUS}) is used as the negative
|
|
* subpattern. That is, {@code "0K"} alone is equivalent to {@code "0K;-0K"}.
|
|
* If there is an explicit negative subpattern, it serves only to specify
|
|
* the negative prefix and suffix. The number of minimum integer digits,
|
|
* and other characteristics are all the same as the positive pattern.
|
|
* That means that {@code "0K;-00K"} produces precisely the same behavior
|
|
* as {@code "0K;-0K"}.
|
|
*
|
|
* <p>
|
|
* Many characters in a compact pattern are taken literally, they are matched
|
|
* during parsing and output unchanged during formatting.
|
|
* <a href = "DecimalFormat.html#special_pattern_character">Special characters</a>,
|
|
* on the other hand, stand for other characters, strings, or classes of
|
|
* characters. They must be quoted, using single quote {@code ' (U+0027)}
|
|
* unless noted otherwise, if they are to appear in the prefix or suffix
|
|
* as literals. For example, 0\u0915'.'.
|
|
*
|
|
* <h3>Plurals</h3>
|
|
* <p>
|
|
* In case some localization requires compact number patterns to be different for
|
|
* plurals, each singular and plural pattern can be enumerated within a pair of
|
|
* curly brackets <code>'{' (U+007B)</code> and <code>'}' (U+007D)</code>, separated
|
|
* by a space {@code ' ' (U+0020)}. If this format is used, each pattern needs to be
|
|
* prepended by its {@code count}, followed by a single colon {@code ':' (U+003A)}.
|
|
* If the pattern includes spaces literally, they must be quoted.
|
|
* <p>
|
|
* For example, the compact number pattern representing millions in German locale can be
|
|
* specified as {@code "{one:0' 'Million other:0' 'Millionen}"}. The {@code count}
|
|
* follows LDML's
|
|
* <a href="https://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules">
|
|
* Language Plural Rules</a>.
|
|
* <p>
|
|
* A compact pattern has the following syntax:
|
|
* <blockquote><pre>
|
|
* <i>Pattern:</i>
|
|
* <i>SimplePattern</i>
|
|
* '{' <i>PluralPattern</i> <i>[' ' PluralPattern]<sub>optional</sub></i> '}'
|
|
* <i>SimplePattern:</i>
|
|
* <i>PositivePattern</i>
|
|
* <i>PositivePattern</i> <i>[; NegativePattern]<sub>optional</sub></i>
|
|
* <i>PluralPattern:</i>
|
|
* <i>Count</i>:<i>SimplePattern</i>
|
|
* <i>Count:</i>
|
|
* "zero" / "one" / "two" / "few" / "many" / "other"
|
|
* <i>PositivePattern:</i>
|
|
* <i>Prefix<sub>optional</sub></i> <i>MinimumInteger</i> <i>Suffix<sub>optional</sub></i>
|
|
* <i>NegativePattern:</i>
|
|
* <i>Prefix<sub>optional</sub></i> <i>MinimumInteger</i> <i>Suffix<sub>optional</sub></i>
|
|
* <i>Prefix:</i>
|
|
* Any Unicode characters except {@code U+FFFE}, {@code U+FFFF}, and
|
|
* <a href = "DecimalFormat.html#special_pattern_character">special characters</a>.
|
|
* <i>Suffix:</i>
|
|
* Any Unicode characters except {@code U+FFFE}, {@code U+FFFF}, and
|
|
* <a href = "DecimalFormat.html#special_pattern_character">special characters</a>.
|
|
* <i>MinimumInteger:</i>
|
|
* 0
|
|
* 0 <i>MinimumInteger</i>
|
|
* </pre></blockquote>
|
|
*
|
|
* <h2>Formatting</h2>
|
|
* The default formatting behavior returns a formatted string with no fractional
|
|
* digits, however users can use the {@link #setMinimumFractionDigits(int)}
|
|
* method to include the fractional part.
|
|
* The number {@code 1000.0} or {@code 1000} is formatted as {@code "1K"}
|
|
* not {@code "1.00K"} (in the {@link java.util.Locale#US US locale}). For this
|
|
* reason, the patterns provided for formatting contain only the minimum
|
|
* integer digits, prefix and/or suffix, but no fractional part.
|
|
* For example, patterns used are {@code {"", "", "", 0K, 00K, ...}}. If the pattern
|
|
* selected for formatting a number is {@code "0"} (special pattern),
|
|
* either explicit or defaulted, then the general number formatting provided by
|
|
* {@link java.text.DecimalFormat DecimalFormat}
|
|
* for the specified locale is used.
|
|
*
|
|
* <h2>Parsing</h2>
|
|
* The default parsing behavior does not allow a grouping separator until
|
|
* grouping used is set to {@code true} by using
|
|
* {@link #setGroupingUsed(boolean)}. The parsing of the fractional part
|
|
* depends on the {@link #isParseIntegerOnly()}. For example, if the
|
|
* parse integer only is set to true, then the fractional part is skipped.
|
|
*
|
|
* <h2>Rounding</h2>
|
|
* {@code CompactNumberFormat} provides rounding modes defined in
|
|
* {@link java.math.RoundingMode} for formatting. By default, it uses
|
|
* {@link java.math.RoundingMode#HALF_EVEN RoundingMode.HALF_EVEN}.
|
|
*
|
|
* @see NumberFormat.Style
|
|
* @see NumberFormat
|
|
* @see DecimalFormat
|
|
* @since 12
|
|
*/
|
|
public final class CompactNumberFormat extends NumberFormat {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 7128367218649234678L;
|
|
|
|
/**
|
|
* The patterns for compact form of numbers for this
|
|
* {@code CompactNumberFormat}. A possible example is
|
|
* {@code {"", "", "", "0K", "00K", "000K", "0M", "00M", "000M", "0B",
|
|
* "00B", "000B", "0T", "00T", "000T"}} ranging from
|
|
* {@code 10}<sup>{@code 0}</sup>-{@code 10}<sup>{@code 14}</sup>,
|
|
* where each pattern is used to format a range of numbers.
|
|
* For example, {@code "0K"} is used for formatting
|
|
* {@code number >= 1000 and number < 10000}, {@code "00K"} is used for
|
|
* formatting {@code number >= 10000 and number < 100000} and so on.
|
|
* This field must not be {@code null}.
|
|
*
|
|
* @serial
|
|
*/
|
|
private String[] compactPatterns;
|
|
|
|
/**
|
|
* List of positive prefix patterns of this formatter's
|
|
* compact number patterns.
|
|
*/
|
|
private transient List<Patterns> positivePrefixPatterns;
|
|
|
|
/**
|
|
* List of negative prefix patterns of this formatter's
|
|
* compact number patterns.
|
|
*/
|
|
private transient List<Patterns> negativePrefixPatterns;
|
|
|
|
/**
|
|
* List of positive suffix patterns of this formatter's
|
|
* compact number patterns.
|
|
*/
|
|
private transient List<Patterns> positiveSuffixPatterns;
|
|
|
|
/**
|
|
* List of negative suffix patterns of this formatter's
|
|
* compact number patterns.
|
|
*/
|
|
private transient List<Patterns> negativeSuffixPatterns;
|
|
|
|
/**
|
|
* List of divisors of this formatter's compact number patterns.
|
|
* Divisor can be either Long or BigInteger (if the divisor value goes
|
|
* beyond long boundary)
|
|
*/
|
|
private transient List<Number> divisors;
|
|
|
|
/**
|
|
* List of place holders that represent minimum integer digits at each index
|
|
* for each count.
|
|
*/
|
|
private transient List<Patterns> placeHolderPatterns;
|
|
|
|
/**
|
|
* The {@code DecimalFormatSymbols} object used by this format.
|
|
* It contains the symbols used to format numbers. For example,
|
|
* the grouping separator, decimal separator, and so on.
|
|
* This field must not be {@code null}.
|
|
*
|
|
* @serial
|
|
* @see DecimalFormatSymbols
|
|
*/
|
|
private DecimalFormatSymbols symbols;
|
|
|
|
/**
|
|
* The decimal pattern which is used for formatting the numbers
|
|
* matching special pattern "0". This field must not be {@code null}.
|
|
*
|
|
* @serial
|
|
* @see DecimalFormat
|
|
*/
|
|
private final String decimalPattern;
|
|
|
|
/**
|
|
* A {@code DecimalFormat} used by this format for getting corresponding
|
|
* general number formatting behavior for compact numbers.
|
|
*
|
|
*/
|
|
private transient DecimalFormat decimalFormat;
|
|
|
|
/**
|
|
* A {@code DecimalFormat} used by this format for getting general number
|
|
* formatting behavior for the numbers which can't be represented as compact
|
|
* numbers. For example, number matching the special pattern "0" are
|
|
* formatted through general number format pattern provided by
|
|
* {@link java.text.DecimalFormat DecimalFormat}
|
|
* for the specified locale.
|
|
*
|
|
*/
|
|
private transient DecimalFormat defaultDecimalFormat;
|
|
|
|
/**
|
|
* The number of digits between grouping separators in the integer portion
|
|
* of a compact number. For the grouping to work while formatting, this
|
|
* field needs to be greater than 0 with grouping used set as true.
|
|
* This field must not be negative.
|
|
*
|
|
* @serial
|
|
*/
|
|
private byte groupingSize = 0;
|
|
|
|
/**
|
|
* Returns whether the {@link #parse(String, ParsePosition)}
|
|
* method returns {@code BigDecimal}.
|
|
*
|
|
* @serial
|
|
*/
|
|
private boolean parseBigDecimal = false;
|
|
|
|
/**
|
|
* The {@code RoundingMode} used in this compact number format.
|
|
* This field must not be {@code null}.
|
|
*
|
|
* @serial
|
|
*/
|
|
private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
|
|
|
|
/**
|
|
* The {@code pluralRules} used in this compact number format.
|
|
* {@code pluralRules} is a String designating plural rules which associate
|
|
* the {@code Count} keyword, such as "{@code one}", and the
|
|
* actual integer number. Its syntax is defined in Unicode Consortium's
|
|
* <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Plural_rules_syntax">
|
|
* Plural rules syntax</a>.
|
|
* The default value is an empty string, meaning there is no plural rules.
|
|
*
|
|
* @serial
|
|
* @since 14
|
|
*/
|
|
private String pluralRules = "";
|
|
|
|
/**
|
|
* The map for plural rules that maps LDML defined tags (e.g. "one") to
|
|
* its rule.
|
|
*/
|
|
private transient Map<String, String> rulesMap;
|
|
|
|
/**
|
|
* Special pattern used for compact numbers
|
|
*/
|
|
private static final String SPECIAL_PATTERN = "0";
|
|
|
|
/**
|
|
* Multiplier for compact pattern range. In
|
|
* the list compact patterns each compact pattern
|
|
* specify the range with the multiplication factor of 10
|
|
* of its previous compact pattern range.
|
|
* For example, 10^0, 10^1, 10^2, 10^3, 10^4...
|
|
*
|
|
*/
|
|
private static final int RANGE_MULTIPLIER = 10;
|
|
|
|
/**
|
|
* Creates a {@code CompactNumberFormat} using the given decimal pattern,
|
|
* decimal format symbols and compact patterns.
|
|
* To obtain the instance of {@code CompactNumberFormat} with the standard
|
|
* compact patterns for a {@code Locale} and {@code Style},
|
|
* it is recommended to use the factory methods given by
|
|
* {@code NumberFormat} for compact number formatting. For example,
|
|
* {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
|
|
*
|
|
* @param decimalPattern a decimal pattern for general number formatting
|
|
* @param symbols the set of symbols to be used
|
|
* @param compactPatterns an array of
|
|
* <a href = "CompactNumberFormat.html#compact_number_patterns">
|
|
* compact number patterns</a>
|
|
* @throws NullPointerException if any of the given arguments is
|
|
* {@code null}
|
|
* @throws IllegalArgumentException if the given {@code decimalPattern} or the
|
|
* {@code compactPatterns} array contains an invalid pattern
|
|
* or if a {@code null} appears in the array of compact
|
|
* patterns
|
|
* @see DecimalFormat#DecimalFormat(java.lang.String, DecimalFormatSymbols)
|
|
* @see DecimalFormatSymbols
|
|
*/
|
|
public CompactNumberFormat(String decimalPattern,
|
|
DecimalFormatSymbols symbols, String[] compactPatterns) {
|
|
this(decimalPattern, symbols, compactPatterns, "");
|
|
}
|
|
|
|
/**
|
|
* Creates a {@code CompactNumberFormat} using the given decimal pattern,
|
|
* decimal format symbols, compact patterns, and plural rules.
|
|
* To obtain the instance of {@code CompactNumberFormat} with the standard
|
|
* compact patterns for a {@code Locale}, {@code Style}, and {@code pluralRules},
|
|
* it is recommended to use the factory methods given by
|
|
* {@code NumberFormat} for compact number formatting. For example,
|
|
* {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
|
|
*
|
|
* @param decimalPattern a decimal pattern for general number formatting
|
|
* @param symbols the set of symbols to be used
|
|
* @param compactPatterns an array of
|
|
* <a href = "CompactNumberFormat.html#compact_number_patterns">
|
|
* compact number patterns</a>
|
|
* @param pluralRules a String designating plural rules which associate
|
|
* the {@code Count} keyword, such as "{@code one}", and the
|
|
* actual integer number. Its syntax is defined in Unicode Consortium's
|
|
* <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Plural_rules_syntax">
|
|
* Plural rules syntax</a>
|
|
* @throws NullPointerException if any of the given arguments is
|
|
* {@code null}
|
|
* @throws IllegalArgumentException if the given {@code decimalPattern},
|
|
* the {@code compactPatterns} array contains an invalid pattern,
|
|
* a {@code null} appears in the array of compact patterns,
|
|
* or if the given {@code pluralRules} contains an invalid syntax
|
|
* @see DecimalFormat#DecimalFormat(java.lang.String, DecimalFormatSymbols)
|
|
* @see DecimalFormatSymbols
|
|
* @since 14
|
|
*/
|
|
public CompactNumberFormat(String decimalPattern,
|
|
DecimalFormatSymbols symbols, String[] compactPatterns,
|
|
String pluralRules) {
|
|
|
|
Objects.requireNonNull(decimalPattern, "decimalPattern");
|
|
Objects.requireNonNull(symbols, "symbols");
|
|
Objects.requireNonNull(compactPatterns, "compactPatterns");
|
|
Objects.requireNonNull(pluralRules, "pluralRules");
|
|
|
|
this.symbols = symbols;
|
|
// Instantiating the DecimalFormat with "0" pattern; this acts just as a
|
|
// basic pattern; the properties (For example, prefix/suffix)
|
|
// are later computed based on the compact number formatting process.
|
|
decimalFormat = new DecimalFormat(SPECIAL_PATTERN, this.symbols);
|
|
|
|
// Initializing the super class state with the decimalFormat values
|
|
// to represent this CompactNumberFormat.
|
|
// For setting the digits counts, use overridden setXXX methods of this
|
|
// CompactNumberFormat, as it performs check with the max range allowed
|
|
// for compact number formatting
|
|
setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
|
|
setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
|
|
setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
|
|
setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
|
|
|
|
super.setGroupingUsed(decimalFormat.isGroupingUsed());
|
|
super.setParseIntegerOnly(decimalFormat.isParseIntegerOnly());
|
|
|
|
this.compactPatterns = compactPatterns;
|
|
|
|
// DecimalFormat used for formatting numbers with special pattern "0".
|
|
// Formatting is delegated to the DecimalFormat's number formatting
|
|
// with no fraction digits
|
|
this.decimalPattern = decimalPattern;
|
|
defaultDecimalFormat = new DecimalFormat(this.decimalPattern,
|
|
this.symbols);
|
|
defaultDecimalFormat.setMaximumFractionDigits(0);
|
|
|
|
this.pluralRules = pluralRules;
|
|
|
|
// Process compact patterns to extract the prefixes, suffixes, place holders, and
|
|
// divisors
|
|
processCompactPatterns();
|
|
}
|
|
|
|
/**
|
|
* Formats a number to produce a string representing its compact form.
|
|
* The number can be of any subclass of {@link java.lang.Number}.
|
|
* @param number the number to format
|
|
* @param toAppendTo the {@code StringBuffer} to which the formatted
|
|
* text is to be appended
|
|
* @param fieldPosition keeps track on the position of the field within
|
|
* the returned string. For example, for formatting
|
|
* a number {@code 123456789} in the
|
|
* {@link java.util.Locale#US US locale},
|
|
* if the given {@code fieldPosition} is
|
|
* {@link NumberFormat#INTEGER_FIELD}, the begin
|
|
* index and end index of {@code fieldPosition}
|
|
* will be set to 0 and 3, respectively for the
|
|
* output string {@code 123M}. Similarly, positions
|
|
* of the prefix and the suffix fields can be
|
|
* obtained using {@link NumberFormat.Field#PREFIX}
|
|
* and {@link NumberFormat.Field#SUFFIX} respectively.
|
|
* @return the {@code StringBuffer} passed in as {@code toAppendTo}
|
|
* @throws IllegalArgumentException if {@code number} is
|
|
* {@code null} or not an instance of {@code Number}
|
|
* @throws NullPointerException if {@code toAppendTo} or
|
|
* {@code fieldPosition} is {@code null}
|
|
* @throws ArithmeticException if rounding is needed with rounding
|
|
* mode being set to {@code RoundingMode.UNNECESSARY}
|
|
* @see FieldPosition
|
|
*/
|
|
@Override
|
|
public final StringBuffer format(Object number,
|
|
StringBuffer toAppendTo,
|
|
FieldPosition fieldPosition) {
|
|
|
|
if (number == null) {
|
|
throw new IllegalArgumentException("Cannot format null as a number");
|
|
}
|
|
|
|
if (number instanceof Long || number instanceof Integer
|
|
|| number instanceof Short || number instanceof Byte
|
|
|| number instanceof AtomicInteger
|
|
|| number instanceof AtomicLong
|
|
|| (number instanceof BigInteger
|
|
&& ((BigInteger) number).bitLength() < 64)) {
|
|
return format(((Number) number).longValue(), toAppendTo,
|
|
fieldPosition);
|
|
} else if (number instanceof BigDecimal) {
|
|
return format((BigDecimal) number, toAppendTo, fieldPosition);
|
|
} else if (number instanceof BigInteger) {
|
|
return format((BigInteger) number, toAppendTo, fieldPosition);
|
|
} else if (number instanceof Number) {
|
|
return format(((Number) number).doubleValue(), toAppendTo, fieldPosition);
|
|
} else {
|
|
throw new IllegalArgumentException("Cannot format "
|
|
+ number.getClass().getName() + " as a number");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Formats a double to produce a string representing its compact form.
|
|
* @param number the double number to format
|
|
* @param result where the text is to be appended
|
|
* @param fieldPosition keeps track on the position of the field within
|
|
* the returned string. For example, to format
|
|
* a number {@code 1234567.89} in the
|
|
* {@link java.util.Locale#US US locale}
|
|
* if the given {@code fieldPosition} is
|
|
* {@link NumberFormat#INTEGER_FIELD}, the begin
|
|
* index and end index of {@code fieldPosition}
|
|
* will be set to 0 and 1, respectively for the
|
|
* output string {@code 1M}. Similarly, positions
|
|
* of the prefix and the suffix fields can be
|
|
* obtained using {@link NumberFormat.Field#PREFIX}
|
|
* and {@link NumberFormat.Field#SUFFIX} respectively.
|
|
* @return the {@code StringBuffer} passed in as {@code result}
|
|
* @throws NullPointerException if {@code result} or
|
|
* {@code fieldPosition} is {@code null}
|
|
* @throws ArithmeticException if rounding is needed with rounding
|
|
* mode being set to {@code RoundingMode.UNNECESSARY}
|
|
* @see FieldPosition
|
|
*/
|
|
@Override
|
|
public StringBuffer format(double number, StringBuffer result,
|
|
FieldPosition fieldPosition) {
|
|
|
|
fieldPosition.setBeginIndex(0);
|
|
fieldPosition.setEndIndex(0);
|
|
return format(number, result, fieldPosition.getFieldDelegate());
|
|
}
|
|
|
|
private StringBuffer format(double number, StringBuffer result,
|
|
FieldDelegate delegate) {
|
|
|
|
boolean nanOrInfinity = decimalFormat.handleNaN(number, result, delegate);
|
|
if (nanOrInfinity) {
|
|
return result;
|
|
}
|
|
|
|
boolean isNegative = ((number < 0.0)
|
|
|| (number == 0.0 && 1 / number < 0.0));
|
|
|
|
nanOrInfinity = decimalFormat.handleInfinity(number, result, delegate, isNegative);
|
|
if (nanOrInfinity) {
|
|
return result;
|
|
}
|
|
|
|
// Round the double value with min fraction digits, the integer
|
|
// part of the rounded value is used for matching the compact
|
|
// number pattern
|
|
// For example, if roundingMode is HALF_UP with min fraction
|
|
// digits = 0, the number 999.6 should round up
|
|
// to 1000 and outputs 1K/thousand in "en_US" locale
|
|
DigitList dList = new DigitList();
|
|
dList.setRoundingMode(getRoundingMode());
|
|
number = isNegative ? -number : number;
|
|
dList.set(isNegative, number, getMinimumFractionDigits());
|
|
|
|
double roundedNumber = dList.getDouble();
|
|
int compactDataIndex = selectCompactPattern((long) roundedNumber);
|
|
if (compactDataIndex != -1) {
|
|
long divisor = (Long) divisors.get(compactDataIndex);
|
|
int iPart = getIntegerPart(number, divisor);
|
|
if (checkIncrement(iPart, compactDataIndex, divisor)) {
|
|
divisor = (Long) divisors.get(++compactDataIndex);
|
|
iPart = getIntegerPart(number, divisor);
|
|
}
|
|
String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
|
|
String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
|
|
|
|
if (!prefix.isEmpty() || !suffix.isEmpty()) {
|
|
appendPrefix(result, prefix, delegate);
|
|
if (!placeHolderPatterns.get(compactDataIndex).get(iPart).isEmpty()) {
|
|
roundedNumber = roundedNumber / divisor;
|
|
decimalFormat.setDigitList(roundedNumber, isNegative, getMaximumFractionDigits());
|
|
decimalFormat.subformatNumber(result, delegate, isNegative,
|
|
false, getMaximumIntegerDigits(), getMinimumIntegerDigits(),
|
|
getMaximumFractionDigits(), getMinimumFractionDigits());
|
|
appendSuffix(result, suffix, delegate);
|
|
}
|
|
} else {
|
|
defaultDecimalFormat.doubleSubformat(number, result, delegate, isNegative);
|
|
}
|
|
} else {
|
|
defaultDecimalFormat.doubleSubformat(number, result, delegate, isNegative);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Formats a long to produce a string representing its compact form.
|
|
* @param number the long number to format
|
|
* @param result where the text is to be appended
|
|
* @param fieldPosition keeps track on the position of the field within
|
|
* the returned string. For example, to format
|
|
* a number {@code 123456789} in the
|
|
* {@link java.util.Locale#US US locale},
|
|
* if the given {@code fieldPosition} is
|
|
* {@link NumberFormat#INTEGER_FIELD}, the begin
|
|
* index and end index of {@code fieldPosition}
|
|
* will be set to 0 and 3, respectively for the
|
|
* output string {@code 123M}. Similarly, positions
|
|
* of the prefix and the suffix fields can be
|
|
* obtained using {@link NumberFormat.Field#PREFIX}
|
|
* and {@link NumberFormat.Field#SUFFIX} respectively.
|
|
* @return the {@code StringBuffer} passed in as {@code result}
|
|
* @throws NullPointerException if {@code result} or
|
|
* {@code fieldPosition} is {@code null}
|
|
* @throws ArithmeticException if rounding is needed with rounding
|
|
* mode being set to {@code RoundingMode.UNNECESSARY}
|
|
* @see FieldPosition
|
|
*/
|
|
@Override
|
|
public StringBuffer format(long number, StringBuffer result,
|
|
FieldPosition fieldPosition) {
|
|
|
|
fieldPosition.setBeginIndex(0);
|
|
fieldPosition.setEndIndex(0);
|
|
return format(number, result, fieldPosition.getFieldDelegate());
|
|
}
|
|
|
|
private StringBuffer format(long number, StringBuffer result, FieldDelegate delegate) {
|
|
boolean isNegative = (number < 0);
|
|
if (isNegative) {
|
|
number = -number;
|
|
}
|
|
|
|
if (number < 0) { // LONG_MIN
|
|
BigInteger bigIntegerValue = BigInteger.valueOf(number);
|
|
return format(bigIntegerValue, result, delegate, true);
|
|
}
|
|
|
|
int compactDataIndex = selectCompactPattern(number);
|
|
if (compactDataIndex != -1) {
|
|
long divisor = (Long) divisors.get(compactDataIndex);
|
|
int iPart = getIntegerPart(number, divisor);
|
|
if (checkIncrement(iPart, compactDataIndex, divisor)) {
|
|
divisor = (Long) divisors.get(++compactDataIndex);
|
|
iPart = getIntegerPart(number, divisor);
|
|
}
|
|
String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
|
|
String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
|
|
if (!prefix.isEmpty() || !suffix.isEmpty()) {
|
|
appendPrefix(result, prefix, delegate);
|
|
if (!placeHolderPatterns.get(compactDataIndex).get(iPart).isEmpty()) {
|
|
if ((number % divisor == 0)) {
|
|
number = number / divisor;
|
|
decimalFormat.setDigitList(number, isNegative, 0);
|
|
decimalFormat.subformatNumber(result, delegate,
|
|
isNegative, true, getMaximumIntegerDigits(),
|
|
getMinimumIntegerDigits(), getMaximumFractionDigits(),
|
|
getMinimumFractionDigits());
|
|
} else {
|
|
// To avoid truncation of fractional part store
|
|
// the value in double and follow double path instead of
|
|
// long path
|
|
double dNumber = (double) number / divisor;
|
|
decimalFormat.setDigitList(dNumber, isNegative, getMaximumFractionDigits());
|
|
decimalFormat.subformatNumber(result, delegate,
|
|
isNegative, false, getMaximumIntegerDigits(),
|
|
getMinimumIntegerDigits(), getMaximumFractionDigits(),
|
|
getMinimumFractionDigits());
|
|
}
|
|
appendSuffix(result, suffix, delegate);
|
|
}
|
|
} else {
|
|
number = isNegative ? -number : number;
|
|
defaultDecimalFormat.format(number, result, delegate);
|
|
}
|
|
} else {
|
|
number = isNegative ? -number : number;
|
|
defaultDecimalFormat.format(number, result, delegate);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Formats a BigDecimal to produce a string representing its compact form.
|
|
* @param number the BigDecimal number to format
|
|
* @param result where the text is to be appended
|
|
* @param fieldPosition keeps track on the position of the field within
|
|
* the returned string. For example, to format
|
|
* a number {@code 1234567.89} in the
|
|
* {@link java.util.Locale#US US locale},
|
|
* if the given {@code fieldPosition} is
|
|
* {@link NumberFormat#INTEGER_FIELD}, the begin
|
|
* index and end index of {@code fieldPosition}
|
|
* will be set to 0 and 1, respectively for the
|
|
* output string {@code 1M}. Similarly, positions
|
|
* of the prefix and the suffix fields can be
|
|
* obtained using {@link NumberFormat.Field#PREFIX}
|
|
* and {@link NumberFormat.Field#SUFFIX} respectively.
|
|
* @return the {@code StringBuffer} passed in as {@code result}
|
|
* @throws ArithmeticException if rounding is needed with rounding
|
|
* mode being set to {@code RoundingMode.UNNECESSARY}
|
|
* @throws NullPointerException if any of the given parameter
|
|
* is {@code null}
|
|
* @see FieldPosition
|
|
*/
|
|
private StringBuffer format(BigDecimal number, StringBuffer result,
|
|
FieldPosition fieldPosition) {
|
|
|
|
Objects.requireNonNull(number);
|
|
fieldPosition.setBeginIndex(0);
|
|
fieldPosition.setEndIndex(0);
|
|
return format(number, result, fieldPosition.getFieldDelegate());
|
|
}
|
|
|
|
private StringBuffer format(BigDecimal number, StringBuffer result,
|
|
FieldDelegate delegate) {
|
|
|
|
boolean isNegative = number.signum() == -1;
|
|
if (isNegative) {
|
|
number = number.negate();
|
|
}
|
|
|
|
// Round the value with min fraction digits, the integer
|
|
// part of the rounded value is used for matching the compact
|
|
// number pattern
|
|
// For example, If roundingMode is HALF_UP with min fraction digits = 0,
|
|
// the number 999.6 should round up
|
|
// to 1000 and outputs 1K/thousand in "en_US" locale
|
|
number = number.setScale(getMinimumFractionDigits(), getRoundingMode());
|
|
|
|
int compactDataIndex;
|
|
if (number.toBigInteger().bitLength() < 64) {
|
|
long longNumber = number.toBigInteger().longValue();
|
|
compactDataIndex = selectCompactPattern(longNumber);
|
|
} else {
|
|
compactDataIndex = selectCompactPattern(number.toBigInteger());
|
|
}
|
|
|
|
if (compactDataIndex != -1) {
|
|
Number divisor = divisors.get(compactDataIndex);
|
|
int iPart = getIntegerPart(number.doubleValue(), divisor.doubleValue());
|
|
if (checkIncrement(iPart, compactDataIndex, divisor.doubleValue())) {
|
|
divisor = divisors.get(++compactDataIndex);
|
|
iPart = getIntegerPart(number.doubleValue(), divisor.doubleValue());
|
|
}
|
|
String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
|
|
String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
|
|
if (!prefix.isEmpty() || !suffix.isEmpty()) {
|
|
appendPrefix(result, prefix, delegate);
|
|
if (!placeHolderPatterns.get(compactDataIndex).get(iPart).isEmpty()) {
|
|
number = number.divide(new BigDecimal(divisor.toString()), getRoundingMode());
|
|
decimalFormat.setDigitList(number, isNegative, getMaximumFractionDigits());
|
|
decimalFormat.subformatNumber(result, delegate, isNegative,
|
|
false, getMaximumIntegerDigits(), getMinimumIntegerDigits(),
|
|
getMaximumFractionDigits(), getMinimumFractionDigits());
|
|
appendSuffix(result, suffix, delegate);
|
|
}
|
|
} else {
|
|
number = isNegative ? number.negate() : number;
|
|
defaultDecimalFormat.format(number, result, delegate);
|
|
}
|
|
} else {
|
|
number = isNegative ? number.negate() : number;
|
|
defaultDecimalFormat.format(number, result, delegate);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Formats a BigInteger to produce a string representing its compact form.
|
|
* @param number the BigInteger number to format
|
|
* @param result where the text is to be appended
|
|
* @param fieldPosition keeps track on the position of the field within
|
|
* the returned string. For example, to format
|
|
* a number {@code 123456789} in the
|
|
* {@link java.util.Locale#US US locale},
|
|
* if the given {@code fieldPosition} is
|
|
* {@link NumberFormat#INTEGER_FIELD}, the begin index
|
|
* and end index of {@code fieldPosition} will be set
|
|
* to 0 and 3, respectively for the output string
|
|
* {@code 123M}. Similarly, positions of the
|
|
* prefix and the suffix fields can be obtained
|
|
* using {@link NumberFormat.Field#PREFIX} and
|
|
* {@link NumberFormat.Field#SUFFIX} respectively.
|
|
* @return the {@code StringBuffer} passed in as {@code result}
|
|
* @throws ArithmeticException if rounding is needed with rounding
|
|
* mode being set to {@code RoundingMode.UNNECESSARY}
|
|
* @throws NullPointerException if any of the given parameter
|
|
* is {@code null}
|
|
* @see FieldPosition
|
|
*/
|
|
private StringBuffer format(BigInteger number, StringBuffer result,
|
|
FieldPosition fieldPosition) {
|
|
|
|
Objects.requireNonNull(number);
|
|
fieldPosition.setBeginIndex(0);
|
|
fieldPosition.setEndIndex(0);
|
|
return format(number, result, fieldPosition.getFieldDelegate(), false);
|
|
}
|
|
|
|
private StringBuffer format(BigInteger number, StringBuffer result,
|
|
FieldDelegate delegate, boolean formatLong) {
|
|
|
|
boolean isNegative = number.signum() == -1;
|
|
if (isNegative) {
|
|
number = number.negate();
|
|
}
|
|
|
|
int compactDataIndex = selectCompactPattern(number);
|
|
if (compactDataIndex != -1) {
|
|
Number divisor = divisors.get(compactDataIndex);
|
|
int iPart = getIntegerPart(number.doubleValue(), divisor.doubleValue());
|
|
if (checkIncrement(iPart, compactDataIndex, divisor.doubleValue())) {
|
|
divisor = divisors.get(++compactDataIndex);
|
|
iPart = getIntegerPart(number.doubleValue(), divisor.doubleValue());
|
|
}
|
|
String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
|
|
String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
|
|
if (!prefix.isEmpty() || !suffix.isEmpty()) {
|
|
appendPrefix(result, prefix, delegate);
|
|
if (!placeHolderPatterns.get(compactDataIndex).get(iPart).isEmpty()) {
|
|
if (number.mod(new BigInteger(divisor.toString()))
|
|
.compareTo(BigInteger.ZERO) == 0) {
|
|
number = number.divide(new BigInteger(divisor.toString()));
|
|
|
|
decimalFormat.setDigitList(number, isNegative, 0);
|
|
decimalFormat.subformatNumber(result, delegate,
|
|
isNegative, true, getMaximumIntegerDigits(),
|
|
getMinimumIntegerDigits(), getMaximumFractionDigits(),
|
|
getMinimumFractionDigits());
|
|
} else {
|
|
// To avoid truncation of fractional part store the value in
|
|
// BigDecimal and follow BigDecimal path instead of
|
|
// BigInteger path
|
|
BigDecimal nDecimal = new BigDecimal(number)
|
|
.divide(new BigDecimal(divisor.toString()), getRoundingMode());
|
|
decimalFormat.setDigitList(nDecimal, isNegative, getMaximumFractionDigits());
|
|
decimalFormat.subformatNumber(result, delegate,
|
|
isNegative, false, getMaximumIntegerDigits(),
|
|
getMinimumIntegerDigits(), getMaximumFractionDigits(),
|
|
getMinimumFractionDigits());
|
|
}
|
|
appendSuffix(result, suffix, delegate);
|
|
}
|
|
} else {
|
|
number = isNegative ? number.negate() : number;
|
|
defaultDecimalFormat.format(number, result, delegate, formatLong);
|
|
}
|
|
} else {
|
|
number = isNegative ? number.negate() : number;
|
|
defaultDecimalFormat.format(number, result, delegate, formatLong);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Obtain the designated affix from the appropriate list of affixes,
|
|
* based on the given arguments.
|
|
*/
|
|
private String getAffix(boolean isExpanded, boolean isPrefix, boolean isNegative, int compactDataIndex, int iPart) {
|
|
return (isExpanded ? (isPrefix ? (isNegative ? negativePrefixes : positivePrefixes) :
|
|
(isNegative ? negativeSuffixes : positiveSuffixes)) :
|
|
(isPrefix ? (isNegative ? negativePrefixPatterns : positivePrefixPatterns) :
|
|
(isNegative ? negativeSuffixPatterns : positiveSuffixPatterns)))
|
|
.get(compactDataIndex).get(iPart);
|
|
}
|
|
|
|
/**
|
|
* Appends the {@code prefix} to the {@code result} and also set the
|
|
* {@code NumberFormat.Field.SIGN} and {@code NumberFormat.Field.PREFIX}
|
|
* field positions.
|
|
* @param result the resulting string, where the prefix is to be appended
|
|
* @param prefix prefix to append
|
|
* @param delegate notified of the locations of
|
|
* {@code NumberFormat.Field.SIGN} and
|
|
* {@code NumberFormat.Field.PREFIX} fields
|
|
*/
|
|
private void appendPrefix(StringBuffer result, String prefix,
|
|
FieldDelegate delegate) {
|
|
append(result, expandAffix(prefix), delegate,
|
|
getFieldPositions(prefix, NumberFormat.Field.PREFIX));
|
|
}
|
|
|
|
/**
|
|
* Appends {@code suffix} to the {@code result} and also set the
|
|
* {@code NumberFormat.Field.SIGN} and {@code NumberFormat.Field.SUFFIX}
|
|
* field positions.
|
|
* @param result the resulting string, where the suffix is to be appended
|
|
* @param suffix suffix to append
|
|
* @param delegate notified of the locations of
|
|
* {@code NumberFormat.Field.SIGN} and
|
|
* {@code NumberFormat.Field.SUFFIX} fields
|
|
*/
|
|
private void appendSuffix(StringBuffer result, String suffix,
|
|
FieldDelegate delegate) {
|
|
append(result, expandAffix(suffix), delegate,
|
|
getFieldPositions(suffix, NumberFormat.Field.SUFFIX));
|
|
}
|
|
|
|
/**
|
|
* Appends the {@code string} to the {@code result}.
|
|
* {@code delegate} is notified of SIGN, PREFIX and/or SUFFIX
|
|
* field positions.
|
|
* @param result the resulting string, where the text is to be appended
|
|
* @param string the text to append
|
|
* @param delegate notified of the locations of sub fields
|
|
* @param positions a list of {@code FieldPosition} in the given
|
|
* string
|
|
*/
|
|
private void append(StringBuffer result, String string,
|
|
FieldDelegate delegate, List<FieldPosition> positions) {
|
|
if (!string.isEmpty()) {
|
|
int start = result.length();
|
|
result.append(string);
|
|
for (FieldPosition fp : positions) {
|
|
Format.Field attribute = fp.getFieldAttribute();
|
|
delegate.formatted(attribute, attribute,
|
|
start + fp.getBeginIndex(),
|
|
start + fp.getEndIndex(), result);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Expands an affix {@code pattern} into a string of literals.
|
|
* All characters in the pattern are literals unless prefixed by QUOTE.
|
|
* The character prefixed by QUOTE is replaced with its respective
|
|
* localized literal.
|
|
* @param pattern a compact number pattern affix
|
|
* @return an expanded affix
|
|
*/
|
|
private String expandAffix(String pattern) {
|
|
// Return if no quoted character exists
|
|
if (pattern.indexOf(QUOTE) < 0) {
|
|
return pattern;
|
|
}
|
|
StringBuilder sb = new StringBuilder();
|
|
for (int index = 0; index < pattern.length();) {
|
|
char ch = pattern.charAt(index++);
|
|
if (ch == QUOTE) {
|
|
ch = pattern.charAt(index++);
|
|
if (ch == MINUS_SIGN) {
|
|
sb.append(symbols.getMinusSignText());
|
|
continue;
|
|
}
|
|
}
|
|
sb.append(ch);
|
|
}
|
|
return sb.toString();
|
|
}
|
|
|
|
/**
|
|
* Returns a list of {@code FieldPosition} in the given {@code pattern}.
|
|
* @param pattern the pattern to be parsed for {@code FieldPosition}
|
|
* @param field whether a PREFIX or SUFFIX field
|
|
* @return a list of {@code FieldPosition}
|
|
*/
|
|
private List<FieldPosition> getFieldPositions(String pattern, Field field) {
|
|
List<FieldPosition> positions = new ArrayList<>();
|
|
StringBuilder affix = new StringBuilder();
|
|
int stringIndex = 0;
|
|
for (int index = 0; index < pattern.length();) {
|
|
char ch = pattern.charAt(index++);
|
|
if (ch == QUOTE) {
|
|
ch = pattern.charAt(index++);
|
|
if (ch == MINUS_SIGN) {
|
|
String minusText = symbols.getMinusSignText();
|
|
FieldPosition fp = new FieldPosition(NumberFormat.Field.SIGN);
|
|
fp.setBeginIndex(stringIndex);
|
|
fp.setEndIndex(stringIndex + minusText.length());
|
|
positions.add(fp);
|
|
stringIndex += minusText.length();
|
|
affix.append(minusText);
|
|
continue;
|
|
}
|
|
}
|
|
stringIndex++;
|
|
affix.append(ch);
|
|
}
|
|
if (affix.length() != 0) {
|
|
FieldPosition fp = new FieldPosition(field);
|
|
fp.setBeginIndex(0);
|
|
fp.setEndIndex(affix.length());
|
|
positions.add(fp);
|
|
}
|
|
return positions;
|
|
}
|
|
|
|
/**
|
|
* Select the index of the matched compact number pattern for
|
|
* the given {@code long} {@code number}.
|
|
*
|
|
* @param number number to be formatted
|
|
* @return index of matched compact pattern;
|
|
* -1 if no compact patterns specified
|
|
*/
|
|
private int selectCompactPattern(long number) {
|
|
|
|
if (compactPatterns.length == 0) {
|
|
return -1;
|
|
}
|
|
|
|
// Minimum index can be "0", max index can be "size - 1"
|
|
int dataIndex = number <= 1 ? 0 : (int) Math.log10(number);
|
|
dataIndex = Math.min(dataIndex, compactPatterns.length - 1);
|
|
return dataIndex;
|
|
}
|
|
|
|
/**
|
|
* Select the index of the matched compact number
|
|
* pattern for the given {@code BigInteger} {@code number}.
|
|
*
|
|
* @param number number to be formatted
|
|
* @return index of matched compact pattern;
|
|
* -1 if no compact patterns specified
|
|
*/
|
|
private int selectCompactPattern(BigInteger number) {
|
|
|
|
int matchedIndex = -1;
|
|
if (compactPatterns.length == 0) {
|
|
return matchedIndex;
|
|
}
|
|
|
|
BigInteger currentValue = BigInteger.ONE;
|
|
|
|
// For formatting a number, the greatest type less than
|
|
// or equal to number is used
|
|
for (int index = 0; index < compactPatterns.length; index++) {
|
|
if (number.compareTo(currentValue) > 0) {
|
|
// Input number is greater than current type; try matching with
|
|
// the next
|
|
matchedIndex = index;
|
|
currentValue = currentValue.multiply(BigInteger.valueOf(RANGE_MULTIPLIER));
|
|
continue;
|
|
}
|
|
if (number.compareTo(currentValue) < 0) {
|
|
// Current type is greater than the input number;
|
|
// take the previous pattern
|
|
break;
|
|
} else {
|
|
// Equal
|
|
matchedIndex = index;
|
|
break;
|
|
}
|
|
}
|
|
return matchedIndex;
|
|
}
|
|
|
|
/**
|
|
* Formats an Object producing an {@code AttributedCharacterIterator}.
|
|
* The returned {@code AttributedCharacterIterator} can be used
|
|
* to build the resulting string, as well as to determine information
|
|
* about the resulting string.
|
|
* <p>
|
|
* Each attribute key of the {@code AttributedCharacterIterator} will
|
|
* be of type {@code NumberFormat.Field}, with the attribute value
|
|
* being the same as the attribute key. The prefix and the suffix
|
|
* parts of the returned iterator (if present) are represented by
|
|
* the attributes {@link NumberFormat.Field#PREFIX} and
|
|
* {@link NumberFormat.Field#SUFFIX} respectively.
|
|
*
|
|
*
|
|
* @throws NullPointerException if obj is null
|
|
* @throws IllegalArgumentException when the Format cannot format the
|
|
* given object
|
|
* @throws ArithmeticException if rounding is needed with rounding
|
|
* mode being set to {@code RoundingMode.UNNECESSARY}
|
|
* @param obj The object to format
|
|
* @return an {@code AttributedCharacterIterator} describing the
|
|
* formatted value
|
|
*/
|
|
@Override
|
|
public AttributedCharacterIterator formatToCharacterIterator(Object obj) {
|
|
CharacterIteratorFieldDelegate delegate
|
|
= new CharacterIteratorFieldDelegate();
|
|
StringBuffer sb = new StringBuffer();
|
|
|
|
if (obj instanceof Double || obj instanceof Float) {
|
|
format(((Number) obj).doubleValue(), sb, delegate);
|
|
} else if (obj instanceof Long || obj instanceof Integer
|
|
|| obj instanceof Short || obj instanceof Byte
|
|
|| obj instanceof AtomicInteger || obj instanceof AtomicLong) {
|
|
format(((Number) obj).longValue(), sb, delegate);
|
|
} else if (obj instanceof BigDecimal) {
|
|
format((BigDecimal) obj, sb, delegate);
|
|
} else if (obj instanceof BigInteger) {
|
|
format((BigInteger) obj, sb, delegate, false);
|
|
} else if (obj == null) {
|
|
throw new NullPointerException(
|
|
"formatToCharacterIterator must be passed non-null object");
|
|
} else {
|
|
throw new IllegalArgumentException(
|
|
"Cannot format given Object as a Number");
|
|
}
|
|
return delegate.getIterator(sb.toString());
|
|
}
|
|
|
|
/**
|
|
* Computes the divisor using minimum integer digits and
|
|
* matched pattern index.
|
|
* @param minIntDigits string of 0s in compact pattern
|
|
* @param patternIndex index of matched compact pattern
|
|
* @return divisor value for the number matching the compact
|
|
* pattern at given {@code patternIndex}
|
|
*/
|
|
private Number computeDivisor(String minIntDigits, int patternIndex) {
|
|
int count = minIntDigits.length();
|
|
Number matchedValue;
|
|
// The divisor value can go above long range, if the compact patterns
|
|
// goes above index 18, divisor may need to be stored as BigInteger,
|
|
// since long can't store numbers >= 10^19,
|
|
if (patternIndex < 19) {
|
|
matchedValue = (long) Math.pow(RANGE_MULTIPLIER, patternIndex);
|
|
} else {
|
|
matchedValue = BigInteger.valueOf(RANGE_MULTIPLIER).pow(patternIndex);
|
|
}
|
|
Number divisor = matchedValue;
|
|
if (count > 0) {
|
|
if (matchedValue instanceof BigInteger bigValue) {
|
|
if (bigValue.compareTo(BigInteger.valueOf((long) Math.pow(RANGE_MULTIPLIER, count - 1))) < 0) {
|
|
throw new IllegalArgumentException("Invalid Pattern"
|
|
+ " [" + compactPatterns[patternIndex]
|
|
+ "]: min integer digits specified exceeds the limit"
|
|
+ " for the index " + patternIndex);
|
|
}
|
|
divisor = bigValue.divide(BigInteger.valueOf((long) Math.pow(RANGE_MULTIPLIER, count - 1)));
|
|
} else {
|
|
long longValue = (long) matchedValue;
|
|
if (longValue < (long) Math.pow(RANGE_MULTIPLIER, count - 1)) {
|
|
throw new IllegalArgumentException("Invalid Pattern"
|
|
+ " [" + compactPatterns[patternIndex]
|
|
+ "]: min integer digits specified exceeds the limit"
|
|
+ " for the index " + patternIndex);
|
|
}
|
|
divisor = longValue / (long) Math.pow(RANGE_MULTIPLIER, count - 1);
|
|
}
|
|
}
|
|
return divisor;
|
|
}
|
|
|
|
/**
|
|
* Process the series of compact patterns to compute the
|
|
* series of prefixes, suffixes and their respective divisor
|
|
* value.
|
|
*
|
|
*/
|
|
private static final Pattern PLURALS =
|
|
Pattern.compile("^\\{(?<plurals>.*)}$");
|
|
private static final Pattern COUNT_PATTERN =
|
|
Pattern.compile("(zero|one|two|few|many|other):((' '|[^ ])+)[ ]*");
|
|
private void processCompactPatterns() {
|
|
int size = compactPatterns.length;
|
|
positivePrefixPatterns = new ArrayList<>(size);
|
|
negativePrefixPatterns = new ArrayList<>(size);
|
|
positiveSuffixPatterns = new ArrayList<>(size);
|
|
negativeSuffixPatterns = new ArrayList<>(size);
|
|
divisors = new ArrayList<>(size);
|
|
placeHolderPatterns = new ArrayList<>(size);
|
|
|
|
for (int index = 0; index < size; index++) {
|
|
String text = compactPatterns[index];
|
|
positivePrefixPatterns.add(new Patterns());
|
|
negativePrefixPatterns.add(new Patterns());
|
|
positiveSuffixPatterns.add(new Patterns());
|
|
negativeSuffixPatterns.add(new Patterns());
|
|
placeHolderPatterns.add(new Patterns());
|
|
|
|
// check if it is the old style
|
|
Matcher m = text != null ? PLURALS.matcher(text) : null;
|
|
if (m != null && m.matches()) {
|
|
final int idx = index;
|
|
String plurals = m.group("plurals");
|
|
COUNT_PATTERN.matcher(plurals).results()
|
|
.forEach(mr -> applyPattern(mr.group(1), mr.group(2), idx));
|
|
} else {
|
|
applyPattern("other", text, index);
|
|
}
|
|
}
|
|
|
|
rulesMap = buildPluralRulesMap();
|
|
}
|
|
|
|
/**
|
|
* Build the plural rules map.
|
|
*
|
|
* @throws IllegalArgumentException if the {@code pluralRules} has invalid syntax,
|
|
* or its length exceeds 2,048 chars
|
|
*/
|
|
private Map<String, String> buildPluralRulesMap() {
|
|
// length limitation check. 2K for now.
|
|
if (pluralRules.length() > 2_048) {
|
|
throw new IllegalArgumentException("plural rules is too long (> 2,048)");
|
|
}
|
|
|
|
try {
|
|
return Arrays.stream(pluralRules.split(";"))
|
|
.map(this::validateRule)
|
|
.collect(Collectors.toMap(
|
|
r -> r.replaceFirst(":.*", ""),
|
|
r -> r.replaceFirst("[^:]+:", "")
|
|
));
|
|
} catch (IllegalStateException ise) {
|
|
throw new IllegalArgumentException(ise);
|
|
}
|
|
}
|
|
|
|
// Patterns for plurals syntax validation
|
|
private static final String EXPR = "([niftvwe])\\s*(([/%])\\s*(\\d+))*";
|
|
private static final String RELATION = "(!?=)";
|
|
private static final String VALUE_RANGE = "((\\d+)\\.\\.(\\d+)|\\d+)";
|
|
private static final String CONDITION = EXPR + "\\s*" +
|
|
RELATION + "\\s*" +
|
|
VALUE_RANGE + "\\s*" +
|
|
"(,\\s*" + VALUE_RANGE + ")*";
|
|
private static final Pattern PLURALRULES_PATTERN =
|
|
Pattern.compile("(zero|one|two|few|many):\\s*" +
|
|
CONDITION +
|
|
"(\\s*(and|or)\\s*" + CONDITION + ")*");
|
|
|
|
/**
|
|
* Validates a plural rule.
|
|
* @param rule rule to validate
|
|
* @throws IllegalArgumentException if the {@code rule} has invalid syntax
|
|
* @return the input rule (trimmed)
|
|
*/
|
|
private String validateRule(String rule) {
|
|
rule = rule.trim();
|
|
if (!rule.isEmpty() && !rule.equals("other:")) {
|
|
Matcher validator = PLURALRULES_PATTERN.matcher(rule);
|
|
if (!validator.matches()) {
|
|
throw new IllegalArgumentException("Invalid plural rules syntax: " + rule);
|
|
}
|
|
}
|
|
|
|
return rule;
|
|
}
|
|
|
|
/**
|
|
* Process a compact pattern at a specific {@code index}
|
|
* @param pattern the compact pattern to be processed
|
|
* @param index index in the array of compact patterns
|
|
*
|
|
*/
|
|
private void applyPattern(String count, String pattern, int index) {
|
|
|
|
if (pattern == null) {
|
|
throw new IllegalArgumentException("A null compact pattern" +
|
|
" encountered at index: " + index);
|
|
}
|
|
|
|
int start = 0;
|
|
boolean gotNegative = false;
|
|
|
|
String positivePrefix = "";
|
|
String positiveSuffix = "";
|
|
String negativePrefix = "";
|
|
String negativeSuffix = "";
|
|
String zeros = "";
|
|
for (int j = 1; j >= 0 && start < pattern.length(); --j) {
|
|
|
|
StringBuilder prefix = new StringBuilder();
|
|
StringBuilder suffix = new StringBuilder();
|
|
boolean inQuote = false;
|
|
// The phase ranges from 0 to 2. Phase 0 is the prefix. Phase 1 is
|
|
// the section of the pattern with digits. Phase 2 is the suffix.
|
|
// The separation of the characters into phases is
|
|
// strictly enforced; if phase 1 characters are to appear in the
|
|
// suffix, for example, they must be quoted.
|
|
int phase = 0;
|
|
|
|
// The affix is either the prefix or the suffix.
|
|
StringBuilder affix = prefix;
|
|
|
|
for (int pos = start; pos < pattern.length(); ++pos) {
|
|
char ch = pattern.charAt(pos);
|
|
switch (phase) {
|
|
case 0:
|
|
case 2:
|
|
// Process the prefix / suffix characters
|
|
if (inQuote) {
|
|
// A quote within quotes indicates either the closing
|
|
// quote or two quotes, which is a quote literal. That
|
|
// is, we have the second quote in 'do' or 'don''t'.
|
|
if (ch == QUOTE) {
|
|
if ((pos + 1) < pattern.length()
|
|
&& pattern.charAt(pos + 1) == QUOTE) {
|
|
++pos;
|
|
affix.append("''"); // 'don''t'
|
|
} else {
|
|
inQuote = false; // 'do'
|
|
}
|
|
continue;
|
|
}
|
|
} else {
|
|
// Process unquoted characters seen in prefix or suffix
|
|
// phase.
|
|
switch (ch) {
|
|
case ZERO_DIGIT:
|
|
phase = 1;
|
|
--pos; // Reprocess this character
|
|
continue;
|
|
case QUOTE:
|
|
// A quote outside quotes indicates either the
|
|
// opening quote or two quotes, which is a quote
|
|
// literal. That is, we have the first quote in 'do'
|
|
// or o''clock.
|
|
if ((pos + 1) < pattern.length()
|
|
&& pattern.charAt(pos + 1) == QUOTE) {
|
|
++pos;
|
|
affix.append("''"); // o''clock
|
|
} else {
|
|
inQuote = true; // 'do'
|
|
}
|
|
continue;
|
|
case SEPARATOR:
|
|
// Don't allow separators before we see digit
|
|
// characters of phase 1, and don't allow separators
|
|
// in the second pattern (j == 0).
|
|
if (phase == 0 || j == 0) {
|
|
throw new IllegalArgumentException(
|
|
"Unquoted special character '"
|
|
+ ch + "' in pattern \"" + pattern + "\"");
|
|
}
|
|
start = pos + 1;
|
|
pos = pattern.length();
|
|
continue;
|
|
case MINUS_SIGN:
|
|
affix.append("'-");
|
|
continue;
|
|
case DECIMAL_SEPARATOR:
|
|
case GROUPING_SEPARATOR:
|
|
case DIGIT:
|
|
case PERCENT:
|
|
case PER_MILLE:
|
|
case CURRENCY_SIGN:
|
|
throw new IllegalArgumentException(
|
|
"Unquoted special character '" + ch
|
|
+ "' in pattern \"" + pattern + "\"");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
// Note that if we are within quotes, or if this is an
|
|
// unquoted, non-special character, then we usually fall
|
|
// through to here.
|
|
affix.append(ch);
|
|
break;
|
|
|
|
case 1:
|
|
// The negative subpattern (j = 0) serves only to specify the
|
|
// negative prefix and suffix, so all the phase 1 characters,
|
|
// for example, digits, zeroDigit, groupingSeparator,
|
|
// decimalSeparator, exponent are ignored
|
|
if (j == 0) {
|
|
while (pos < pattern.length()) {
|
|
char negPatternChar = pattern.charAt(pos);
|
|
if (negPatternChar == ZERO_DIGIT) {
|
|
++pos;
|
|
} else {
|
|
// Not a phase 1 character, consider it as
|
|
// suffix and parse it in phase 2
|
|
--pos; //process it again in outer loop
|
|
phase = 2;
|
|
affix = suffix;
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
// Consider only '0' as valid pattern char which can appear
|
|
// in number part, rest can be either suffix or prefix
|
|
if (ch == ZERO_DIGIT) {
|
|
zeros = zeros + "0";
|
|
} else {
|
|
phase = 2;
|
|
affix = suffix;
|
|
--pos;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (inQuote) {
|
|
throw new IllegalArgumentException("Invalid single quote"
|
|
+ " in pattern \"" + pattern + "\"");
|
|
}
|
|
|
|
if (j == 1) {
|
|
positivePrefix = prefix.toString();
|
|
positiveSuffix = suffix.toString();
|
|
negativePrefix = positivePrefix;
|
|
negativeSuffix = positiveSuffix;
|
|
} else {
|
|
negativePrefix = prefix.toString();
|
|
negativeSuffix = suffix.toString();
|
|
gotNegative = true;
|
|
}
|
|
|
|
// If there is no negative pattern, or if the negative pattern is
|
|
// identical to the positive pattern, then prepend the minus sign to
|
|
// the positive pattern to form the negative pattern.
|
|
if (!gotNegative
|
|
|| (negativePrefix.equals(positivePrefix)
|
|
&& negativeSuffix.equals(positiveSuffix))) {
|
|
negativeSuffix = positiveSuffix;
|
|
negativePrefix = "'-" + positivePrefix;
|
|
}
|
|
}
|
|
|
|
// Only if positive affix exists; else put empty strings
|
|
if (!positivePrefix.isEmpty() || !positiveSuffix.isEmpty()) {
|
|
positivePrefixPatterns.get(index).put(count, positivePrefix);
|
|
negativePrefixPatterns.get(index).put(count, negativePrefix);
|
|
positiveSuffixPatterns.get(index).put(count, positiveSuffix);
|
|
negativeSuffixPatterns.get(index).put(count, negativeSuffix);
|
|
placeHolderPatterns.get(index).put(count, zeros);
|
|
if (divisors.size() <= index) {
|
|
divisors.add(computeDivisor(zeros, index));
|
|
}
|
|
} else {
|
|
positivePrefixPatterns.get(index).put(count, "");
|
|
negativePrefixPatterns.get(index).put(count, "");
|
|
positiveSuffixPatterns.get(index).put(count, "");
|
|
negativeSuffixPatterns.get(index).put(count, "");
|
|
placeHolderPatterns.get(index).put(count, "");
|
|
if (divisors.size() <= index) {
|
|
divisors.add(1L);
|
|
}
|
|
}
|
|
}
|
|
|
|
private final transient DigitList digitList = new DigitList();
|
|
private static final int STATUS_INFINITE = 0;
|
|
private static final int STATUS_POSITIVE = 1;
|
|
private static final int STATUS_LENGTH = 2;
|
|
|
|
private static final char ZERO_DIGIT = '0';
|
|
private static final char DIGIT = '#';
|
|
private static final char DECIMAL_SEPARATOR = '.';
|
|
private static final char GROUPING_SEPARATOR = ',';
|
|
private static final char MINUS_SIGN = '-';
|
|
private static final char PERCENT = '%';
|
|
private static final char PER_MILLE = '\u2030';
|
|
private static final char SEPARATOR = ';';
|
|
private static final char CURRENCY_SIGN = '\u00A4';
|
|
private static final char QUOTE = '\'';
|
|
|
|
// Expanded form of positive/negative prefix/suffix,
|
|
// the expanded form contains special characters in
|
|
// its localized form, which are used for matching
|
|
// while parsing a string to number
|
|
private transient List<Patterns> positivePrefixes;
|
|
private transient List<Patterns> negativePrefixes;
|
|
private transient List<Patterns> positiveSuffixes;
|
|
private transient List<Patterns> negativeSuffixes;
|
|
|
|
private void expandAffixPatterns() {
|
|
positivePrefixes = new ArrayList<>(compactPatterns.length);
|
|
negativePrefixes = new ArrayList<>(compactPatterns.length);
|
|
positiveSuffixes = new ArrayList<>(compactPatterns.length);
|
|
negativeSuffixes = new ArrayList<>(compactPatterns.length);
|
|
for (int index = 0; index < compactPatterns.length; index++) {
|
|
positivePrefixes.add(positivePrefixPatterns.get(index).expandAffix());
|
|
negativePrefixes.add(negativePrefixPatterns.get(index).expandAffix());
|
|
positiveSuffixes.add(positiveSuffixPatterns.get(index).expandAffix());
|
|
negativeSuffixes.add(negativeSuffixPatterns.get(index).expandAffix());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parses a compact number from a string to produce a {@code Number}.
|
|
* <p>
|
|
* The method attempts to parse text starting at the index given by
|
|
* {@code pos}.
|
|
* If parsing succeeds, then the index of {@code pos} is updated
|
|
* to the index after the last character used (parsing does not necessarily
|
|
* use all characters up to the end of the string), and the parsed
|
|
* number is returned. The updated {@code pos} can be used to
|
|
* indicate the starting point for the next call to this method.
|
|
* If an error occurs, then the index of {@code pos} is not
|
|
* changed, the error index of {@code pos} is set to the index of
|
|
* the character where the error occurred, and {@code null} is returned.
|
|
* <p>
|
|
* The value is the numeric part in the given text multiplied
|
|
* by the numeric equivalent of the affix attached
|
|
* (For example, "K" = 1000 in {@link java.util.Locale#US US locale}).
|
|
* The subclass returned depends on the value of
|
|
* {@link #isParseBigDecimal}.
|
|
* <ul>
|
|
* <li>If {@link #isParseBigDecimal()} is false (the default),
|
|
* most integer values are returned as {@code Long}
|
|
* objects, no matter how they are written: {@code "17K"} and
|
|
* {@code "17.000K"} both parse to {@code Long.valueOf(17000)}.
|
|
* If the value cannot fit into {@code Long}, then the result is
|
|
* returned as {@code Double}. This includes values with a
|
|
* fractional part, infinite values, {@code NaN},
|
|
* and the value -0.0.
|
|
* <p>
|
|
* Callers may use the {@code Number} methods {@code doubleValue},
|
|
* {@code longValue}, etc., to obtain the type they want.
|
|
*
|
|
* <li>If {@link #isParseBigDecimal()} is true, values are returned
|
|
* as {@code BigDecimal} objects. The special cases negative
|
|
* and positive infinity and NaN are returned as {@code Double}
|
|
* instances holding the values of the corresponding
|
|
* {@code Double} constants.
|
|
* </ul>
|
|
* <p>
|
|
* {@code CompactNumberFormat} parses all Unicode characters that represent
|
|
* decimal digits, as defined by {@code Character.digit()}. In
|
|
* addition, {@code CompactNumberFormat} also recognizes as digits the ten
|
|
* consecutive characters starting with the localized zero digit defined in
|
|
* the {@code DecimalFormatSymbols} object.
|
|
* <p>
|
|
* {@code CompactNumberFormat} parse does not allow parsing scientific
|
|
* notations. For example, parsing a string {@code "1.05E4K"} in
|
|
* {@link java.util.Locale#US US locale} breaks at character 'E'
|
|
* and returns 1.05.
|
|
*
|
|
* @param text the string to be parsed
|
|
* @param pos a {@code ParsePosition} object with index and error
|
|
* index information as described above
|
|
* @return the parsed value, or {@code null} if the parse fails
|
|
* @throws NullPointerException if {@code text} or
|
|
* {@code pos} is null
|
|
*
|
|
*/
|
|
@Override
|
|
public Number parse(String text, ParsePosition pos) {
|
|
|
|
Objects.requireNonNull(text);
|
|
Objects.requireNonNull(pos);
|
|
|
|
// Lazily expanding the affix patterns, on the first parse
|
|
// call on this instance
|
|
// If not initialized, expand and load all affixes
|
|
if (positivePrefixes == null) {
|
|
expandAffixPatterns();
|
|
}
|
|
|
|
// The compact number multiplier for parsed string.
|
|
// Its value is set on parsing prefix and suffix. For example,
|
|
// in the {@link java.util.Locale#US US locale} parsing {@code "1K"}
|
|
// sets its value to 1000, as K (thousand) is abbreviated form of 1000.
|
|
Number cnfMultiplier = 1L;
|
|
|
|
// Special case NaN
|
|
if (text.regionMatches(pos.index, symbols.getNaN(),
|
|
0, symbols.getNaN().length())) {
|
|
pos.index = pos.index + symbols.getNaN().length();
|
|
return Double.NaN;
|
|
}
|
|
|
|
int position = pos.index;
|
|
int oldStart = pos.index;
|
|
boolean gotPositive = false;
|
|
boolean gotNegative = false;
|
|
int matchedPosIndex = -1;
|
|
int matchedNegIndex = -1;
|
|
String matchedPosPrefix = "";
|
|
String matchedNegPrefix = "";
|
|
String defaultPosPrefix = defaultDecimalFormat.getPositivePrefix();
|
|
String defaultNegPrefix = defaultDecimalFormat.getNegativePrefix();
|
|
double num = parseNumberPart(text, position);
|
|
|
|
// Prefix matching
|
|
for (int compactIndex = 0; compactIndex < compactPatterns.length; compactIndex++) {
|
|
String positivePrefix = getAffix(true, true, false, compactIndex, (int)num);
|
|
String negativePrefix = getAffix(true, true, true, compactIndex, (int)num);
|
|
|
|
// Do not break if a match occur; there is a possibility that the
|
|
// subsequent affixes may match the longer subsequence in the given
|
|
// string.
|
|
// For example, matching "Mdx 3" with "M", "Md" as prefix should
|
|
// match with "Md"
|
|
boolean match = matchAffix(text, position, positivePrefix,
|
|
defaultPosPrefix, matchedPosPrefix);
|
|
if (match) {
|
|
matchedPosIndex = compactIndex;
|
|
matchedPosPrefix = positivePrefix;
|
|
gotPositive = true;
|
|
}
|
|
|
|
match = matchAffix(text, position, negativePrefix,
|
|
defaultNegPrefix, matchedNegPrefix);
|
|
if (match) {
|
|
matchedNegIndex = compactIndex;
|
|
matchedNegPrefix = negativePrefix;
|
|
gotNegative = true;
|
|
}
|
|
}
|
|
|
|
// Given text does not match the non empty valid compact prefixes
|
|
// check with the default prefixes
|
|
if (!gotPositive && !gotNegative) {
|
|
if (text.regionMatches(pos.index, defaultPosPrefix, 0,
|
|
defaultPosPrefix.length())) {
|
|
// Matches the default positive prefix
|
|
matchedPosPrefix = defaultPosPrefix;
|
|
gotPositive = true;
|
|
}
|
|
if (text.regionMatches(pos.index, defaultNegPrefix, 0,
|
|
defaultNegPrefix.length())) {
|
|
// Matches the default negative prefix
|
|
matchedNegPrefix = defaultNegPrefix;
|
|
gotNegative = true;
|
|
}
|
|
}
|
|
|
|
// If both match, take the longest one
|
|
if (gotPositive && gotNegative) {
|
|
if (matchedPosPrefix.length() > matchedNegPrefix.length()) {
|
|
gotNegative = false;
|
|
} else if (matchedPosPrefix.length() < matchedNegPrefix.length()) {
|
|
gotPositive = false;
|
|
}
|
|
}
|
|
|
|
// Update the position and take compact multiplier
|
|
// only if it matches the compact prefix, not the default
|
|
// prefix; else multiplier should be 1
|
|
// If there's no number part, no need to go further, just
|
|
// return the multiplier.
|
|
if (gotPositive || gotNegative) {
|
|
position += gotPositive ? matchedPosPrefix.length() : matchedNegPrefix.length();
|
|
int matchedIndex = gotPositive ? matchedPosIndex : matchedNegIndex;
|
|
if (matchedIndex != -1) {
|
|
cnfMultiplier = divisors.get(matchedIndex);
|
|
if (placeHolderPatterns.get(matchedIndex).get(num).isEmpty()) {
|
|
pos.index = position;
|
|
return cnfMultiplier;
|
|
}
|
|
}
|
|
}
|
|
|
|
digitList.setRoundingMode(getRoundingMode());
|
|
boolean[] status = new boolean[STATUS_LENGTH];
|
|
|
|
// Call DecimalFormat.subparseNumber() method to parse the
|
|
// number part of the input text
|
|
position = decimalFormat.subparseNumber(text, position,
|
|
digitList, false, false, status);
|
|
|
|
if (position == -1) {
|
|
// Unable to parse the number successfully
|
|
pos.index = oldStart;
|
|
pos.errorIndex = oldStart;
|
|
return null;
|
|
}
|
|
|
|
// If parse integer only is true and the parsing is broken at
|
|
// decimal point, then pass/ignore all digits and move pointer
|
|
// at the start of suffix, to process the suffix part
|
|
if (isParseIntegerOnly()
|
|
&& text.charAt(position) == symbols.getDecimalSeparator()) {
|
|
position++; // Pass decimal character
|
|
for (; position < text.length(); ++position) {
|
|
char ch = text.charAt(position);
|
|
int digit = ch - symbols.getZeroDigit();
|
|
if (digit < 0 || digit > 9) {
|
|
digit = Character.digit(ch, 10);
|
|
// Parse all digit characters
|
|
if (!(digit >= 0 && digit <= 9)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Number parsed successfully; match prefix and
|
|
// suffix to obtain multiplier
|
|
pos.index = position;
|
|
Number multiplier = computeParseMultiplier(text, pos,
|
|
gotPositive ? matchedPosPrefix : matchedNegPrefix,
|
|
status, gotPositive, gotNegative, num);
|
|
|
|
if (multiplier.longValue() == -1L) {
|
|
return null;
|
|
} else if (multiplier.longValue() != 1L) {
|
|
cnfMultiplier = multiplier;
|
|
}
|
|
|
|
// Special case INFINITY
|
|
if (status[STATUS_INFINITE]) {
|
|
if (status[STATUS_POSITIVE]) {
|
|
return Double.POSITIVE_INFINITY;
|
|
} else {
|
|
return Double.NEGATIVE_INFINITY;
|
|
}
|
|
}
|
|
|
|
if (isParseBigDecimal()) {
|
|
BigDecimal bigDecimalResult = digitList.getBigDecimal();
|
|
|
|
if (cnfMultiplier.longValue() != 1) {
|
|
bigDecimalResult = bigDecimalResult
|
|
.multiply(new BigDecimal(cnfMultiplier.toString()));
|
|
}
|
|
if (!status[STATUS_POSITIVE]) {
|
|
bigDecimalResult = bigDecimalResult.negate();
|
|
}
|
|
return bigDecimalResult;
|
|
} else {
|
|
Number cnfResult;
|
|
if (digitList.fitsIntoLong(status[STATUS_POSITIVE], isParseIntegerOnly())) {
|
|
long longResult = digitList.getLong();
|
|
cnfResult = generateParseResult(longResult, false,
|
|
longResult < 0, status, cnfMultiplier);
|
|
} else {
|
|
cnfResult = generateParseResult(digitList.getDouble(),
|
|
true, false, status, cnfMultiplier);
|
|
}
|
|
return cnfResult;
|
|
}
|
|
}
|
|
|
|
private static final Pattern DIGITS = Pattern.compile("\\p{Nd}+");
|
|
/**
|
|
* Parse the number part in the input text into a number
|
|
*
|
|
* @param text input text to be parsed
|
|
* @param position starting position
|
|
* @return the number
|
|
*/
|
|
private double parseNumberPart(String text, int position) {
|
|
if (text.startsWith(symbols.getInfinity(), position)) {
|
|
return Double.POSITIVE_INFINITY;
|
|
} else if (!text.startsWith(symbols.getNaN(), position)) {
|
|
Matcher m = DIGITS.matcher(text);
|
|
if (m.find(position)) {
|
|
String digits = m.group();
|
|
int cp = digits.codePointAt(0);
|
|
if (Character.isDigit(cp)) {
|
|
return Double.parseDouble(digits.codePoints()
|
|
.map(Character::getNumericValue)
|
|
.mapToObj(Integer::toString)
|
|
.collect(Collectors.joining()));
|
|
}
|
|
} else {
|
|
// no numbers. return 1.0 for possible no-placeholder pattern
|
|
return 1.0;
|
|
}
|
|
}
|
|
return Double.NaN;
|
|
}
|
|
|
|
/**
|
|
* Returns the parsed result by multiplying the parsed number
|
|
* with the multiplier representing the prefix and suffix.
|
|
*
|
|
* @param number parsed number component
|
|
* @param gotDouble whether the parsed number contains decimal
|
|
* @param gotLongMin whether the parsed number is Long.MIN
|
|
* @param status boolean status flags indicating whether the
|
|
* value is infinite and whether it is positive
|
|
* @param cnfMultiplier compact number multiplier
|
|
* @return parsed result
|
|
*/
|
|
private Number generateParseResult(Number number, boolean gotDouble,
|
|
boolean gotLongMin, boolean[] status, Number cnfMultiplier) {
|
|
|
|
if (gotDouble) {
|
|
if (cnfMultiplier.longValue() != 1L) {
|
|
double doubleResult = number.doubleValue() * cnfMultiplier.doubleValue();
|
|
doubleResult = (double) convertIfNegative(doubleResult, status, gotLongMin);
|
|
// Check if a double can be represented as a long
|
|
long longResult = (long) doubleResult;
|
|
gotDouble = ((doubleResult != (double) longResult)
|
|
|| (doubleResult == 0.0 && 1 / doubleResult < 0.0));
|
|
return gotDouble ? (Number) doubleResult : (Number) longResult;
|
|
}
|
|
} else {
|
|
if (cnfMultiplier.longValue() != 1L) {
|
|
Number result;
|
|
if ((cnfMultiplier instanceof Long) && !gotLongMin) {
|
|
long longMultiplier = (long) cnfMultiplier;
|
|
try {
|
|
result = Math.multiplyExact(number.longValue(),
|
|
longMultiplier);
|
|
} catch (ArithmeticException ex) {
|
|
// If number * longMultiplier can not be represented
|
|
// as long return as double
|
|
result = number.doubleValue() * cnfMultiplier.doubleValue();
|
|
}
|
|
} else {
|
|
// cnfMultiplier can not be stored into long or the number
|
|
// part is Long.MIN, return as double
|
|
result = number.doubleValue() * cnfMultiplier.doubleValue();
|
|
}
|
|
return convertIfNegative(result, status, gotLongMin);
|
|
}
|
|
}
|
|
|
|
// Default number
|
|
return convertIfNegative(number, status, gotLongMin);
|
|
}
|
|
|
|
/**
|
|
* Negate the parsed value if the positive status flag is false
|
|
* and the value is not a Long.MIN
|
|
* @param number parsed value
|
|
* @param status boolean status flags indicating whether the
|
|
* value is infinite and whether it is positive
|
|
* @param gotLongMin whether the parsed number is Long.MIN
|
|
* @return the resulting value
|
|
*/
|
|
private Number convertIfNegative(Number number, boolean[] status,
|
|
boolean gotLongMin) {
|
|
|
|
if (!status[STATUS_POSITIVE] && !gotLongMin) {
|
|
if (number instanceof Long) {
|
|
return -(long) number;
|
|
} else {
|
|
return -(double) number;
|
|
}
|
|
} else {
|
|
return number;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Attempts to match the given {@code affix} in the
|
|
* specified {@code text}.
|
|
*/
|
|
private boolean matchAffix(String text, int position, String affix,
|
|
String defaultAffix, String matchedAffix) {
|
|
|
|
// Check with the compact affixes which are non empty and
|
|
// do not match with default affix
|
|
if (!affix.isEmpty() && !affix.equals(defaultAffix)) {
|
|
// Look ahead only for the longer match than the previous match
|
|
if (matchedAffix.length() < affix.length()) {
|
|
return text.regionMatches(position, affix, 0, affix.length());
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Attempts to match given {@code prefix} and {@code suffix} in
|
|
* the specified {@code text}.
|
|
*/
|
|
private boolean matchPrefixAndSuffix(String text, int position, String prefix,
|
|
String matchedPrefix, String defaultPrefix, String suffix,
|
|
String matchedSuffix, String defaultSuffix) {
|
|
|
|
// Check the compact pattern suffix only if there is a
|
|
// compact prefix match or a default prefix match
|
|
// because the compact prefix and suffix should match at the same
|
|
// index to obtain the multiplier.
|
|
// The prefix match is required because of the possibility of
|
|
// same prefix at multiple index, in which case matching the suffix
|
|
// is used to obtain the single match
|
|
|
|
if (prefix.equals(matchedPrefix)
|
|
|| matchedPrefix.equals(defaultPrefix)) {
|
|
return matchAffix(text, position, suffix, defaultSuffix, matchedSuffix);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Computes multiplier by matching the given {@code matchedPrefix}
|
|
* and suffix in the specified {@code text} from the lists of
|
|
* prefixes and suffixes extracted from compact patterns.
|
|
*
|
|
* @param text the string to parse
|
|
* @param parsePosition the {@code ParsePosition} object representing the
|
|
* index and error index of the parse string
|
|
* @param matchedPrefix prefix extracted which needs to be matched to
|
|
* obtain the multiplier
|
|
* @param status upon return contains boolean status flags indicating
|
|
* whether the value is positive
|
|
* @param gotPositive based on the prefix parsed; whether the number is positive
|
|
* @param gotNegative based on the prefix parsed; whether the number is negative
|
|
* @return the multiplier matching the prefix and suffix; -1 otherwise
|
|
*/
|
|
private Number computeParseMultiplier(String text, ParsePosition parsePosition,
|
|
String matchedPrefix, boolean[] status, boolean gotPositive,
|
|
boolean gotNegative, double num) {
|
|
|
|
int position = parsePosition.index;
|
|
boolean gotPos = false;
|
|
boolean gotNeg = false;
|
|
int matchedPosIndex = -1;
|
|
int matchedNegIndex = -1;
|
|
String matchedPosSuffix = "";
|
|
String matchedNegSuffix = "";
|
|
for (int compactIndex = 0; compactIndex < compactPatterns.length; compactIndex++) {
|
|
String positivePrefix = getAffix(true, true, false, compactIndex, (int)num);
|
|
String negativePrefix = getAffix(true, true, true, compactIndex, (int)num);
|
|
String positiveSuffix = getAffix(true, false, false, compactIndex, (int)num);
|
|
String negativeSuffix = getAffix(true, false, true, compactIndex, (int)num);
|
|
|
|
// Do not break if a match occur; there is a possibility that the
|
|
// subsequent affixes may match the longer subsequence in the given
|
|
// string.
|
|
// For example, matching "3Mdx" with "M", "Md" should match with "Md"
|
|
boolean match = matchPrefixAndSuffix(text, position, positivePrefix, matchedPrefix,
|
|
defaultDecimalFormat.getPositivePrefix(), positiveSuffix,
|
|
matchedPosSuffix, defaultDecimalFormat.getPositiveSuffix());
|
|
if (match) {
|
|
matchedPosIndex = compactIndex;
|
|
matchedPosSuffix = positiveSuffix;
|
|
gotPos = true;
|
|
}
|
|
|
|
match = matchPrefixAndSuffix(text, position, negativePrefix, matchedPrefix,
|
|
defaultDecimalFormat.getNegativePrefix(), negativeSuffix,
|
|
matchedNegSuffix, defaultDecimalFormat.getNegativeSuffix());
|
|
if (match) {
|
|
matchedNegIndex = compactIndex;
|
|
matchedNegSuffix = negativeSuffix;
|
|
gotNeg = true;
|
|
}
|
|
}
|
|
|
|
// Suffix in the given text does not match with the compact
|
|
// patterns suffixes; match with the default suffix
|
|
if (!gotPos && !gotNeg) {
|
|
String positiveSuffix = defaultDecimalFormat.getPositiveSuffix();
|
|
String negativeSuffix = defaultDecimalFormat.getNegativeSuffix();
|
|
if (text.regionMatches(position, positiveSuffix, 0,
|
|
positiveSuffix.length())) {
|
|
// Matches the default positive prefix
|
|
matchedPosSuffix = positiveSuffix;
|
|
gotPos = true;
|
|
}
|
|
if (text.regionMatches(position, negativeSuffix, 0,
|
|
negativeSuffix.length())) {
|
|
// Matches the default negative suffix
|
|
matchedNegSuffix = negativeSuffix;
|
|
gotNeg = true;
|
|
}
|
|
}
|
|
|
|
// If both matches, take the longest one
|
|
if (gotPos && gotNeg) {
|
|
if (matchedPosSuffix.length() > matchedNegSuffix.length()) {
|
|
gotNeg = false;
|
|
} else if (matchedPosSuffix.length() < matchedNegSuffix.length()) {
|
|
gotPos = false;
|
|
} else {
|
|
// If longest comparison fails; take the positive and negative
|
|
// sign of matching prefix
|
|
gotPos = gotPositive;
|
|
gotNeg = gotNegative;
|
|
}
|
|
}
|
|
|
|
// Fail if neither or both
|
|
if (gotPos == gotNeg) {
|
|
parsePosition.errorIndex = position;
|
|
return -1L;
|
|
}
|
|
|
|
Number cnfMultiplier;
|
|
// Update the parse position index and take compact multiplier
|
|
// only if it matches the compact suffix, not the default
|
|
// suffix; else multiplier should be 1
|
|
if (gotPos) {
|
|
parsePosition.index = position + matchedPosSuffix.length();
|
|
cnfMultiplier = matchedPosIndex != -1
|
|
? divisors.get(matchedPosIndex) : 1L;
|
|
} else {
|
|
parsePosition.index = position + matchedNegSuffix.length();
|
|
cnfMultiplier = matchedNegIndex != -1
|
|
? divisors.get(matchedNegIndex) : 1L;
|
|
}
|
|
status[STATUS_POSITIVE] = gotPos;
|
|
return cnfMultiplier;
|
|
}
|
|
|
|
/**
|
|
* Reconstitutes this {@code CompactNumberFormat} from a stream
|
|
* (that is, deserializes it) after performing some validations.
|
|
* This method throws InvalidObjectException, if the stream data is invalid
|
|
* because of the following reasons,
|
|
* <ul>
|
|
* <li> If any of the {@code decimalPattern}, {@code compactPatterns},
|
|
* {@code symbols} or {@code roundingMode} is {@code null}.
|
|
* <li> If the {@code decimalPattern} or the {@code compactPatterns} array
|
|
* contains an invalid pattern or if a {@code null} appears in the array of
|
|
* compact patterns.
|
|
* <li> If the {@code minimumIntegerDigits} is greater than the
|
|
* {@code maximumIntegerDigits} or the {@code minimumFractionDigits} is
|
|
* greater than the {@code maximumFractionDigits}. This check is performed
|
|
* by superclass's Object.
|
|
* <li> If any of the minimum/maximum integer/fraction digit count is
|
|
* negative. This check is performed by superclass's readObject.
|
|
* <li> If the minimum or maximum integer digit count is larger than 309 or
|
|
* if the minimum or maximum fraction digit count is larger than 340.
|
|
* <li> If the grouping size is negative or larger than 127.
|
|
* </ul>
|
|
* If the {@code pluralRules} field is not deserialized from the stream, it
|
|
* will be set to an empty string.
|
|
*
|
|
* @param inStream the stream
|
|
* @throws IOException if an I/O error occurs
|
|
* @throws ClassNotFoundException if the class of a serialized object
|
|
* could not be found
|
|
*/
|
|
@java.io.Serial
|
|
private void readObject(ObjectInputStream inStream) throws IOException,
|
|
ClassNotFoundException {
|
|
|
|
inStream.defaultReadObject();
|
|
if (decimalPattern == null || compactPatterns == null
|
|
|| symbols == null || roundingMode == null) {
|
|
throw new InvalidObjectException("One of the 'decimalPattern',"
|
|
+ " 'compactPatterns', 'symbols' or 'roundingMode'"
|
|
+ " is null");
|
|
}
|
|
|
|
// Check only the maximum counts because NumberFormat.readObject has
|
|
// already ensured that the maximum is greater than the minimum count.
|
|
if (getMaximumIntegerDigits() > DecimalFormat.DOUBLE_INTEGER_DIGITS
|
|
|| getMaximumFractionDigits() > DecimalFormat.DOUBLE_FRACTION_DIGITS) {
|
|
throw new InvalidObjectException("Digit count out of range");
|
|
}
|
|
|
|
// Check if the grouping size is negative, on an attempt to
|
|
// put value > 127, it wraps around, so check just negative value
|
|
if (groupingSize < 0) {
|
|
throw new InvalidObjectException("Grouping size is negative");
|
|
}
|
|
|
|
// pluralRules is since 14. Fill in empty string if it is null
|
|
if (pluralRules == null) {
|
|
pluralRules = "";
|
|
}
|
|
|
|
try {
|
|
processCompactPatterns();
|
|
} catch (IllegalArgumentException ex) {
|
|
throw new InvalidObjectException(ex.getMessage());
|
|
}
|
|
|
|
decimalFormat = new DecimalFormat(SPECIAL_PATTERN, symbols);
|
|
decimalFormat.setMaximumFractionDigits(getMaximumFractionDigits());
|
|
decimalFormat.setMinimumFractionDigits(getMinimumFractionDigits());
|
|
decimalFormat.setMaximumIntegerDigits(getMaximumIntegerDigits());
|
|
decimalFormat.setMinimumIntegerDigits(getMinimumIntegerDigits());
|
|
decimalFormat.setRoundingMode(getRoundingMode());
|
|
decimalFormat.setGroupingSize(getGroupingSize());
|
|
decimalFormat.setGroupingUsed(isGroupingUsed());
|
|
decimalFormat.setParseIntegerOnly(isParseIntegerOnly());
|
|
|
|
try {
|
|
defaultDecimalFormat = new DecimalFormat(decimalPattern, symbols);
|
|
defaultDecimalFormat.setMaximumFractionDigits(0);
|
|
} catch (IllegalArgumentException ex) {
|
|
throw new InvalidObjectException(ex.getMessage());
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Sets the maximum number of digits allowed in the integer portion of a
|
|
* number.
|
|
* The maximum allowed integer range is 309, if the {@code newValue} > 309,
|
|
* then the maximum integer digits count is set to 309. Negative input
|
|
* values are replaced with 0.
|
|
*
|
|
* @param newValue the maximum number of integer digits to be shown
|
|
* @see #getMaximumIntegerDigits()
|
|
*/
|
|
@Override
|
|
public void setMaximumIntegerDigits(int newValue) {
|
|
// The maximum integer digits is checked with the allowed range before calling
|
|
// the DecimalFormat.setMaximumIntegerDigits, which performs the negative check
|
|
// on the given newValue while setting it as max integer digits.
|
|
// For example, if a negative value is specified, it is replaced with 0
|
|
decimalFormat.setMaximumIntegerDigits(Math.min(newValue,
|
|
DecimalFormat.DOUBLE_INTEGER_DIGITS));
|
|
super.setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
|
|
if (decimalFormat.getMinimumIntegerDigits() > decimalFormat.getMaximumIntegerDigits()) {
|
|
decimalFormat.setMinimumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
|
|
super.setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the minimum number of digits allowed in the integer portion of a
|
|
* number.
|
|
* The maximum allowed integer range is 309, if the {@code newValue} > 309,
|
|
* then the minimum integer digits count is set to 309. Negative input
|
|
* values are replaced with 0.
|
|
*
|
|
* @param newValue the minimum number of integer digits to be shown
|
|
* @see #getMinimumIntegerDigits()
|
|
*/
|
|
@Override
|
|
public void setMinimumIntegerDigits(int newValue) {
|
|
// The minimum integer digits is checked with the allowed range before calling
|
|
// the DecimalFormat.setMinimumIntegerDigits, which performs check on the given
|
|
// newValue while setting it as min integer digits. For example, if a negative
|
|
// value is specified, it is replaced with 0
|
|
decimalFormat.setMinimumIntegerDigits(Math.min(newValue,
|
|
DecimalFormat.DOUBLE_INTEGER_DIGITS));
|
|
super.setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
|
|
if (decimalFormat.getMinimumIntegerDigits() > decimalFormat.getMaximumIntegerDigits()) {
|
|
decimalFormat.setMaximumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
|
|
super.setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the minimum number of digits allowed in the fraction portion of a
|
|
* number.
|
|
* The maximum allowed fraction range is 340, if the {@code newValue} > 340,
|
|
* then the minimum fraction digits count is set to 340. Negative input
|
|
* values are replaced with 0.
|
|
*
|
|
* @param newValue the minimum number of fraction digits to be shown
|
|
* @see #getMinimumFractionDigits()
|
|
*/
|
|
@Override
|
|
public void setMinimumFractionDigits(int newValue) {
|
|
// The minimum fraction digits is checked with the allowed range before
|
|
// calling the DecimalFormat.setMinimumFractionDigits, which performs
|
|
// check on the given newValue while setting it as min fraction
|
|
// digits. For example, if a negative value is specified, it is
|
|
// replaced with 0
|
|
decimalFormat.setMinimumFractionDigits(Math.min(newValue,
|
|
DecimalFormat.DOUBLE_FRACTION_DIGITS));
|
|
super.setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
|
|
if (decimalFormat.getMinimumFractionDigits() > decimalFormat.getMaximumFractionDigits()) {
|
|
decimalFormat.setMaximumFractionDigits(decimalFormat.getMinimumFractionDigits());
|
|
super.setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the maximum number of digits allowed in the fraction portion of a
|
|
* number.
|
|
* The maximum allowed fraction range is 340, if the {@code newValue} > 340,
|
|
* then the maximum fraction digits count is set to 340. Negative input
|
|
* values are replaced with 0.
|
|
*
|
|
* @param newValue the maximum number of fraction digits to be shown
|
|
* @see #getMaximumFractionDigits()
|
|
*/
|
|
@Override
|
|
public void setMaximumFractionDigits(int newValue) {
|
|
// The maximum fraction digits is checked with the allowed range before
|
|
// calling the DecimalFormat.setMaximumFractionDigits, which performs
|
|
// check on the given newValue while setting it as max fraction digits.
|
|
// For example, if a negative value is specified, it is replaced with 0
|
|
decimalFormat.setMaximumFractionDigits(Math.min(newValue,
|
|
DecimalFormat.DOUBLE_FRACTION_DIGITS));
|
|
super.setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
|
|
if (decimalFormat.getMinimumFractionDigits() > decimalFormat.getMaximumFractionDigits()) {
|
|
decimalFormat.setMinimumFractionDigits(decimalFormat.getMaximumFractionDigits());
|
|
super.setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the {@link java.math.RoundingMode} used in this
|
|
* {@code CompactNumberFormat}.
|
|
*
|
|
* @return the {@code RoundingMode} used for this
|
|
* {@code CompactNumberFormat}
|
|
* @see #setRoundingMode(RoundingMode)
|
|
*/
|
|
@Override
|
|
public RoundingMode getRoundingMode() {
|
|
return roundingMode;
|
|
}
|
|
|
|
/**
|
|
* Sets the {@link java.math.RoundingMode} used in this
|
|
* {@code CompactNumberFormat}.
|
|
*
|
|
* @param roundingMode the {@code RoundingMode} to be used
|
|
* @see #getRoundingMode()
|
|
* @throws NullPointerException if {@code roundingMode} is {@code null}
|
|
*/
|
|
@Override
|
|
public void setRoundingMode(RoundingMode roundingMode) {
|
|
decimalFormat.setRoundingMode(roundingMode);
|
|
this.roundingMode = roundingMode;
|
|
}
|
|
|
|
/**
|
|
* Returns the grouping size. Grouping size is the number of digits between
|
|
* grouping separators in the integer portion of a number. For example,
|
|
* in the compact number {@code "12,347 trillion"} for the
|
|
* {@link java.util.Locale#US US locale}, the grouping size is 3.
|
|
*
|
|
* @return the grouping size
|
|
* @see #setGroupingSize
|
|
* @see java.text.NumberFormat#isGroupingUsed
|
|
* @see java.text.DecimalFormatSymbols#getGroupingSeparator
|
|
*/
|
|
public int getGroupingSize() {
|
|
return groupingSize;
|
|
}
|
|
|
|
/**
|
|
* Sets the grouping size. Grouping size is the number of digits between
|
|
* grouping separators in the integer portion of a number. For example,
|
|
* in the compact number {@code "12,347 trillion"} for the
|
|
* {@link java.util.Locale#US US locale}, the grouping size is 3. The grouping
|
|
* size must be greater than or equal to zero and less than or equal to 127.
|
|
*
|
|
* @param newValue the new grouping size
|
|
* @see #getGroupingSize
|
|
* @see java.text.NumberFormat#setGroupingUsed
|
|
* @see java.text.DecimalFormatSymbols#setGroupingSeparator
|
|
* @throws IllegalArgumentException if {@code newValue} is negative or
|
|
* larger than 127
|
|
*/
|
|
public void setGroupingSize(int newValue) {
|
|
if (newValue < 0 || newValue > 127) {
|
|
throw new IllegalArgumentException(
|
|
"The value passed is negative or larger than 127");
|
|
}
|
|
groupingSize = (byte) newValue;
|
|
decimalFormat.setGroupingSize(groupingSize);
|
|
}
|
|
|
|
/**
|
|
* Returns true if grouping is used in this format. For example, with
|
|
* grouping on and grouping size set to 3, the number {@code 12346567890987654}
|
|
* can be formatted as {@code "12,347 trillion"} in the
|
|
* {@link java.util.Locale#US US locale}.
|
|
* The grouping separator is locale dependent.
|
|
*
|
|
* @return {@code true} if grouping is used;
|
|
* {@code false} otherwise
|
|
* @see #setGroupingUsed
|
|
*/
|
|
@Override
|
|
public boolean isGroupingUsed() {
|
|
return super.isGroupingUsed();
|
|
}
|
|
|
|
/**
|
|
* Sets whether or not grouping will be used in this format.
|
|
*
|
|
* @param newValue {@code true} if grouping is used;
|
|
* {@code false} otherwise
|
|
* @see #isGroupingUsed
|
|
*/
|
|
@Override
|
|
public void setGroupingUsed(boolean newValue) {
|
|
decimalFormat.setGroupingUsed(newValue);
|
|
super.setGroupingUsed(newValue);
|
|
}
|
|
|
|
/**
|
|
* Returns true if this format parses only an integer from the number
|
|
* component of a compact number.
|
|
* Parsing an integer means that only an integer is considered from the
|
|
* number component, prefix/suffix is still considered to compute the
|
|
* resulting output.
|
|
* For example, in the {@link java.util.Locale#US US locale}, if this method
|
|
* returns {@code true}, the string {@code "1234.78 thousand"} would be
|
|
* parsed as the value {@code 1234000} (1234 (integer part) * 1000
|
|
* (thousand)) and the fractional part would be skipped.
|
|
* The exact format accepted by the parse operation is locale dependent.
|
|
*
|
|
* @return {@code true} if compact numbers should be parsed as integers
|
|
* only; {@code false} otherwise
|
|
*/
|
|
@Override
|
|
public boolean isParseIntegerOnly() {
|
|
return super.isParseIntegerOnly();
|
|
}
|
|
|
|
/**
|
|
* Sets whether or not this format parses only an integer from the number
|
|
* component of a compact number.
|
|
*
|
|
* @param value {@code true} if compact numbers should be parsed as
|
|
* integers only; {@code false} otherwise
|
|
* @see #isParseIntegerOnly
|
|
*/
|
|
@Override
|
|
public void setParseIntegerOnly(boolean value) {
|
|
decimalFormat.setParseIntegerOnly(value);
|
|
super.setParseIntegerOnly(value);
|
|
}
|
|
|
|
/**
|
|
* Returns whether the {@link #parse(String, ParsePosition)}
|
|
* method returns {@code BigDecimal}. The default value is false.
|
|
*
|
|
* @return {@code true} if the parse method returns BigDecimal;
|
|
* {@code false} otherwise
|
|
* @see #setParseBigDecimal
|
|
*
|
|
*/
|
|
public boolean isParseBigDecimal() {
|
|
return parseBigDecimal;
|
|
}
|
|
|
|
/**
|
|
* Sets whether the {@link #parse(String, ParsePosition)}
|
|
* method returns {@code BigDecimal}.
|
|
*
|
|
* @param newValue {@code true} if the parse method returns BigDecimal;
|
|
* {@code false} otherwise
|
|
* @see #isParseBigDecimal
|
|
*
|
|
*/
|
|
public void setParseBigDecimal(boolean newValue) {
|
|
parseBigDecimal = newValue;
|
|
}
|
|
|
|
/**
|
|
* Checks if this {@code CompactNumberFormat} is equal to the
|
|
* specified {@code obj}. The objects of type {@code CompactNumberFormat}
|
|
* are compared, other types return false; obeys the general contract of
|
|
* {@link java.lang.Object#equals(java.lang.Object) Object.equals}.
|
|
*
|
|
* @param obj the object to compare with
|
|
* @return true if this is equal to the other {@code CompactNumberFormat}
|
|
*/
|
|
@Override
|
|
public boolean equals(Object obj) {
|
|
|
|
if (!super.equals(obj)) {
|
|
return false;
|
|
}
|
|
|
|
CompactNumberFormat other = (CompactNumberFormat) obj;
|
|
return decimalPattern.equals(other.decimalPattern)
|
|
&& symbols.equals(other.symbols)
|
|
&& Arrays.equals(compactPatterns, other.compactPatterns)
|
|
&& roundingMode.equals(other.roundingMode)
|
|
&& pluralRules.equals(other.pluralRules)
|
|
&& groupingSize == other.groupingSize
|
|
&& parseBigDecimal == other.parseBigDecimal;
|
|
}
|
|
|
|
/**
|
|
* Returns the hash code for this {@code CompactNumberFormat} instance.
|
|
*
|
|
* @return hash code for this {@code CompactNumberFormat}
|
|
*/
|
|
@Override
|
|
public int hashCode() {
|
|
return 31 * super.hashCode() +
|
|
Objects.hash(decimalPattern, symbols, roundingMode, pluralRules)
|
|
+ Arrays.hashCode(compactPatterns) + groupingSize
|
|
+ Boolean.hashCode(parseBigDecimal);
|
|
}
|
|
|
|
/**
|
|
* Creates and returns a copy of this {@code CompactNumberFormat}
|
|
* instance.
|
|
*
|
|
* @return a clone of this instance
|
|
*/
|
|
@Override
|
|
public CompactNumberFormat clone() {
|
|
CompactNumberFormat other = (CompactNumberFormat) super.clone();
|
|
other.compactPatterns = compactPatterns.clone();
|
|
other.symbols = (DecimalFormatSymbols) symbols.clone();
|
|
return other;
|
|
}
|
|
|
|
/**
|
|
* Abstraction of affix or number (represented by zeros) patterns for each "count" tag.
|
|
*/
|
|
private final class Patterns {
|
|
private final Map<String, String> patternsMap = new HashMap<>();
|
|
|
|
void put(String count, String pattern) {
|
|
patternsMap.put(count, pattern);
|
|
}
|
|
|
|
String get(double num) {
|
|
return patternsMap.getOrDefault(getPluralCategory(num),
|
|
patternsMap.getOrDefault("other", ""));
|
|
}
|
|
|
|
Patterns expandAffix() {
|
|
Patterns ret = new Patterns();
|
|
patternsMap.forEach((key, value) -> ret.put(key, CompactNumberFormat.this.expandAffix(value)));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
private int getIntegerPart(double number, double divisor) {
|
|
return BigDecimal.valueOf(number)
|
|
.divide(BigDecimal.valueOf(divisor), roundingMode).intValue();
|
|
}
|
|
|
|
// Checks whether the iPart is incremented by the BigDecimal division in
|
|
// getIntegerPart(), and affects the compact number index.
|
|
private boolean checkIncrement(int iPart, int index, double divisor) {
|
|
if (index < compactPatterns.length - 1 &&
|
|
!"".equals(compactPatterns[index])) { // ignore empty pattern
|
|
var nextDiv = divisors.get(index + 1).doubleValue();
|
|
if (divisor != nextDiv) {
|
|
return Math.log10(iPart) == Math.log10(nextDiv) - Math.log10(divisor);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns LDML's tag from the plurals rules
|
|
*
|
|
* @param input input number in double type
|
|
* @return LDML "count" tag
|
|
*/
|
|
private String getPluralCategory(double input) {
|
|
if (rulesMap != null) {
|
|
return rulesMap.entrySet().stream()
|
|
.filter(e -> matchPluralRule(e.getValue(), input))
|
|
.map(Map.Entry::getKey)
|
|
.findFirst()
|
|
.orElse("other");
|
|
}
|
|
|
|
// defaults to "other"
|
|
return "other";
|
|
}
|
|
|
|
private static boolean matchPluralRule(String condition, double input) {
|
|
return Arrays.stream(condition.split("or"))
|
|
.anyMatch(and_condition -> Arrays.stream(and_condition.split("and"))
|
|
.allMatch(r -> relationCheck(r, input)));
|
|
}
|
|
|
|
private static final String NAMED_EXPR = "(?<op>[niftvwe])\\s*((?<div>[/%])\\s*(?<val>\\d+))*";
|
|
private static final String NAMED_RELATION = "(?<rel>!?=)";
|
|
private static final String NAMED_VALUE_RANGE = "(?<start>\\d+)\\.\\.(?<end>\\d+)|(?<value>\\d+)";
|
|
private static final Pattern EXPR_PATTERN = Pattern.compile(NAMED_EXPR);
|
|
private static final Pattern RELATION_PATTERN = Pattern.compile(NAMED_RELATION);
|
|
private static final Pattern VALUE_RANGE_PATTERN = Pattern.compile(NAMED_VALUE_RANGE);
|
|
|
|
/**
|
|
* Checks if the 'input' equals the value, or within the range.
|
|
*
|
|
* @param valueOrRange A string representing either a single value or a range
|
|
* @param input to examine in double
|
|
* @return match indicator
|
|
*/
|
|
private static boolean valOrRangeMatches(String valueOrRange, double input) {
|
|
Matcher m = VALUE_RANGE_PATTERN.matcher(valueOrRange);
|
|
|
|
if (m.find()) {
|
|
String value = m.group("value");
|
|
if (value != null) {
|
|
return input == Double.parseDouble(value);
|
|
} else {
|
|
return input >= Double.parseDouble(m.group("start")) &&
|
|
input <= Double.parseDouble(m.group("end"));
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks if the input value satisfies the relation. Each possible value or range is
|
|
* separated by a comma ','
|
|
*
|
|
* @param relation relation string, e.g, "n = 1, 3..5", or "n != 1, 3..5"
|
|
* @param input value to examine in double
|
|
* @return boolean to indicate whether the relation satisfies or not. If the relation
|
|
* is '=', true if any of the possible value/range satisfies. If the relation is '!=',
|
|
* none of the possible value/range should satisfy to return true.
|
|
*/
|
|
private static boolean relationCheck(String relation, double input) {
|
|
Matcher expr = EXPR_PATTERN.matcher(relation);
|
|
|
|
if (expr.find()) {
|
|
double lop = evalLOperand(expr, input);
|
|
Matcher rel = RELATION_PATTERN.matcher(relation);
|
|
|
|
if (rel.find(expr.end())) {
|
|
var conditions =
|
|
Arrays.stream(relation.substring(rel.end()).split(","));
|
|
|
|
if (Objects.equals(rel.group("rel"), "!=")) {
|
|
return conditions.noneMatch(c -> valOrRangeMatches(c, lop));
|
|
} else {
|
|
return conditions.anyMatch(c -> valOrRangeMatches(c, lop));
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Evaluates the left operand value.
|
|
*
|
|
* @param expr Match result
|
|
* @param input value to examine in double
|
|
* @return resulting double value
|
|
*/
|
|
private static double evalLOperand(Matcher expr, double input) {
|
|
double ret = 0;
|
|
|
|
if (input == Double.POSITIVE_INFINITY) {
|
|
ret = input;
|
|
} else {
|
|
String op = expr.group("op");
|
|
if (Objects.equals(op, "n") || Objects.equals(op, "i")) {
|
|
ret = input;
|
|
}
|
|
|
|
String divop = expr.group("div");
|
|
if (divop != null) {
|
|
String divisor = expr.group("val");
|
|
switch (divop) {
|
|
case "%" -> ret %= Double.parseDouble(divisor);
|
|
case "/" -> ret /= Double.parseDouble(divisor);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|