1996-07-09 06:22:35 +00:00
|
|
|
/*-------------------------------------------------------------------------
|
|
|
|
*
|
1999-02-13 23:22:53 +00:00
|
|
|
* pathnode.h
|
2000-09-29 18:21:41 +00:00
|
|
|
* prototypes for pathnode.c, relnode.c.
|
1996-07-09 06:22:35 +00:00
|
|
|
*
|
|
|
|
*
|
2018-01-02 23:30:12 -05:00
|
|
|
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
|
2000-01-26 05:58:53 +00:00
|
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
1996-07-09 06:22:35 +00:00
|
|
|
*
|
2010-09-20 22:08:53 +02:00
|
|
|
* src/include/optimizer/pathnode.h
|
1996-07-09 06:22:35 +00:00
|
|
|
*
|
|
|
|
*-------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
#ifndef PATHNODE_H
|
|
|
|
#define PATHNODE_H
|
|
|
|
|
Support Parallel Append plan nodes.
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
2017-12-05 17:28:39 -05:00
|
|
|
#include "nodes/bitmapset.h"
|
1997-11-26 01:14:33 +00:00
|
|
|
#include "nodes/relation.h"
|
|
|
|
|
2003-02-08 20:20:55 +00:00
|
|
|
|
1996-07-09 06:22:35 +00:00
|
|
|
/*
|
|
|
|
* prototypes for pathnode.c
|
|
|
|
*/
|
2000-02-15 20:49:31 +00:00
|
|
|
extern int compare_path_costs(Path *path1, Path *path2,
|
2000-04-12 17:17:23 +00:00
|
|
|
CostSelector criterion);
|
2000-02-15 20:49:31 +00:00
|
|
|
extern int compare_fractional_path_costs(Path *path1, Path *path2,
|
2000-04-12 17:17:23 +00:00
|
|
|
double fraction);
|
2000-02-15 20:49:31 +00:00
|
|
|
extern void set_cheapest(RelOptInfo *parent_rel);
|
2000-02-07 04:41:04 +00:00
|
|
|
extern void add_path(RelOptInfo *parent_rel, Path *new_path);
|
2012-01-27 19:26:38 -05:00
|
|
|
extern bool add_path_precheck(RelOptInfo *parent_rel,
|
|
|
|
Cost startup_cost, Cost total_cost,
|
|
|
|
List *pathkeys, Relids required_outer);
|
2016-01-20 14:29:22 -05:00
|
|
|
extern void add_partial_path(RelOptInfo *parent_rel, Path *new_path);
|
|
|
|
extern bool add_partial_path_precheck(RelOptInfo *parent_rel,
|
|
|
|
Cost total_cost, List *pathkeys);
|
1999-08-16 02:17:58 +00:00
|
|
|
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
extern Path *create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
|
2016-06-09 09:08:27 -04:00
|
|
|
Relids required_outer, int parallel_workers);
|
2015-05-15 14:37:10 -04:00
|
|
|
extern Path *create_samplescan_path(PlannerInfo *root, RelOptInfo *rel,
|
2015-05-23 21:35:49 -04:00
|
|
|
Relids required_outer);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern IndexPath *create_index_path(PlannerInfo *root,
|
2000-04-12 17:17:23 +00:00
|
|
|
IndexOptInfo *index,
|
2011-12-24 19:03:21 -05:00
|
|
|
List *indexclauses,
|
|
|
|
List *indexclausecols,
|
2010-12-02 20:50:48 -05:00
|
|
|
List *indexorderbys,
|
2011-12-24 19:03:21 -05:00
|
|
|
List *indexorderbycols,
|
2000-12-14 22:30:45 +00:00
|
|
|
List *pathkeys,
|
2005-04-22 21:58:32 +00:00
|
|
|
ScanDirection indexscandir,
|
2011-10-07 20:13:02 -04:00
|
|
|
bool indexonly,
|
2012-01-27 19:26:38 -05:00
|
|
|
Relids required_outer,
|
2017-02-15 13:53:24 -05:00
|
|
|
double loop_count,
|
|
|
|
bool partial_path);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern BitmapHeapPath *create_bitmap_heap_path(PlannerInfo *root,
|
2005-10-15 02:49:52 +00:00
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *bitmapqual,
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
Relids required_outer,
|
Support parallel bitmap heap scans.
The index is scanned by a single process, but then all cooperating
processes can iterate jointly over the resulting set of heap blocks.
In the future, we might also want to support using a parallel bitmap
index scan to set up for a parallel bitmap heap scan, but that's a
job for another day.
Dilip Kumar, with some corrections and cosmetic changes by me. The
larger patch set of which this is a part has been reviewed and tested
by (at least) Andres Freund, Amit Khandekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, Thomas Munro, and me.
Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
2017-03-08 12:05:43 -05:00
|
|
|
double loop_count,
|
|
|
|
int parallel_degree);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern BitmapAndPath *create_bitmap_and_path(PlannerInfo *root,
|
2005-10-15 02:49:52 +00:00
|
|
|
RelOptInfo *rel,
|
|
|
|
List *bitmapquals);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern BitmapOrPath *create_bitmap_or_path(PlannerInfo *root,
|
2005-10-15 02:49:52 +00:00
|
|
|
RelOptInfo *rel,
|
|
|
|
List *bitmapquals);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern TidPath *create_tidscan_path(PlannerInfo *root, RelOptInfo *rel,
|
2012-08-26 22:48:55 -04:00
|
|
|
List *tidquals, Relids required_outer);
|
Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 17:54:31 -03:00
|
|
|
extern AppendPath *create_append_path(PlannerInfo *root, RelOptInfo *rel,
|
Support Parallel Append plan nodes.
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
2017-12-05 17:28:39 -05:00
|
|
|
List *subpaths, List *partial_subpaths,
|
|
|
|
Relids required_outer,
|
|
|
|
int parallel_workers, bool parallel_aware,
|
|
|
|
List *partitioned_rels, double rows);
|
2010-10-14 16:56:39 -04:00
|
|
|
extern MergeAppendPath *create_merge_append_path(PlannerInfo *root,
|
2011-04-10 11:42:00 -04:00
|
|
|
RelOptInfo *rel,
|
|
|
|
List *subpaths,
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
List *pathkeys,
|
2017-03-21 09:48:04 -04:00
|
|
|
Relids required_outer,
|
|
|
|
List *partitioned_rels);
|
2016-03-08 16:28:27 -05:00
|
|
|
extern ResultPath *create_result_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
PathTarget *target, List *resconstantqual);
|
2002-11-30 05:21:03 +00:00
|
|
|
extern MaterialPath *create_material_path(RelOptInfo *rel, Path *subpath);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern UniquePath *create_unique_path(PlannerInfo *root, RelOptInfo *rel,
|
2008-08-14 18:48:00 +00:00
|
|
|
Path *subpath, SpecialJoinInfo *sjinfo);
|
Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream. It can also run the plan itself, if the workers are
unavailable or haven't started up yet. It is intended to work with
the Partial Seq Scan node which will be added in future commits.
It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used. In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results. So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes. Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.
There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne. But we're getting
close.
Amit Kapila. Some designs suggestions were provided by me, and I also
reviewed the patch. Single-copy mode, documentation, and other minor
changes also by me.
2015-09-30 19:23:36 -04:00
|
|
|
extern GatherPath *create_gather_path(PlannerInfo *root,
|
2016-03-21 09:20:53 -04:00
|
|
|
RelOptInfo *rel, Path *subpath, PathTarget *target,
|
|
|
|
Relids required_outer, double *rows);
|
2017-03-09 07:40:36 -05:00
|
|
|
extern GatherMergePath *create_gather_merge_path(PlannerInfo *root,
|
2017-05-17 16:31:56 -04:00
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
PathTarget *target,
|
|
|
|
List *pathkeys,
|
|
|
|
Relids required_outer,
|
|
|
|
double *rows);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
extern SubqueryScanPath *create_subqueryscan_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel, Path *subpath,
|
2012-06-10 15:20:04 -04:00
|
|
|
List *pathkeys, Relids required_outer);
|
2012-08-07 19:02:54 -04:00
|
|
|
extern Path *create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
|
Support multi-argument UNNEST(), and TABLE() syntax for multiple functions.
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry. The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others. This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.
This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.
Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).
The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does. There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST(). After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.
Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
2013-11-21 19:37:02 -05:00
|
|
|
List *pathkeys, Relids required_outer);
|
2017-03-08 12:39:37 -03:00
|
|
|
extern Path *create_tablexprscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
List *pathkeys, Relids required_outer);
|
2012-08-12 16:01:26 -04:00
|
|
|
extern Path *create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
Relids required_outer);
|
2017-03-08 12:39:37 -03:00
|
|
|
extern Path *create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
Relids required_outer);
|
2012-08-26 22:48:55 -04:00
|
|
|
extern Path *create_ctescan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
Relids required_outer);
|
2017-03-31 23:17:18 -05:00
|
|
|
extern Path *create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
|
2017-05-17 16:31:56 -04:00
|
|
|
Relids required_outer);
|
2012-08-26 22:48:55 -04:00
|
|
|
extern Path *create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
Relids required_outer);
|
2012-03-05 16:15:59 -05:00
|
|
|
extern ForeignPath *create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
|
2016-03-14 17:31:28 -04:00
|
|
|
PathTarget *target,
|
2012-03-05 16:15:59 -05:00
|
|
|
double rows, Cost startup_cost, Cost total_cost,
|
|
|
|
List *pathkeys,
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
Relids required_outer,
|
Allow foreign and custom joins to handle EvalPlanQual rechecks.
Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 provided basic
infrastructure for allowing a foreign data wrapper or custom scan
provider to replace a join of one or more tables with a scan.
However, this infrastructure failed to take into account the need
for possible EvalPlanQual rechecks, and ExecScanFetch would fail
an assertion (or just overwrite memory) if such a check was attempted
for a plan containing a pushed-down join. To fix, adjust the EPQ
machinery to skip some processing steps when scanrelid == 0, making
those the responsibility of scan's recheck method, which also has
the responsibility in this case of correctly populating the relevant
slot.
To allow foreign scans to gain control in the right place to make
use of this new facility, add a new, optional RecheckForeignScan
method. Also, allow a foreign scan to have a child plan, which can
be used to correctly populate the slot (or perhaps for something
else, but this is the only use currently envisioned).
KaiGai Kohei, reviewed by Robert Haas, Etsuro Fujita, and Kyotaro
Horiguchi.
2015-12-08 12:31:03 -05:00
|
|
|
Path *fdw_outerpath,
|
2012-03-05 16:15:59 -05:00
|
|
|
List *fdw_private);
|
1999-08-16 02:17:58 +00:00
|
|
|
|
2017-08-15 12:30:38 -04:00
|
|
|
extern Relids calc_nestloop_required_outer(Relids outerrelids,
|
|
|
|
Relids outer_paramrels,
|
|
|
|
Relids innerrelids,
|
|
|
|
Relids inner_paramrels);
|
2012-01-27 19:26:38 -05:00
|
|
|
extern Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path);
|
|
|
|
|
2005-06-05 22:32:58 +00:00
|
|
|
extern NestPath *create_nestloop_path(PlannerInfo *root,
|
2001-10-25 05:50:21 +00:00
|
|
|
RelOptInfo *joinrel,
|
|
|
|
JoinType jointype,
|
2012-01-27 19:26:38 -05:00
|
|
|
JoinCostWorkspace *workspace,
|
2017-04-07 22:20:03 -04:00
|
|
|
JoinPathExtraData *extra,
|
2001-10-25 05:50:21 +00:00
|
|
|
Path *outer_path,
|
|
|
|
Path *inner_path,
|
|
|
|
List *restrict_clauses,
|
2012-01-27 19:26:38 -05:00
|
|
|
List *pathkeys,
|
|
|
|
Relids required_outer);
|
2000-01-09 00:26:47 +00:00
|
|
|
|
2005-06-05 22:32:58 +00:00
|
|
|
extern MergePath *create_mergejoin_path(PlannerInfo *root,
|
2001-10-25 05:50:21 +00:00
|
|
|
RelOptInfo *joinrel,
|
|
|
|
JoinType jointype,
|
2012-01-27 19:26:38 -05:00
|
|
|
JoinCostWorkspace *workspace,
|
2017-04-07 22:20:03 -04:00
|
|
|
JoinPathExtraData *extra,
|
2001-10-25 05:50:21 +00:00
|
|
|
Path *outer_path,
|
|
|
|
Path *inner_path,
|
|
|
|
List *restrict_clauses,
|
|
|
|
List *pathkeys,
|
2012-01-27 19:26:38 -05:00
|
|
|
Relids required_outer,
|
2001-10-25 05:50:21 +00:00
|
|
|
List *mergeclauses,
|
|
|
|
List *outersortkeys,
|
|
|
|
List *innersortkeys);
|
2000-01-09 00:26:47 +00:00
|
|
|
|
2005-06-05 22:32:58 +00:00
|
|
|
extern HashPath *create_hashjoin_path(PlannerInfo *root,
|
2001-10-25 05:50:21 +00:00
|
|
|
RelOptInfo *joinrel,
|
|
|
|
JoinType jointype,
|
2012-01-27 19:26:38 -05:00
|
|
|
JoinCostWorkspace *workspace,
|
2017-04-07 22:20:03 -04:00
|
|
|
JoinPathExtraData *extra,
|
2001-10-25 05:50:21 +00:00
|
|
|
Path *outer_path,
|
|
|
|
Path *inner_path,
|
Add parallel-aware hash joins.
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash. While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.
After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory. If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.
The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:
* avoids wasting memory on duplicated hash tables
* avoids wasting disk space on duplicated batch files
* divides the work of building the hash table over the CPUs
One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables. This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes. Another is that
outer batch 0 must be written to disk if multiple batches are required.
A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.
A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.
Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-20 23:39:21 -08:00
|
|
|
bool parallel_hash,
|
2001-10-25 05:50:21 +00:00
|
|
|
List *restrict_clauses,
|
2012-01-27 19:26:38 -05:00
|
|
|
Relids required_outer,
|
2001-10-25 05:50:21 +00:00
|
|
|
List *hashclauses);
|
1996-07-09 06:22:35 +00:00
|
|
|
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
extern ProjectionPath *create_projection_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
PathTarget *target);
|
|
|
|
extern Path *apply_projection_to_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *path,
|
Refactor planning of projection steps that don't need a Result plan node.
The original upper-planner-pathification design (commit 3fc6e2d7f5b652b4)
assumed that we could always determine during Path formation whether or not
we would need a Result plan node to perform projection of a targetlist.
That turns out not to work very well, though, because createplan.c still
has some responsibilities for choosing the specific target list associated
with sorting/grouping nodes (in particular it might choose to add resjunk
columns for sorting). We might not ever refactor that --- doing so would
push more work into Path formation, which isn't attractive --- and we
certainly won't do so for 9.6. So, while create_projection_path and
apply_projection_to_path can tell for sure what will happen if the subpath
is projection-capable, they can't tell for sure when it isn't. This is at
least a latent bug in apply_projection_to_path, which might think it can
apply a target to a non-projecting node when the node will end up computing
something different.
Also, I'd tied the creation of a ProjectionPath node to whether or not a
Result is needed, but it turns out that we sometimes need a ProjectionPath
node anyway to avoid modifying a possibly-shared subpath node. Callers had
to use create_projection_path for such cases, and we added code to them
that knew about the potential omission of a Result node and attempted to
adjust the cost estimates for that. That was uncertainly correct and
definitely ugly/unmaintainable.
To fix, have create_projection_path explicitly check whether a Result
is needed and adjust its cost estimate accordingly, though it creates
a ProjectionPath in either case. apply_projection_to_path is now mostly
just an optimized version that can avoid creating an extra Path node when
the input is known to not be shared with any other live path. (There
is one case that create_projection_path doesn't handle, which is pushing
parallel-safe expressions below a Gather node. We could make it do that
by duplicating the GatherPath, but there seems no need as yet.)
create_projection_plan still has to recheck the tlist-match condition,
which means that if the matching situation does get changed by createplan.c
then we'll have made a slightly incorrect cost estimate. But there seems
no help for that in the near term, and I doubt it occurs often enough,
let alone would change planning decisions often enough, to be worth
stressing about.
I added a "dummypp" field to ProjectionPath to track whether
create_projection_path thinks a Result is needed. This is not really
necessary as-committed because create_projection_plan doesn't look at the
flag; but it seems like a good idea to remember what we thought when
forming the cost estimate, if only for debugging purposes.
In passing, get rid of the target_parallel parameter added to
apply_projection_to_path by commit 54f5c5150. I don't think that's a good
idea because it involves callers in what should be an internal decision,
and opens us up to missing optimization opportunities if callers think they
don't need to provide a valid flag, as most don't. For the moment, this
just costs us an extra has_parallel_hazard call when planning a Gather.
If that starts to look expensive, I think a better solution would be to
teach PathTarget to carry/cache knowledge of parallel-safety of its
contents.
2016-06-21 18:38:20 -04:00
|
|
|
PathTarget *target);
|
Move targetlist SRF handling from expression evaluation to new executor node.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 12:46:50 -08:00
|
|
|
extern ProjectSetPath *create_set_projection_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
PathTarget *target);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
extern SortPath *create_sort_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
List *pathkeys,
|
|
|
|
double limit_tuples);
|
|
|
|
extern GroupPath *create_group_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
List *groupClause,
|
|
|
|
List *qual,
|
|
|
|
double numGroups);
|
|
|
|
extern UpperUniquePath *create_upper_unique_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
int numCols,
|
|
|
|
double numGroups);
|
|
|
|
extern AggPath *create_agg_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
PathTarget *target,
|
|
|
|
AggStrategy aggstrategy,
|
2016-06-26 14:33:38 -04:00
|
|
|
AggSplit aggsplit,
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
List *groupClause,
|
|
|
|
List *qual,
|
|
|
|
const AggClauseCosts *aggcosts,
|
2016-06-26 14:33:38 -04:00
|
|
|
double numGroups);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
extern GroupingSetsPath *create_groupingsets_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
List *having_qual,
|
2017-03-27 04:20:54 +01:00
|
|
|
AggStrategy aggstrategy,
|
|
|
|
List *rollups,
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
const AggClauseCosts *agg_costs,
|
|
|
|
double numGroups);
|
|
|
|
extern MinMaxAggPath *create_minmaxagg_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
PathTarget *target,
|
|
|
|
List *mmaggregates,
|
|
|
|
List *quals);
|
|
|
|
extern WindowAggPath *create_windowagg_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
PathTarget *target,
|
|
|
|
List *windowFuncs,
|
|
|
|
WindowClause *winclause,
|
|
|
|
List *winpathkeys);
|
|
|
|
extern SetOpPath *create_setop_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
SetOpCmd cmd,
|
|
|
|
SetOpStrategy strategy,
|
|
|
|
List *distinctList,
|
|
|
|
AttrNumber flagColIdx,
|
|
|
|
int firstFlag,
|
|
|
|
double numGroups,
|
|
|
|
double outputRows);
|
|
|
|
extern RecursiveUnionPath *create_recursiveunion_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
Path *leftpath,
|
|
|
|
Path *rightpath,
|
|
|
|
PathTarget *target,
|
|
|
|
List *distinctList,
|
|
|
|
int wtParam,
|
|
|
|
double numGroups);
|
|
|
|
extern LockRowsPath *create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
Path *subpath, List *rowMarks, int epqParam);
|
|
|
|
extern ModifyTablePath *create_modifytable_path(PlannerInfo *root,
|
|
|
|
RelOptInfo *rel,
|
|
|
|
CmdType operation, bool canSetTag,
|
2017-03-21 09:48:04 -04:00
|
|
|
Index nominalRelation, List *partitioned_rels,
|
Allow UPDATE to move rows between partitions.
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
2018-01-19 15:33:06 -05:00
|
|
|
bool partColsUpdated,
|
MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
|
|
|
List *resultRelations,
|
|
|
|
Index mergeTargetRelation,
|
|
|
|
List *subpaths,
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
List *subroots,
|
|
|
|
List *withCheckOptionLists, List *returningLists,
|
|
|
|
List *rowMarks, OnConflictExpr *onconflict,
|
MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
|
|
|
List *mergeSourceTargetList,
|
|
|
|
List *mergeActionList, int epqParam);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
extern LimitPath *create_limit_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
Path *subpath,
|
|
|
|
Node *limitOffset, Node *limitCount,
|
|
|
|
int64 offset_est, int64 count_est);
|
|
|
|
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
extern Path *reparameterize_path(PlannerInfo *root, Path *path,
|
|
|
|
Relids required_outer,
|
|
|
|
double loop_count);
|
Basic partition-wise join functionality.
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 11:11:10 -04:00
|
|
|
extern Path *reparameterize_path_by_child(PlannerInfo *root, Path *path,
|
|
|
|
RelOptInfo *child_rel);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
|
1996-07-09 06:22:35 +00:00
|
|
|
/*
|
2000-02-07 04:41:04 +00:00
|
|
|
* prototypes for relnode.c
|
1996-07-09 06:22:35 +00:00
|
|
|
*/
|
2011-09-03 15:35:12 -04:00
|
|
|
extern void setup_simple_rel_arrays(PlannerInfo *root);
|
2006-01-31 21:39:25 +00:00
|
|
|
extern RelOptInfo *build_simple_rel(PlannerInfo *root, int relid,
|
Abstract logic to allow for multiple kinds of child rels.
Currently, the only type of child relation is an "other member rel",
which is the child of a baserel, but in the future joins and even
upper relations may have child rels. To facilitate that, introduce
macros that test to test for particular RelOptKind values, and use
them in various places where they help to clarify the sense of a test.
(For example, a test may allow RELOPT_OTHER_MEMBER_REL either because
it intends to allow child rels, or because it intends to allow simple
rels.)
Also, remove find_childrel_top_parent, which will not work for a
child rel that is not a baserel. Instead, add a new RelOptInfo
member top_parent_relids to track the same kind of information in a
more generic manner.
Ashutosh Bapat, slightly tweaked by me. Review and testing of the
patch set from which this was taken by Rajkumar Raghuwanshi and Rafia
Sabih.
Discussion: http://postgr.es/m/CA+TgmoagTnF2yqR3PT2rv=om=wJiZ4-A+ATwdnriTGku1CLYxA@mail.gmail.com
2017-04-03 22:41:31 -04:00
|
|
|
RelOptInfo *parent);
|
2005-06-05 22:32:58 +00:00
|
|
|
extern RelOptInfo *find_base_rel(PlannerInfo *root, int relid);
|
|
|
|
extern RelOptInfo *find_join_rel(PlannerInfo *root, Relids relids);
|
|
|
|
extern RelOptInfo *build_join_rel(PlannerInfo *root,
|
2003-08-04 00:43:34 +00:00
|
|
|
Relids joinrelids,
|
|
|
|
RelOptInfo *outer_rel,
|
|
|
|
RelOptInfo *inner_rel,
|
2008-08-14 18:48:00 +00:00
|
|
|
SpecialJoinInfo *sjinfo,
|
2003-08-04 00:43:34 +00:00
|
|
|
List **restrictlist_ptr);
|
Still more fixes for planner's handling of LATERAL references.
More fuzz testing by Andreas Seltenreich exposed that the planner did not
cope well with chains of lateral references. If relation X references Y
laterally, and Y references Z laterally, then we will have to scan X on the
inside of a nestloop with Z, so for all intents and purposes X is laterally
dependent on Z too. The planner did not understand this and would generate
intermediate joins that could not be used. While that was usually harmless
except for wasting some planning cycles, under the right circumstances it
would lead to "failed to build any N-way joins" or "could not devise a
query plan" planner failures.
To fix that, convert the existing per-relation lateral_relids and
lateral_referencers relid sets into their transitive closures; that is,
they now show all relations on which a rel is directly or indirectly
laterally dependent. This not only fixes the chained-reference problem
but allows some of the relevant tests to be made substantially simpler
and faster, since they can be reduced to simple bitmap manipulations
instead of searches of the LateralJoinInfo list.
Also, when a PlaceHolderVar that is due to be evaluated at a join contains
lateral references, we should treat those references as indirect lateral
dependencies of each of the join's base relations. This prevents us from
trying to join any individual base relations to the lateral reference
source before the join is formed, which again cannot work.
Andreas' testing also exposed another oversight in the "dangerous
PlaceHolderVar" test added in commit 85e5e222b1dd02f1. Simply rejecting
unsafe join paths in joinpath.c is insufficient, because in some cases
we will end up rejecting *all* possible paths for a particular join, again
leading to "could not devise a query plan" failures. The restriction has
to be known also to join_is_legal and its cohort functions, so that they
will not select a join for which that will happen. I chose to move the
supporting logic into joinrels.c where the latter functions are.
Back-patch to 9.3 where LATERAL support was introduced.
2015-12-11 14:22:20 -05:00
|
|
|
extern Relids min_join_parameterization(PlannerInfo *root,
|
|
|
|
Relids joinrelids,
|
|
|
|
RelOptInfo *outer_rel,
|
|
|
|
RelOptInfo *inner_rel);
|
Simplify query_planner's API by having it return the top-level RelOptInfo.
Formerly, query_planner returned one or possibly two Paths for the topmost
join relation, so that grouping_planner didn't see the join RelOptInfo
(at least not directly; it didn't have any hesitation about examining
cheapest_path->parent, though). However, correct selection of the Paths
involved a significant amount of coupling between query_planner and
grouping_planner, a problem which has gotten worse over time. It seems
best to give up on this API choice and instead return the topmost
RelOptInfo explicitly. Then grouping_planner can pull out the Paths it
wants from the rel's path list. In this way we can remove all knowledge
of grouping behaviors from query_planner.
The only real benefit of the old way is that in the case of an empty
FROM clause, we never made any RelOptInfos at all, just a Path. Now
we have to gin up a dummy RelOptInfo to represent the empty FROM clause.
That's not a very big deal though.
While at it, simplify query_planner's API a bit more by having the caller
set up root->tuple_fraction and root->limit_tuples, rather than passing
those values as separate parameters. Since query_planner no longer does
anything with either value, requiring it to fill the PlannerInfo fields
seemed pretty arbitrary.
This patch just rearranges code; it doesn't (intentionally) change any
behaviors. Followup patches will do more interesting things.
2013-08-05 15:00:57 -04:00
|
|
|
extern RelOptInfo *build_empty_join_rel(PlannerInfo *root);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
|
|
|
extern RelOptInfo *fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind,
|
|
|
|
Relids relids);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
extern AppendRelInfo *find_childrel_appendrelinfo(PlannerInfo *root,
|
2012-06-10 15:20:04 -04:00
|
|
|
RelOptInfo *rel);
|
Fix some more problems with nested append relations.
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.
Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.
Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels. The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family. That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them. So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.
The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced. In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members. (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong. A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
2014-10-01 19:30:24 -04:00
|
|
|
extern Relids find_childrel_parents(PlannerInfo *root, RelOptInfo *rel);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
extern ParamPathInfo *get_baserel_parampathinfo(PlannerInfo *root,
|
2012-06-10 15:20:04 -04:00
|
|
|
RelOptInfo *baserel,
|
|
|
|
Relids required_outer);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
extern ParamPathInfo *get_joinrel_parampathinfo(PlannerInfo *root,
|
2012-06-10 15:20:04 -04:00
|
|
|
RelOptInfo *joinrel,
|
|
|
|
Path *outer_path,
|
|
|
|
Path *inner_path,
|
|
|
|
SpecialJoinInfo *sjinfo,
|
|
|
|
Relids required_outer,
|
|
|
|
List **restrict_clauses);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:52:46 -04:00
|
|
|
extern ParamPathInfo *get_appendrel_parampathinfo(RelOptInfo *appendrel,
|
2012-06-10 15:20:04 -04:00
|
|
|
Relids required_outer);
|
2017-08-15 12:30:38 -04:00
|
|
|
extern ParamPathInfo *find_param_path_info(RelOptInfo *rel,
|
|
|
|
Relids required_outer);
|
Basic partition-wise join functionality.
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 11:11:10 -04:00
|
|
|
extern RelOptInfo *build_child_join_rel(PlannerInfo *root,
|
|
|
|
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
|
|
|
|
RelOptInfo *parent_joinrel, List *restrictlist,
|
|
|
|
SpecialJoinInfo *sjinfo, JoinType jointype);
|
2001-10-28 06:26:15 +00:00
|
|
|
|
Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:18:54 -04:00
|
|
|
#endif /* PATHNODE_H */
|