512 lines
14 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* planner.c--
* The query optimizer external interface.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.35 1998/09/09 03:48:01 vadim Exp $
*
*-------------------------------------------------------------------------
*/
#include <sys/types.h>
#include <string.h>
#include "postgres.h"
#include "nodes/pg_list.h"
#include "nodes/plannodes.h"
#include "nodes/parsenodes.h"
#include "nodes/relation.h"
#include "parser/parse_expr.h"
#include "utils/elog.h"
#include "utils/lsyscache.h"
#include "access/heapam.h"
#include "optimizer/internal.h"
#include "optimizer/planner.h"
#include "optimizer/plancat.h"
#include "optimizer/prep.h"
#include "optimizer/planmain.h"
#include "optimizer/subselect.h"
#include "optimizer/paths.h"
#include "optimizer/cost.h"
/* DATA STRUCTURE CREATION/MANIPULATION ROUTINES */
#include "nodes/relation.h"
#include "optimizer/clauseinfo.h"
#include "optimizer/joininfo.h"
#include "optimizer/keys.h"
#include "optimizer/ordering.h"
#include "optimizer/pathnode.h"
#include "optimizer/clauses.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "executor/executor.h"
static Plan *make_sortplan(List *tlist, List *sortcls, Plan *plannode);
extern Plan *make_groupPlan(List **tlist, bool tuplePerGroup,
1997-12-20 07:59:44 +00:00
List *groupClause, Plan *subplan);
/*****************************************************************************
*
* Query optimizer entry point
*
*****************************************************************************/
Plan *
planner(Query *parse)
{
Plan *result_plan;
PlannerQueryLevel = 1;
PlannerVarParam = NULL;
PlannerParamVar = NULL;
PlannerInitPlan = NULL;
PlannerPlanId = 0;
transformKeySetQuery(parse);
result_plan = union_planner(parse);
Assert(PlannerQueryLevel == 1);
if (PlannerPlanId > 0)
{
result_plan->initPlan = PlannerInitPlan;
(void) SS_finalize_plan(result_plan);
}
result_plan->nParamExec = length(PlannerParamVar);
1998-09-01 03:29:17 +00:00
return result_plan;
}
/*
* union_planner--
*
* Invokes the planner on union queries if there are any left,
* recursing if necessary to get them all, then processes normal plans.
*
* Returns a query plan.
*
*/
Plan *
union_planner(Query *parse)
{
List *tlist = parse->targetList;
1998-09-08 02:50:20 +00:00
int tlist_len = length(tlist);
List *rangetable = parse->rtable;
Plan *result_plan = (Plan *) NULL;
Index rt_index;
1997-12-24 06:06:58 +00:00
if (parse->unionClause)
{
result_plan = (Plan *) plan_union_queries(parse);
/* XXX do we need to do this? bjm 12/19/97 */
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
1997-12-24 06:06:58 +00:00
}
else if ((rt_index =
first_inherit_rt_entry(rangetable)) != -1)
{
result_plan = (Plan *) plan_inherit_queries(parse, rt_index);
1997-12-20 07:59:44 +00:00
/* XXX do we need to do this? bjm 12/19/97 */
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
}
else
{
List **vpm = NULL;
/*
1998-09-08 02:50:20 +00:00
* check_having_qual_for_vars takes the havingQual and the tlist
* as arguments and recursively scans the havingQual for VAR nodes
* that are not contained in tlist yet. If so, it creates a new entry
* and attaches it to the tlist. Latter, we use tlist_len to
* truncate tlist - ie restore actual tlist...
*/
if (parse->hasAggs)
{
if (parse->havingQual != NULL)
1998-09-08 02:50:20 +00:00
tlist = check_having_qual_for_vars(parse->havingQual, tlist);
}
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
if (parse->rtable != NULL)
{
vpm = (List **) palloc(length(parse->rtable) * sizeof(List *));
memset(vpm, 0, length(parse->rtable) * sizeof(List *));
}
PlannerVarParam = lcons(vpm, PlannerVarParam);
result_plan = query_planner(parse,
parse->commandType,
1998-09-08 02:50:20 +00:00
tlist,
(List *) parse->qual);
PlannerVarParam = lnext(PlannerVarParam);
if (vpm != NULL)
pfree(vpm);
}
1997-12-20 07:59:44 +00:00
/*
* If we have a GROUP BY clause, insert a group node (with the
* appropriate sort node.)
*/
if (parse->groupClause)
1997-12-20 07:59:44 +00:00
{
bool tuplePerGroup;
/*
* decide whether how many tuples per group the Group node needs
* to return. (Needs only one tuple per group if no aggregate is
* present. Otherwise, need every tuple from the group to do the
* aggregation.)
*/
tuplePerGroup = parse->hasAggs;
1997-12-20 07:59:44 +00:00
result_plan =
1998-09-08 02:50:20 +00:00
make_groupPlan(&tlist,
tuplePerGroup,
parse->groupClause,
result_plan);
1997-12-20 07:59:44 +00:00
}
/*
* If aggregate is present, insert the agg node
*/
if (parse->hasAggs)
1997-12-20 07:59:44 +00:00
{
result_plan = (Plan *) make_agg(tlist, result_plan);
1997-12-20 07:59:44 +00:00
/*
* set the varno/attno entries to the appropriate references to
* the result tuple of the subplans.
1997-12-20 07:59:44 +00:00
*/
((Agg *) result_plan)->aggs =
set_agg_tlist_references((Agg *) result_plan);
if (parse->havingQual != NULL)
{
List *clause;
List **vpm = NULL;
1998-09-08 02:50:20 +00:00
/*
* Restore target list: get rid of Vars added for havingQual.
* Assumption: tlist_len > 0...
*/
{
List *l;
int tlen = 0;
foreach (l, ((Agg *) result_plan)->plan.targetlist)
{
if (++tlen == tlist_len)
break;
}
lnext(l) = NIL;
}
/*
* stuff copied from above to handle the use of attributes
* from outside in subselects
*/
if (parse->rtable != NULL)
{
vpm = (List **) palloc(length(parse->rtable) * sizeof(List *));
memset(vpm, 0, length(parse->rtable) * sizeof(List *));
}
PlannerVarParam = lcons(vpm, PlannerVarParam);
/*
* There is a subselect in the havingQual, so we have to
* process it using the same function as for a subselect in
* 'where'
*/
if (parse->hasSubLinks)
parse->havingQual = SS_process_sublinks((Node *) parse->havingQual);
/* convert the havingQual to conjunctive normal form (cnf) */
parse->havingQual = (Node *) cnfify((Expr *) (Node *) parse->havingQual, true);
/*
* Calculate the opfids from the opnos (=select the correct
* functions for the used VAR datatypes)
*/
parse->havingQual = (Node *) fix_opids((List *) parse->havingQual);
((Agg *) result_plan)->plan.qual = (List *) parse->havingQual;
/*
* Check every clause of the havingQual for aggregates used
* and append them to result_plan->aggs
*/
foreach(clause, ((Agg *) result_plan)->plan.qual)
{
((Agg *) result_plan)->aggs = nconc(((Agg *) result_plan)->aggs,
check_having_qual_for_aggs((Node *) lfirst(clause),
((Agg *) result_plan)->plan.lefttree->targetlist,
((List *) parse->groupClause)));
}
PlannerVarParam = lnext(PlannerVarParam);
if (vpm != NULL)
pfree(vpm);
}
}
1997-12-20 07:59:44 +00:00
/*
* For now, before we hand back the plan, check to see if there is a
* user-specified sort that needs to be done. Eventually, this will
* be moved into the guts of the planner s.t. user specified sorts
* will be considered as part of the planning process. Since we can
* only make use of user-specified sorts in special cases, we can do
* the optimization step later.
*/
if (parse->uniqueFlag)
{
Plan *sortplan = make_sortplan(tlist, parse->sortClause, result_plan);
1998-09-01 03:29:17 +00:00
return (Plan *) make_unique(tlist, sortplan, parse->uniqueFlag);
}
else
{
if (parse->sortClause)
1998-09-01 03:29:17 +00:00
return make_sortplan(tlist, parse->sortClause, result_plan);
else
1998-09-01 03:29:17 +00:00
return (Plan *) result_plan;
}
}
/*
* make_sortplan--
* Returns a sortplan which is basically a SORT node attached to the
* top of the plan returned from the planner. It also adds the
* cost of sorting into the plan.
*
* sortkeys: ( resdom1 resdom2 resdom3 ...)
* sortops: (sortop1 sortop2 sortop3 ...)
*/
static Plan *
make_sortplan(List *tlist, List *sortcls, Plan *plannode)
{
Plan *sortplan = (Plan *) NULL;
List *temp_tlist = NIL;
List *i = NIL;
Resdom *resnode = (Resdom *) NULL;
Resdom *resdom = (Resdom *) NULL;
int keyno = 1;
/*
* First make a copy of the tlist so that we don't corrupt the the
* original .
*/
temp_tlist = new_unsorted_tlist(tlist);
foreach(i, sortcls)
{
SortClause *sortcl = (SortClause *) lfirst(i);
resnode = sortcl->resdom;
resdom = tlist_resdom(temp_tlist, resnode);
/*
* Order the resdom keys and replace the operator OID for each key
* with the regproc OID.
*/
resdom->reskey = keyno;
resdom->reskeyop = get_opcode(sortcl->opoid);
keyno += 1;
}
sortplan = (Plan *) make_sort(temp_tlist,
_TEMP_RELATION_ID_,
(Plan *) plannode,
length(sortcls));
/*
* XXX Assuming that an internal sort has no. cost. This is wrong, but
* given that at this point, we don't know the no. of tuples returned,
* etc, we can't do better than to add a constant cost. This will be
* fixed once we move the sort further into the planner, but for now
* ... functionality....
*/
sortplan->cost = plannode->cost;
1998-09-01 03:29:17 +00:00
return sortplan;
}
/*
* pg_checkretval() -- check return value of a list of sql parse
* trees.
*
* The return value of a sql function is the value returned by
* the final query in the function. We do some ad-hoc define-time
* type checking here to be sure that the user is returning the
* type he claims.
*/
void
pg_checkretval(Oid rettype, QueryTreeList *queryTreeList)
{
Query *parse;
List *tlist;
List *rt;
int cmd;
Type typ;
Resdom *resnode;
Relation reln;
Oid relid;
Oid tletype;
int relnatts;
int i;
/* find the final query */
parse = queryTreeList->qtrees[queryTreeList->len - 1];
/*
* test 1: if the last query is a utility invocation, then there had
* better not be a return value declared.
*/
if (parse->commandType == CMD_UTILITY)
{
if (rettype == InvalidOid)
return;
else
elog(ERROR, "return type mismatch in function decl: final query is a catalog utility");
}
/* okay, it's an ordinary query */
tlist = parse->targetList;
rt = parse->rtable;
cmd = parse->commandType;
/*
* test 2: if the function is declared to return no value, then the
* final query had better not be a retrieve.
*/
if (rettype == InvalidOid)
{
if (cmd == CMD_SELECT)
elog(ERROR,
"function declared with no return type, but final query is a retrieve");
else
return;
}
/* by here, the function is declared to return some type */
if ((typ = typeidType(rettype)) == NULL)
elog(ERROR, "can't find return type %d for function\n", rettype);
/*
* test 3: if the function is declared to return a value, then the
* final query had better be a retrieve.
*/
if (cmd != CMD_SELECT)
elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ));
/*
* test 4: for base type returns, the target list should have exactly
* one entry, and its type should agree with what the user declared.
*/
if (typeTypeRelid(typ) == InvalidOid)
{
1998-07-20 21:18:35 +00:00
if (ExecTargetListLength(tlist) > 1)
elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ));
resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
if (resnode->restype != rettype)
elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype));
/* by here, base return types match */
return;
}
/*
* If the target list is of length 1, and the type of the varnode in
* the target list is the same as the declared return type, this is
* okay. This can happen, for example, where the body of the function
* is 'retrieve (x = func2())', where func2 has the same return type
* as the function that's calling it.
*/
1998-07-20 21:18:35 +00:00
if (ExecTargetListLength(tlist) == 1)
{
resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
if (resnode->restype == rettype)
return;
}
/*
* By here, the procedure returns a (set of) tuples. This part of the
* typechecking is a hack. We look up the relation that is the
* declared return type, and be sure that attributes 1 .. n in the
* target list match the declared types.
*/
reln = heap_open(typeTypeRelid(typ));
if (!RelationIsValid(reln))
elog(ERROR, "cannot open relation relid %d", typeTypeRelid(typ));
relid = reln->rd_id;
relnatts = reln->rd_rel->relnatts;
1998-07-20 21:18:35 +00:00
if (ExecTargetListLength(tlist) != relnatts)
elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ));
/* expect attributes 1 .. n in order */
for (i = 1; i <= relnatts; i++)
{
TargetEntry *tle = lfirst(tlist);
Node *thenode = tle->expr;
tlist = lnext(tlist);
tletype = exprType(thenode);
#if 0 /* fix me */
/* this is tedious */
if (IsA(thenode, Var))
tletype = (Oid) ((Var *) thenode)->vartype;
else if (IsA(thenode, Const))
tletype = (Oid) ((Const *) thenode)->consttype;
else if (IsA(thenode, Param))
tletype = (Oid) ((Param *) thenode)->paramtype;
else if (IsA(thenode, Expr))
tletype = Expr;
else if (IsA(thenode, LispList))
{
thenode = lfirst(thenode);
if (IsA(thenode, Oper))
tletype = (Oid) get_opresulttype((Oper *) thenode);
else if (IsA(thenode, Func))
tletype = (Oid) get_functype((Func *) thenode);
else
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
}
else
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
1997-09-05 20:20:56 +00:00
#endif
/* reach right in there, why don't you? */
if (tletype != reln->rd_att->attrs[i - 1]->atttypid)
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
}
heap_close(reln);
/* success */
return;
}