1440 lines
39 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* createplan.c
* Routines to create the desired plan for processing a query.
* Planning is complete, we just need to convert the selected
* Path into a Plan.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/createplan.c,v 1.78 2000/01/09 00:26:34 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include <sys/types.h>
#include "postgres.h"
#include "nodes/makefuncs.h"
1999-07-16 05:00:38 +00:00
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
1999-07-16 05:00:38 +00:00
#include "optimizer/cost.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
1999-07-16 05:00:38 +00:00
#include "optimizer/restrictinfo.h"
#include "optimizer/tlist.h"
1999-07-16 05:00:38 +00:00
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static List *switch_outer(List *clauses);
static int set_tlist_sort_info(List *tlist, List *pathkeys);
static Scan *create_scan_node(Query *root, Path *best_path, List *tlist);
static Join *create_join_node(Query *root, JoinPath *best_path, List *tlist);
static SeqScan *create_seqscan_node(Path *best_path, List *tlist,
List *scan_clauses);
static IndexScan *create_indexscan_node(Query *root, IndexPath *best_path,
List *tlist, List *scan_clauses);
static TidScan *create_tidscan_node(TidPath *best_path, List *tlist,
List *scan_clauses);
1999-05-25 22:43:53 +00:00
static NestLoop *create_nestloop_node(NestPath *best_path, List *tlist,
List *clauses, Plan *outer_node, List *outer_tlist,
Plan *inner_node, List *inner_tlist);
static MergeJoin *create_mergejoin_node(MergePath *best_path, List *tlist,
List *clauses, Plan *outer_node, List *outer_tlist,
Plan *inner_node, List *inner_tlist);
static HashJoin *create_hashjoin_node(HashPath *best_path, List *tlist,
List *clauses, Plan *outer_node, List *outer_tlist,
Plan *inner_node, List *inner_tlist);
static List *fix_indxqual_references(List *indexquals, IndexPath *index_path);
static List *fix_indxqual_sublist(List *indexqual, int baserelid, Oid relam,
Form_pg_index index);
static Node *fix_indxqual_operand(Node *node, int baserelid,
Form_pg_index index,
Oid *opclass);
static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
List *indxid, List *indxqual, List *indxqualorig);
static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
List *tideval);
static NestLoop *make_nestloop(List *qptlist, List *qpqual, Plan *lefttree,
Plan *righttree);
static HashJoin *make_hashjoin(List *tlist, List *qpqual,
List *hashclauses, Plan *lefttree, Plan *righttree);
static Hash *make_hash(List *tlist, Var *hashkey, Plan *lefttree);
static MergeJoin *make_mergejoin(List *tlist, List *qpqual,
List *mergeclauses, Plan *righttree, Plan *lefttree);
static Material *make_material(List *tlist, Oid nonameid, Plan *lefttree,
int keycount);
static void copy_path_costsize(Plan *dest, Path *src);
static void copy_plan_costsize(Plan *dest, Plan *src);
/*
* create_plan
* Creates the access plan for a query by tracing backwards through the
* desired chain of pathnodes, starting at the node 'best_path'. For
* every pathnode found:
* (1) Create a corresponding plan node containing appropriate id,
* target list, and qualification information.
* (2) Modify qual clauses of join nodes so that subplan attributes are
* referenced using relative values.
* (3) Target lists are not modified, but will be in setrefs.c.
*
* best_path is the best access path
*
* Returns the access plan.
*/
Plan *
create_plan(Query *root, Path *best_path)
{
List *tlist = best_path->parent->targetlist;
Plan *plan_node = (Plan *) NULL;
switch (best_path->pathtype)
{
case T_IndexScan:
case T_SeqScan:
case T_TidScan:
plan_node = (Plan *) create_scan_node(root, best_path, tlist);
break;
case T_HashJoin:
case T_MergeJoin:
case T_NestLoop:
plan_node = (Plan *) create_join_node(root,
(JoinPath *) best_path,
tlist);
break;
default:
elog(ERROR, "create_plan: unknown pathtype %d",
best_path->pathtype);
break;
}
1999-05-25 16:15:34 +00:00
#ifdef NOT_USED /* fix xfunc */
/* sort clauses by cost/(1-selectivity) -- JMH 2/26/92 */
if (XfuncMode != XFUNC_OFF)
{
set_qpqual((Plan) plan_node,
lisp_qsort(get_qpqual((Plan) plan_node),
xfunc_clause_compare));
if (XfuncMode != XFUNC_NOR)
/* sort the disjuncts within each clause by cost -- JMH 3/4/92 */
xfunc_disjunct_sort(plan_node->qpqual);
}
#endif
1998-09-01 03:29:17 +00:00
return plan_node;
}
/*
* create_scan_node
* Create a scan path for the parent relation of 'best_path'.
*
* tlist is the targetlist for the base relation scanned by 'best_path'
*
* Returns the scan node.
*/
static Scan *
create_scan_node(Query *root, Path *best_path, List *tlist)
{
Scan *node = NULL;
List *scan_clauses;
/*
* Extract the relevant restriction clauses from the parent relation;
* the executor must apply all these restrictions during the scan.
*/
scan_clauses = get_actual_clauses(best_path->parent->restrictinfo);
switch (best_path->pathtype)
{
case T_SeqScan:
node = (Scan *) create_seqscan_node(best_path, tlist, scan_clauses);
break;
case T_IndexScan:
node = (Scan *) create_indexscan_node(root,
(IndexPath *) best_path,
tlist,
scan_clauses);
break;
case T_TidScan:
node = (Scan *) create_tidscan_node((TidPath *) best_path,
tlist,
scan_clauses);
break;
default:
elog(ERROR, "create_scan_node: unknown node type",
best_path->pathtype);
break;
}
return node;
}
/*
1999-05-25 16:15:34 +00:00
* create_join_node
* Create a join path for 'best_path' and(recursively) paths for its
* inner and outer paths.
*
* 'tlist' is the targetlist for the join relation corresponding to
* 'best_path'
*
* Returns the join node.
*/
static Join *
create_join_node(Query *root, JoinPath *best_path, List *tlist)
{
Plan *outer_node;
List *outer_tlist;
Plan *inner_node;
List *inner_tlist;
List *clauses;
Join *retval = NULL;
outer_node = create_plan(root, best_path->outerjoinpath);
outer_tlist = outer_node->targetlist;
inner_node = create_plan(root, best_path->innerjoinpath);
inner_tlist = inner_node->targetlist;
clauses = get_actual_clauses(best_path->path.parent->restrictinfo);
switch (best_path->path.pathtype)
{
case T_MergeJoin:
retval = (Join *) create_mergejoin_node((MergePath *) best_path,
tlist,
clauses,
outer_node,
outer_tlist,
inner_node,
inner_tlist);
break;
case T_HashJoin:
retval = (Join *) create_hashjoin_node((HashPath *) best_path,
tlist,
clauses,
outer_node,
outer_tlist,
inner_node,
inner_tlist);
break;
case T_NestLoop:
1999-02-12 06:43:53 +00:00
retval = (Join *) create_nestloop_node((NestPath *) best_path,
tlist,
clauses,
outer_node,
outer_tlist,
inner_node,
inner_tlist);
break;
default:
elog(ERROR, "create_join_node: unknown node type",
best_path->path.pathtype);
}
#ifdef NOT_USED
/*
* * Expensive function pullups may have pulled local predicates *
1999-05-25 16:15:34 +00:00
* into this path node. Put them in the qpqual of the plan node. *
* JMH, 6/15/92
*/
if (get_loc_restrictinfo(best_path) != NIL)
set_qpqual((Plan) retval,
nconc(get_qpqual((Plan) retval),
get_actual_clauses(get_loc_restrictinfo(best_path))));
#endif
1998-09-01 03:29:17 +00:00
return retval;
}
/*****************************************************************************
*
* BASE-RELATION SCAN METHODS
*
*****************************************************************************/
/*
* create_seqscan_node
* Returns a seqscan node for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static SeqScan *
create_seqscan_node(Path *best_path, List *tlist, List *scan_clauses)
{
SeqScan *scan_node;
Index scan_relid;
/* there should be exactly one base rel involved... */
Assert(length(best_path->parent->relids) == 1);
scan_relid = (Index) lfirsti(best_path->parent->relids);
scan_node = make_seqscan(tlist,
scan_clauses,
scan_relid);
copy_path_costsize(&scan_node->plan, best_path);
1998-09-01 03:29:17 +00:00
return scan_node;
}
/*
* create_indexscan_node
* Returns a indexscan node for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*
* The indexqual of the path contains a sublist of implicitly-ANDed qual
* conditions for each scan of the index(es); if there is more than one
* scan then the retrieved tuple sets are ORed together. The indexqual
* and indexid lists must have the same length, ie, the number of scans
* that will occur. Note it is possible for a qual condition sublist
* to be empty --- then no index restrictions will be applied during that
* scan.
*/
static IndexScan *
create_indexscan_node(Query *root,
IndexPath *best_path,
List *tlist,
List *scan_clauses)
{
List *indxqual = best_path->indexqual;
List *qpqual;
List *fixed_indxqual;
List *ixid;
IndexScan *scan_node;
bool lossy = false;
double plan_rows;
/* there should be exactly one base rel involved... */
Assert(length(best_path->path.parent->relids) == 1);
/* check to see if any of the indices are lossy */
foreach(ixid, best_path->indexid)
{
HeapTuple indexTuple;
Form_pg_index index;
indexTuple = SearchSysCacheTuple(INDEXRELID,
ObjectIdGetDatum(lfirsti(ixid)),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "create_plan: index %u not found", lfirsti(ixid));
1998-09-01 03:29:17 +00:00
index = (Form_pg_index) GETSTRUCT(indexTuple);
if (index->indislossy)
{
lossy = true;
break;
}
}
/*
* The qpqual list must contain all restrictions not automatically
* handled by the index. Note that for non-lossy indices, the
* predicates in the indxqual are checked fully by the index, while
* for lossy indices the indxqual predicates need to be double-checked
* after the index fetches the best-guess tuples.
*
* Since the indexquals were generated from the restriction clauses
* given by scan_clauses, there will normally be some duplications
* between the lists. We get rid of the duplicates, then add back
* if lossy.
*
* If this indexscan is a nestloop-join inner indexscan (as indicated
* by having nonempty joinrelids), then it uses indexqual conditions
* that are not part of the relation's restriction clauses. The rows
* estimate stored in the relation's RelOptInfo will be an overestimate
* because it did not take these extra conditions into account. So,
* in this case we recompute the selectivity of the whole scan ---
* considering both indexqual and qpqual --- rather than using the
* RelOptInfo's rows value. Since clausesel.c assumes it's working on
* minimized (no duplicates) expressions, we have to do that while we
* have the duplicate-free qpqual available.
*/
plan_rows = best_path->path.parent->rows; /* OK unless nestloop inner */
if (length(indxqual) > 1)
{
/*
* Build an expression representation of the indexqual, expanding
* the implicit OR and AND semantics of the first- and second-level
* lists.
*/
List *orclauses = NIL;
List *orclause;
Expr *indxqual_expr;
foreach(orclause, indxqual)
orclauses = lappend(orclauses,
make_ands_explicit(lfirst(orclause)));
indxqual_expr = make_orclause(orclauses);
qpqual = set_difference(scan_clauses,
lcons(indxqual_expr, NIL));
if (best_path->joinrelids)
{
/* recompute output row estimate using all available quals */
plan_rows = best_path->path.parent->tuples *
clauselist_selec(root, lcons(indxqual_expr, qpqual));
}
if (lossy)
qpqual = lappend(qpqual, copyObject(indxqual_expr));
}
else if (indxqual != NIL)
{
/* Here, we can simply treat the first sublist as an independent
* set of qual expressions, since there is no top-level OR behavior.
*/
List *indxqual_list = lfirst(indxqual);
qpqual = set_difference(scan_clauses, indxqual_list);
if (best_path->joinrelids)
{
/* recompute output row estimate using all available quals */
plan_rows = best_path->path.parent->tuples *
clauselist_selec(root, nconc(listCopy(indxqual_list), qpqual));
}
if (lossy)
qpqual = nconc(qpqual, (List *) copyObject(indxqual_list));
}
else
qpqual = scan_clauses;
/* The executor needs a copy with the indexkey on the left of each clause
* and with index attr numbers substituted for table ones.
*/
fixed_indxqual = fix_indxqual_references(indxqual, best_path);
scan_node = make_indexscan(tlist,
1999-05-25 16:15:34 +00:00
qpqual,
lfirsti(best_path->path.parent->relids),
best_path->indexid,
fixed_indxqual,
indxqual);
copy_path_costsize(&scan_node->scan.plan, &best_path->path);
scan_node->scan.plan.plan_rows = plan_rows;
1998-09-01 03:29:17 +00:00
return scan_node;
}
static TidScan *
make_tidscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *tideval)
{
TidScan *node = makeNode(TidScan);
Plan *plan = &node->scan.plan;
plan->cost = 0;
plan->plan_rows = 0;
plan->plan_width = 0;
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->tideval = copyObject(tideval); /* XXX do we really need a copy? */
node->needRescan = false;
node->scan.scanstate = (CommonScanState *) NULL;
return node;
}
/*
* create_tidscan_node
* Returns a tidscan node for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static TidScan *
create_tidscan_node(TidPath *best_path, List *tlist, List *scan_clauses)
{
TidScan *scan_node;
Index scan_relid;
/* there should be exactly one base rel involved... */
Assert(length(best_path->path.parent->relids) == 1);
scan_relid = (Index) lfirsti(best_path->path.parent->relids);
scan_node = make_tidscan(tlist,
scan_clauses,
scan_relid,
best_path->tideval);
if (best_path->unjoined_relids)
scan_node->needRescan = true;
copy_path_costsize(&scan_node->scan.plan, &best_path->path);
return scan_node;
}
/*****************************************************************************
*
* JOIN METHODS
*
* A general note about join_references() processing in these routines:
* once we have changed a Var node to refer to a subplan output rather than
* the original relation, it is no longer equal() to an unmodified Var node
* for the same var. So, we cannot easily compare reference-adjusted qual
* clauses to clauses that have not been adjusted. Fortunately, that
* doesn't seem to be necessary; all the decisions are made before we do
* the reference adjustments.
*
* A cleaner solution would be to not call join_references() here at all,
* but leave it for setrefs.c to do at the end of plan tree construction.
* But that would make switch_outer() much more complicated, and some care
* would be needed to get setrefs.c to do the right thing with nestloop
* inner indexscan quals. So, we do subplan reference adjustment here for
* quals of join nodes (and *only* for quals of join nodes).
*
*****************************************************************************/
static NestLoop *
1999-05-25 22:43:53 +00:00
create_nestloop_node(NestPath *best_path,
List *tlist,
List *clauses,
Plan *outer_node,
List *outer_tlist,
Plan *inner_node,
List *inner_tlist)
{
NestLoop *join_node;
if (IsA(inner_node, IndexScan))
{
/*
* An index is being used to reduce the number of tuples scanned
* in the inner relation. If there are join clauses being used
* with the index, we must update their outer-rel var nodes to
* refer to the outer side of the join.
*
* We can also remove those join clauses from the list of clauses
* that have to be checked as qpquals at the join node, but only
* if there's just one indexscan in the inner path (otherwise,
* several different sets of clauses are being ORed together).
*
* Note: if the index is lossy, the same clauses may also be getting
* checked as qpquals in the indexscan. We can still remove them
* from the nestloop's qpquals, but we gotta update the outer-rel
* vars in the indexscan's qpquals too.
*
* Note: we can safely do set_difference() against my clauses and
* join_references() because the innerscan is a primitive plan,
* and therefore has not itself done join_references renumbering
* of the vars in its quals.
*/
IndexScan *innerscan = (IndexScan *) inner_node;
List *indxqualorig = innerscan->indxqualorig;
/* No work needed if indxqual refers only to its own relation... */
if (NumRelids((Node *) indxqualorig) > 1)
{
Index innerrel = innerscan->scan.scanrelid;
/* Remove redundant tests from my clauses, if possible.
* Note we must compare against indxqualorig not the "fixed"
* indxqual (which has index attnos instead of relation attnos,
* and may have been commuted as well).
*/
if (length(indxqualorig) == 1) /* single indexscan? */
clauses = set_difference(clauses, lfirst(indxqualorig));
/* only refs to outer vars get changed in the inner indexqual */
innerscan->indxqualorig = join_references(indxqualorig,
outer_tlist,
NIL,
innerrel);
innerscan->indxqual = join_references(innerscan->indxqual,
outer_tlist,
NIL,
innerrel);
/* fix the inner qpqual too, if it has join clauses */
if (NumRelids((Node *) inner_node->qual) > 1)
inner_node->qual = join_references(inner_node->qual,
outer_tlist,
NIL,
innerrel);
}
}
else if (IsA(inner_node, TidScan))
{
List *inner_tideval = ((TidScan *) inner_node)->tideval;
TidScan *innerscan = (TidScan *) inner_node;
((TidScan *) inner_node)->tideval = join_references(inner_tideval, outer_tlist, inner_tlist, innerscan->scan.scanrelid);
}
else if (IsA_Join(inner_node))
{
/*
* Materialize the inner join for speed reasons.
*
* XXX It is probably *not* always fastest to materialize an inner
* join --- how can we estimate whether this is a good thing to do?
*/
inner_node = (Plan *) make_noname(inner_tlist,
1999-05-25 16:15:34 +00:00
NIL,
inner_node);
}
join_node = make_nestloop(tlist,
join_references(clauses,
outer_tlist,
inner_tlist,
(Index) 0),
outer_node,
inner_node);
copy_path_costsize(&join_node->join, &best_path->path);
1998-09-01 03:29:17 +00:00
return join_node;
}
static MergeJoin *
create_mergejoin_node(MergePath *best_path,
List *tlist,
List *clauses,
Plan *outer_node,
List *outer_tlist,
Plan *inner_node,
List *inner_tlist)
{
List *qpqual,
*mergeclauses;
MergeJoin *join_node;
/*
* Remove the mergeclauses from the list of join qual clauses,
* leaving the list of quals that must be checked as qpquals.
* Set those clauses to contain INNER/OUTER var references.
*/
qpqual = join_references(set_difference(clauses,
best_path->path_mergeclauses),
outer_tlist,
inner_tlist,
(Index) 0);
/*
* Now set the references in the mergeclauses and rearrange them so
* that the outer variable is always on the left.
*/
mergeclauses = switch_outer(join_references(best_path->path_mergeclauses,
outer_tlist,
inner_tlist,
(Index) 0));
/*
* Create explicit sort nodes for the outer and inner join paths if
* necessary. The sort cost was already accounted for in the path.
*/
if (best_path->outersortkeys)
outer_node = (Plan *) make_noname(outer_tlist,
best_path->outersortkeys,
outer_node);
if (best_path->innersortkeys)
inner_node = (Plan *) make_noname(inner_tlist,
best_path->innersortkeys,
inner_node);
join_node = make_mergejoin(tlist,
qpqual,
mergeclauses,
inner_node,
outer_node);
copy_path_costsize(&join_node->join, &best_path->jpath.path);
1998-09-01 03:29:17 +00:00
return join_node;
}
static HashJoin *
create_hashjoin_node(HashPath *best_path,
List *tlist,
List *clauses,
Plan *outer_node,
List *outer_tlist,
Plan *inner_node,
List *inner_tlist)
{
List *qpqual;
List *hashclauses;
HashJoin *join_node;
Hash *hash_node;
Var *innerhashkey;
/*
* NOTE: there will always be exactly one hashclause in the list
* best_path->path_hashclauses (cf. hash_inner_and_outer()).
* We represent it as a list anyway, for convenience with routines
* that want to work on lists of clauses.
*/
/*
* Remove the hashclauses from the list of join qual clauses,
* leaving the list of quals that must be checked as qpquals.
* Set those clauses to contain INNER/OUTER var references.
*/
qpqual = join_references(set_difference(clauses,
1999-05-25 16:15:34 +00:00
best_path->path_hashclauses),
outer_tlist,
inner_tlist,
(Index) 0);
/*
* Now set the references in the hashclauses and rearrange them so
* that the outer variable is always on the left.
*/
hashclauses = switch_outer(join_references(best_path->path_hashclauses,
1999-05-25 16:15:34 +00:00
outer_tlist,
inner_tlist,
(Index) 0));
/* Now the righthand op of the sole hashclause is the inner hash key. */
innerhashkey = get_rightop(lfirst(hashclauses));
/*
* Build the hash node and hash join node.
*/
hash_node = make_hash(inner_tlist, innerhashkey, inner_node);
join_node = make_hashjoin(tlist,
qpqual,
hashclauses,
outer_node,
(Plan *) hash_node);
copy_path_costsize(&join_node->join, &best_path->jpath.path);
1998-09-01 03:29:17 +00:00
return join_node;
}
/*****************************************************************************
*
* SUPPORTING ROUTINES
*
*****************************************************************************/
/*
* fix_indxqual_references
* Adjust indexqual clauses to the form the executor's indexqual
* machinery needs.
*
* We have three tasks here:
* * Var nodes representing index keys must have varattno equal to the
* index's attribute number, not the attribute number in the original rel.
* * indxpath.c may have selected an index that is binary-compatible with
* the actual expression operator, but not the same; we must replace the
* expression's operator with the binary-compatible equivalent operator
* that the index will recognize.
* * If the index key is on the right, commute the clause to put it on the
* left. (Someday the executor might not need this, but for now it does.)
*
* This code used to be entirely bogus for multi-index scans. Now it keeps
* track of which index applies to each subgroup of index qual clauses...
*
* Returns a modified copy of the indexqual list --- the original is not
* changed.
*/
static List *
fix_indxqual_references(List *indexquals, IndexPath *index_path)
{
List *fixed_quals = NIL;
int baserelid = lfirsti(index_path->path.parent->relids);
List *indexids = index_path->indexid;
List *i;
foreach(i, indexquals)
{
List *indexqual = lfirst(i);
Oid indexid = lfirsti(indexids);
HeapTuple indexTuple;
Oid relam;
Form_pg_index index;
1999-05-25 16:15:34 +00:00
/* Get the relam from the index's pg_class entry */
indexTuple = SearchSysCacheTuple(RELOID,
ObjectIdGetDatum(indexid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "fix_indxqual_references: index %u not found in pg_class",
indexid);
relam = ((Form_pg_class) GETSTRUCT(indexTuple))->relam;
/* Need the index's pg_index entry for other stuff */
indexTuple = SearchSysCacheTuple(INDEXRELID,
ObjectIdGetDatum(indexid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "fix_indxqual_references: index %u not found in pg_index",
indexid);
index = (Form_pg_index) GETSTRUCT(indexTuple);
fixed_quals = lappend(fixed_quals,
fix_indxqual_sublist(indexqual,
baserelid,
relam,
index));
indexids = lnext(indexids);
}
return fixed_quals;
}
1999-05-25 16:15:34 +00:00
/*
* Fix the sublist of indexquals to be used in a particular scan.
*
* For each qual clause, commute if needed to put the indexkey operand on the
* left, and then change its varno. (We do not need to change the other side
* of the clause.) Also change the operator if necessary.
*/
static List *
fix_indxqual_sublist(List *indexqual, int baserelid, Oid relam,
Form_pg_index index)
{
List *fixed_qual = NIL;
List *i;
foreach(i, indexqual)
{
Expr *clause = (Expr *) lfirst(i);
int relid;
AttrNumber attno;
Datum constval;
int flag;
Expr *newclause;
Oid opclass,
newopno;
if (!is_opclause((Node *) clause) ||
length(clause->args) != 2)
elog(ERROR, "fix_indxqual_sublist: indexqual clause is not binary opclause");
/* Which side is the indexkey on?
*
* get_relattval sets flag&SEL_RIGHT if the indexkey is on the LEFT.
*/
get_relattval((Node *) clause, baserelid,
&relid, &attno, &constval, &flag);
/* Copy enough structure to allow commuting and replacing an operand
* without changing original clause.
*/
newclause = make_clause(clause->opType, clause->oper,
listCopy(clause->args));
/* If the indexkey is on the right, commute the clause. */
if ((flag & SEL_RIGHT) == 0)
CommuteClause(newclause);
/* Now, determine which index attribute this is,
* change the indexkey operand as needed,
* and get the index opclass.
*/
lfirst(newclause->args) = fix_indxqual_operand(lfirst(newclause->args),
baserelid,
index,
&opclass);
/* Substitute the appropriate operator if the expression operator
* is merely binary-compatible with the index. This shouldn't fail,
* since indxpath.c found it before...
*/
newopno = indexable_operator(newclause, opclass, relam, true);
if (newopno == InvalidOid)
elog(ERROR, "fix_indxqual_sublist: failed to find substitute op");
if (newopno != ((Oper *) newclause->oper)->opno)
{
newclause->oper = (Node *) copyObject(newclause->oper);
((Oper *) newclause->oper)->opno = newopno;
}
fixed_qual = lappend(fixed_qual, newclause);
}
return fixed_qual;
}
static Node *
fix_indxqual_operand(Node *node, int baserelid, Form_pg_index index,
Oid *opclass)
{
if (IsA(node, Var))
{
if (((Var *) node)->varno == baserelid)
{
int varatt = ((Var *) node)->varattno;
int pos;
1999-05-25 16:15:34 +00:00
for (pos = 0; pos < INDEX_MAX_KEYS; pos++)
{
if (index->indkey[pos] == varatt)
{
Node *newnode = copyObject(node);
((Var *) newnode)->varattno = pos + 1;
*opclass = index->indclass[pos];
return newnode;
}
}
}
/*
* Oops, this Var isn't the indexkey!
*/
elog(ERROR, "fix_indxqual_operand: var is not index attribute");
}
/*
* Else, it must be a func expression representing a functional index.
*
* Currently, there is no need for us to do anything here for
* functional indexes. If nodeIndexscan.c sees a func clause as the left
* or right-hand toplevel operand of an indexqual, it assumes that that is
* a reference to the functional index's value and makes the appropriate
* substitution. (It would be cleaner to make the substitution here, I
* think --- suspect this issue if a join clause involving a function call
* misbehaves...)
*/
/* indclass[0] is the only class of a functional index */
*opclass = index->indclass[0];
/* return the unmodified node */
return node;
}
/*
* switch_outer
* Given a list of merge or hash joinclauses, rearrange the elements within
* the clauses so the outer join variable is on the left and the inner is
* on the right. The original list is not touched; a modified list
* is returned.
*/
static List *
switch_outer(List *clauses)
{
List *t_list = NIL;
List *i;
foreach(i, clauses)
1997-04-22 03:32:38 +00:00
{
Expr *clause = (Expr *) lfirst(i);
Var *op;
1999-05-25 16:15:34 +00:00
Assert(is_opclause((Node *) clause));
op = get_rightop(clause);
Assert(op && IsA(op, Var));
if (var_is_outer(op))
{
1999-05-25 16:15:34 +00:00
/*
* Duplicate just enough of the structure to allow commuting
* the clause without changing the original list. Could use
* copyObject, but a complete deep copy is overkill.
*/
Expr *temp;
temp = make_clause(clause->opType, clause->oper,
listCopy(clause->args));
/* Commute it --- note this modifies the temp node in-place. */
CommuteClause(temp);
t_list = lappend(t_list, temp);
}
else
t_list = lappend(t_list, clause);
}
1998-09-01 03:29:17 +00:00
return t_list;
}
/*
* set_tlist_sort_info
* Sets the reskey and reskeyop fields of resdom nodes in a target list
* for a sort node.
*
* 'tlist' is the target list (which is modified in-place).
* tlist's reskey fields must be clear to start with.
* 'pathkeys' is the desired pathkeys for the sort. NIL means no sort.
*
* Returns the number of sort keys assigned (which might be less than
* length(pathkeys)!)
*/
static int
set_tlist_sort_info(List *tlist, List *pathkeys)
{
int keysassigned = 0;
List *i;
foreach(i, pathkeys)
{
List *keysublist = (List *) lfirst(i);
PathKeyItem *pathkey = NULL;
Resdom *resdom = NULL;
List *j;
1999-05-25 16:15:34 +00:00
/*
* We can sort by any one of the sort key items listed in this
* sublist. For now, we take the first one that corresponds to
* an available Var in the tlist.
*
* XXX if we have a choice, is there any way of figuring out which
* might be cheapest to execute? (For example, int4lt is likely
* much cheaper to execute than numericlt, but both might appear in
* the same pathkey sublist...) Not clear that we ever will have
* a choice in practice, so it may not matter.
*/
foreach(j, keysublist)
{
pathkey = lfirst(j);
Assert(IsA(pathkey, PathKeyItem));
resdom = tlist_member(pathkey->key, tlist);
if (resdom)
break;
}
if (!resdom)
elog(ERROR, "set_tlist_sort_info: cannot find tlist item to sort");
/*
* The resdom might be already marked as a sort key, if the pathkeys
* contain duplicate entries. (This can happen in scenarios where
* multiple mergejoinable clauses mention the same var, for example.)
* In that case the current pathkey is essentially a no-op, because
* only one value can be seen within any subgroup where it would be
* consulted. We can ignore it.
*/
if (resdom->reskey == 0)
{
/* OK, mark it as a sort key and set the sort operator regproc */
resdom->reskey = ++keysassigned;
resdom->reskeyop = get_opcode(pathkey->sortop);
}
}
return keysassigned;
}
/*
* Copy cost and size info from a Path node to the Plan node created from it.
* The executor won't use this info, but it's needed by EXPLAIN.
*/
static void
copy_path_costsize(Plan *dest, Path *src)
{
if (src)
{
dest->cost = src->path_cost;
dest->plan_rows = src->parent->rows;
dest->plan_width = src->parent->width;
}
else
{
dest->cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*
* Copy cost and size info from a lower plan node to an inserted node.
* This is not critical, since the decisions have already been made,
* but it helps produce more reasonable-looking EXPLAIN output.
*/
static void
copy_plan_costsize(Plan *dest, Plan *src)
{
if (src)
{
dest->cost = src->cost;
dest->plan_rows = src->plan_rows;
dest->plan_width = src->plan_width;
}
else
{
dest->cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*****************************************************************************
*
*
*****************************************************************************/
/*
* make_noname
* Create plan node to sort or materialize relations into noname.
*
* 'tlist' is the target list of the scan to be sorted or materialized
* 'pathkeys' is the list of pathkeys by which the result is to be sorted
* (NIL implies no sort needed, just materialize it)
* 'subplan' is the node which yields input tuples
*/
Noname *
make_noname(List *tlist,
1999-05-25 16:15:34 +00:00
List *pathkeys,
Plan *subplan)
{
List *noname_tlist;
int numsortkeys;
Plan *retval;
/* Create a new target list for the noname, with sort keys set. */
noname_tlist = new_unsorted_tlist(tlist);
numsortkeys = set_tlist_sort_info(noname_tlist, pathkeys);
if (numsortkeys > 0)
{
/* need to sort */
retval = (Plan *) make_sort(noname_tlist,
_NONAME_RELATION_ID_,
subplan,
numsortkeys);
}
else
{
/* no sort */
retval = (Plan *) make_material(noname_tlist,
_NONAME_RELATION_ID_,
subplan,
0);
}
return (Noname *) retval;
}
SeqScan *
make_seqscan(List *qptlist,
List *qpqual,
Index scanrelid)
{
SeqScan *node = makeNode(SeqScan);
Plan *plan = &node->plan;
copy_plan_costsize(plan, NULL);
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scanrelid = scanrelid;
node->scanstate = (CommonScanState *) NULL;
1998-09-01 03:29:17 +00:00
return node;
}
static IndexScan *
make_indexscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *indxid,
1997-12-18 12:21:02 +00:00
List *indxqual,
List *indxqualorig)
{
IndexScan *node = makeNode(IndexScan);
Plan *plan = &node->scan.plan;
copy_plan_costsize(plan, NULL);
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indxid = indxid;
node->indxqual = indxqual;
node->indxqualorig = indxqualorig;
node->indxorderdir = NoMovementScanDirection;
node->scan.scanstate = (CommonScanState *) NULL;
1998-09-01 03:29:17 +00:00
return node;
}
static NestLoop *
make_nestloop(List *qptlist,
List *qpqual,
Plan *lefttree,
Plan *righttree)
{
NestLoop *node = makeNode(NestLoop);
Plan *plan = &node->join;
1999-05-25 16:15:34 +00:00
/*
* this cost estimate is entirely bogus... hopefully it will be
* overwritten by caller.
*/
plan->cost = (lefttree ? lefttree->cost : 0) +
(righttree ? righttree->cost : 0);
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->nlstate = (NestLoopState *) NULL;
1998-09-01 03:29:17 +00:00
return node;
}
static HashJoin *
make_hashjoin(List *tlist,
List *qpqual,
List *hashclauses,
Plan *lefttree,
Plan *righttree)
{
HashJoin *node = makeNode(HashJoin);
Plan *plan = &node->join;
1999-05-25 16:15:34 +00:00
/*
* this cost estimate is entirely bogus... hopefully it will be
* overwritten by caller.
*/
plan->cost = (lefttree ? lefttree->cost : 0) +
(righttree ? righttree->cost : 0);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = qpqual;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->hashclauses = hashclauses;
node->hashdone = false;
1998-09-01 03:29:17 +00:00
return node;
}
static Hash *
make_hash(List *tlist, Var *hashkey, Plan *lefttree)
{
Hash *node = makeNode(Hash);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NULL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->hashkey = hashkey;
1998-09-01 03:29:17 +00:00
return node;
}
static MergeJoin *
make_mergejoin(List *tlist,
List *qpqual,
List *mergeclauses,
Plan *righttree,
Plan *lefttree)
{
MergeJoin *node = makeNode(MergeJoin);
Plan *plan = &node->join;
1999-05-25 16:15:34 +00:00
/*
* this cost estimate is entirely bogus... hopefully it will be
* overwritten by caller.
*/
plan->cost = (lefttree ? lefttree->cost : 0) +
(righttree ? righttree->cost : 0);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = qpqual;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->mergeclauses = mergeclauses;
1998-09-01 03:29:17 +00:00
return node;
}
Sort *
make_sort(List *tlist, Oid nonameid, Plan *lefttree, int keycount)
{
Sort *node = makeNode(Sort);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
plan->cost += cost_sort(NIL, plan->plan_rows, plan->plan_width);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->nonameid = nonameid;
node->keycount = keycount;
1998-09-01 03:29:17 +00:00
return node;
}
static Material *
make_material(List *tlist,
Oid nonameid,
Plan *lefttree,
int keycount)
{
Material *node = makeNode(Material);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->nonameid = nonameid;
node->keycount = keycount;
1998-09-01 03:29:17 +00:00
return node;
}
Agg *
make_agg(List *tlist, Plan *lefttree)
{
Agg *node = makeNode(Agg);
copy_plan_costsize(&node->plan, lefttree);
node->plan.state = (EState *) NULL;
node->plan.qual = NULL;
node->plan.targetlist = tlist;
1997-12-18 12:30:44 +00:00
node->plan.lefttree = lefttree;
node->plan.righttree = (Plan *) NULL;
1998-09-01 03:29:17 +00:00
return node;
}
Group *
make_group(List *tlist,
bool tuplePerGroup,
int ngrp,
1997-09-08 20:59:27 +00:00
AttrNumber *grpColIdx,
Plan *lefttree)
{
Group *node = makeNode(Group);
copy_plan_costsize(&node->plan, lefttree);
node->plan.state = (EState *) NULL;
node->plan.qual = NULL;
node->plan.targetlist = tlist;
node->plan.lefttree = lefttree;
node->plan.righttree = (Plan *) NULL;
node->tuplePerGroup = tuplePerGroup;
node->numCols = ngrp;
node->grpColIdx = grpColIdx;
1998-09-01 03:29:17 +00:00
return node;
}
/*
* The uniqueAttr argument must be a null-terminated string,
* either the name of the attribute to select unique on
* or "*"
*/
Unique *
make_unique(List *tlist, Plan *lefttree, char *uniqueAttr)
{
Unique *node = makeNode(Unique);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->nonameid = _NONAME_RELATION_ID_;
node->keycount = 0;
if (strcmp(uniqueAttr, "*") == 0)
node->uniqueAttr = NULL;
else
node->uniqueAttr = pstrdup(uniqueAttr);
1998-09-01 03:29:17 +00:00
return node;
}
Result *
make_result(List *tlist,
Node *resconstantqual,
Plan *subplan)
{
Result *node = makeNode(Result);
Plan *plan = &node->plan;
#ifdef NOT_USED
tlist = generate_fjoin(tlist);
#endif
copy_plan_costsize(plan, subplan);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = subplan;
plan->righttree = NULL;
node->resconstantqual = resconstantqual;
node->resstate = NULL;
return node;
}
#ifdef NOT_USED
List *
generate_fjoin(List *tlist)
{
List tlistP;
List newTlist = NIL;
List fjoinList = NIL;
int nIters = 0;
/*
* Break the target list into elements with Iter nodes, and those
* without them.
*/
foreach(tlistP, tlist)
{
List tlistElem;
tlistElem = lfirst(tlistP);
if (IsA(lsecond(tlistElem), Iter))
{
nIters++;
fjoinList = lappend(fjoinList, tlistElem);
}
else
newTlist = lappend(newTlist, tlistElem);
}
/*
* if we have an Iter node then we need to flatten.
*/
if (nIters > 0)
{
List *inner;
List *tempList;
Fjoin *fjoinNode;
DatumPtr results = (DatumPtr) palloc(nIters * sizeof(Datum));
BoolPtr alwaysDone = (BoolPtr) palloc(nIters * sizeof(bool));
inner = lfirst(fjoinList);
fjoinList = lnext(fjoinList);
fjoinNode = (Fjoin) MakeFjoin(false,
nIters,
inner,
results,
alwaysDone);
tempList = lcons(fjoinNode, fjoinList);
newTlist = lappend(newTlist, tempList);
}
return newTlist;
return tlist; /* do nothing for now - ay 10/94 */
}
#endif