2382 lines
65 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* createplan.c
* Routines to create the desired plan for processing a query.
* Planning is complete, we just need to convert the selected
* Path into a Plan.
*
2003-08-04 02:40:20 +00:00
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/createplan.c,v 1.154 2003/08/11 20:46:46 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "nodes/makefuncs.h"
1999-07-16 05:00:38 +00:00
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
1999-07-16 05:00:38 +00:00
#include "optimizer/cost.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
1999-07-16 05:00:38 +00:00
#include "optimizer/restrictinfo.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "parser/parse_clause.h"
#include "parser/parse_expr.h"
1999-07-16 05:00:38 +00:00
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static Scan *create_scan_plan(Query *root, Path *best_path);
static List *build_relation_tlist(RelOptInfo *rel);
static bool use_physical_tlist(RelOptInfo *rel);
static void disuse_physical_tlist(Plan *plan, Path *path);
static Join *create_join_plan(Query *root, JoinPath *best_path);
static Append *create_append_plan(Query *root, AppendPath *best_path);
static Result *create_result_plan(Query *root, ResultPath *best_path);
static Material *create_material_plan(Query *root, MaterialPath *best_path);
static Plan *create_unique_plan(Query *root, UniquePath *best_path);
static SeqScan *create_seqscan_plan(Path *best_path, List *tlist,
List *scan_clauses);
static IndexScan *create_indexscan_plan(Query *root, IndexPath *best_path,
List *tlist, List *scan_clauses);
static TidScan *create_tidscan_plan(TidPath *best_path, List *tlist,
List *scan_clauses);
static SubqueryScan *create_subqueryscan_plan(Path *best_path,
2001-03-22 04:01:46 +00:00
List *tlist, List *scan_clauses);
static FunctionScan *create_functionscan_plan(Path *best_path,
List *tlist, List *scan_clauses);
static NestLoop *create_nestloop_plan(Query *root, NestPath *best_path,
Plan *outer_plan, Plan *inner_plan);
static MergeJoin *create_mergejoin_plan(Query *root, MergePath *best_path,
Plan *outer_plan, Plan *inner_plan);
static HashJoin *create_hashjoin_plan(Query *root, HashPath *best_path,
Plan *outer_plan, Plan *inner_plan);
static void fix_indxqual_references(List *indexquals, IndexPath *index_path,
List **fixed_indexquals,
List **recheck_indexquals);
static void fix_indxqual_sublist(List *indexqual,
2003-08-04 00:43:34 +00:00
Relids baserelids, int baserelid,
IndexOptInfo *index,
List **fixed_quals, List **recheck_quals);
static Node *fix_indxqual_operand(Node *node, int baserelid,
IndexOptInfo *index,
Oid *opclass);
static List *get_switched_clauses(List *clauses, Relids outerrelids);
static List *order_qual_clauses(Query *root, List *clauses);
static void copy_path_costsize(Plan *dest, Path *src);
static void copy_plan_costsize(Plan *dest, Plan *src);
static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
List *indxid, List *indxqual,
List *indxqualorig,
ScanDirection indexscandir);
static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
List *tideval);
static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
2002-09-04 20:31:48 +00:00
Index scanrelid);
static NestLoop *make_nestloop(List *tlist,
2001-03-22 04:01:46 +00:00
List *joinclauses, List *otherclauses,
Plan *lefttree, Plan *righttree,
JoinType jointype);
static HashJoin *make_hashjoin(List *tlist,
2001-03-22 04:01:46 +00:00
List *joinclauses, List *otherclauses,
List *hashclauses,
Plan *lefttree, Plan *righttree,
JoinType jointype);
static Hash *make_hash(List *tlist, List *hashkeys, Plan *lefttree);
static MergeJoin *make_mergejoin(List *tlist,
2001-03-22 04:01:46 +00:00
List *joinclauses, List *otherclauses,
List *mergeclauses,
Plan *lefttree, Plan *righttree,
JoinType jointype);
static Sort *make_sort(Query *root, List *tlist, Plan *lefttree, int numCols,
2003-08-04 00:43:34 +00:00
AttrNumber *sortColIdx, Oid *sortOperators);
static Sort *make_sort_from_pathkeys(Query *root, Plan *lefttree,
2003-08-04 00:43:34 +00:00
Relids relids, List *pathkeys);
/*
* create_plan
* Creates the access plan for a query by tracing backwards through the
* desired chain of pathnodes, starting at the node 'best_path'. For
* every pathnode found:
* (1) Create a corresponding plan node containing appropriate id,
* target list, and qualification information.
* (2) Modify qual clauses of join nodes so that subplan attributes are
* referenced using relative values.
* (3) Target lists are not modified, but will be in setrefs.c.
*
* best_path is the best access path
*
* Returns a Plan tree.
*/
Plan *
create_plan(Query *root, Path *best_path)
{
Plan *plan;
switch (best_path->pathtype)
{
case T_IndexScan:
case T_SeqScan:
case T_TidScan:
case T_SubqueryScan:
case T_FunctionScan:
plan = (Plan *) create_scan_plan(root, best_path);
break;
case T_HashJoin:
case T_MergeJoin:
case T_NestLoop:
plan = (Plan *) create_join_plan(root,
(JoinPath *) best_path);
break;
case T_Append:
plan = (Plan *) create_append_plan(root,
(AppendPath *) best_path);
break;
case T_Result:
plan = (Plan *) create_result_plan(root,
(ResultPath *) best_path);
break;
case T_Material:
plan = (Plan *) create_material_plan(root,
2003-08-04 00:43:34 +00:00
(MaterialPath *) best_path);
break;
case T_Unique:
plan = (Plan *) create_unique_plan(root,
(UniquePath *) best_path);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
1999-05-25 16:15:34 +00:00
#ifdef NOT_USED /* fix xfunc */
/* sort clauses by cost/(1-selectivity) -- JMH 2/26/92 */
if (XfuncMode != XFUNC_OFF)
{
set_qpqual((Plan) plan,
lisp_qsort(get_qpqual((Plan) plan),
xfunc_clause_compare));
if (XfuncMode != XFUNC_NOR)
/* sort the disjuncts within each clause by cost -- JMH 3/4/92 */
xfunc_disjunct_sort(plan->qpqual);
}
#endif
return plan;
}
/*
* create_scan_plan
* Create a scan plan for the parent relation of 'best_path'.
*
* Returns a Plan node.
*/
static Scan *
create_scan_plan(Query *root, Path *best_path)
{
RelOptInfo *rel = best_path->parent;
List *tlist;
List *scan_clauses;
Scan *plan;
/*
2003-08-04 00:43:34 +00:00
* For table scans, rather than using the relation targetlist (which
* is only those Vars actually needed by the query), we prefer to
* generate a tlist containing all Vars in order. This will allow the
* executor to optimize away projection of the table tuples, if
* possible. (Note that planner.c may replace the tlist we generate
* here, forcing projection to occur.)
*/
if (use_physical_tlist(rel))
{
tlist = build_physical_tlist(root, rel);
/* if fail because of dropped cols, use regular method */
if (tlist == NIL)
tlist = build_relation_tlist(rel);
}
else
tlist = build_relation_tlist(rel);
/*
* Extract the relevant restriction clauses from the parent relation;
* the executor must apply all these restrictions during the scan.
*/
scan_clauses = get_actual_clauses(rel->baserestrictinfo);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
switch (best_path->pathtype)
{
case T_SeqScan:
plan = (Scan *) create_seqscan_plan(best_path,
tlist,
scan_clauses);
break;
case T_IndexScan:
plan = (Scan *) create_indexscan_plan(root,
(IndexPath *) best_path,
tlist,
scan_clauses);
break;
case T_TidScan:
plan = (Scan *) create_tidscan_plan((TidPath *) best_path,
tlist,
scan_clauses);
break;
case T_SubqueryScan:
plan = (Scan *) create_subqueryscan_plan(best_path,
tlist,
scan_clauses);
break;
case T_FunctionScan:
plan = (Scan *) create_functionscan_plan(best_path,
2002-09-04 20:31:48 +00:00
tlist,
scan_clauses);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
return plan;
}
/*
* Build a target list (ie, a list of TargetEntry) for a relation.
*/
static List *
build_relation_tlist(RelOptInfo *rel)
{
FastList tlist;
int resdomno = 1;
List *v;
FastListInit(&tlist);
foreach(v, FastListValue(&rel->reltargetlist))
{
2003-08-04 00:43:34 +00:00
/* Do we really need to copy here? Not sure */
Var *var = (Var *) copyObject(lfirst(v));
FastAppend(&tlist, create_tl_element(var, resdomno));
resdomno++;
}
return FastListValue(&tlist);
}
/*
* use_physical_tlist
* Decide whether to use a tlist matching relation structure,
* rather than only those Vars actually referenced.
*/
static bool
use_physical_tlist(RelOptInfo *rel)
{
int i;
/*
2003-08-04 00:43:34 +00:00
* Currently, can't do this for subquery or function scans. (This is
* mainly because we don't have an equivalent of build_physical_tlist
* for them; worth adding?)
*/
if (rel->rtekind != RTE_RELATION)
return false;
2003-08-04 00:43:34 +00:00
/*
* Can't do it with inheritance cases either (mainly because Append
* doesn't project).
*/
if (rel->reloptkind != RELOPT_BASEREL)
return false;
2003-08-04 00:43:34 +00:00
/*
2003-08-04 00:43:34 +00:00
* Can't do it if any system columns are requested, either. (This
* could possibly be fixed but would take some fragile assumptions in
* setrefs.c, I think.)
*/
for (i = rel->min_attr; i <= 0; i++)
{
if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
return false;
}
return true;
}
/*
* disuse_physical_tlist
* Switch a plan node back to emitting only Vars actually referenced.
*
* If the plan node immediately above a scan would prefer to get only
* needed Vars and not a physical tlist, it must call this routine to
2003-08-04 00:43:34 +00:00
* undo the decision made by use_physical_tlist(). Currently, Hash, Sort,
* and Material nodes want this, so they don't have to store useless columns.
*/
static void
disuse_physical_tlist(Plan *plan, Path *path)
{
/* Only need to undo it for path types handled by create_scan_plan() */
switch (path->pathtype)
{
case T_IndexScan:
case T_SeqScan:
case T_TidScan:
case T_SubqueryScan:
case T_FunctionScan:
plan->targetlist = build_relation_tlist(path->parent);
break;
default:
break;
}
}
/*
* create_join_plan
* Create a join plan for 'best_path' and (recursively) plans for its
* inner and outer paths.
*
* Returns a Plan node.
*/
static Join *
create_join_plan(Query *root, JoinPath *best_path)
{
Plan *outer_plan;
Plan *inner_plan;
Join *plan;
outer_plan = create_plan(root, best_path->outerjoinpath);
inner_plan = create_plan(root, best_path->innerjoinpath);
switch (best_path->path.pathtype)
{
case T_MergeJoin:
plan = (Join *) create_mergejoin_plan(root,
(MergePath *) best_path,
outer_plan,
inner_plan);
break;
case T_HashJoin:
plan = (Join *) create_hashjoin_plan(root,
(HashPath *) best_path,
outer_plan,
inner_plan);
break;
case T_NestLoop:
plan = (Join *) create_nestloop_plan(root,
(NestPath *) best_path,
outer_plan,
inner_plan);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->path.pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
#ifdef NOT_USED
/*
* * Expensive function pullups may have pulled local predicates *
1999-05-25 16:15:34 +00:00
* into this path node. Put them in the qpqual of the plan node. *
* JMH, 6/15/92
*/
if (get_loc_restrictinfo(best_path) != NIL)
set_qpqual((Plan) plan,
nconc(get_qpqual((Plan) plan),
get_actual_clauses(get_loc_restrictinfo(best_path))));
#endif
return plan;
}
/*
* create_append_plan
* Create an Append plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Append *
create_append_plan(Query *root, AppendPath *best_path)
{
Append *plan;
List *tlist = build_relation_tlist(best_path->path.parent);
List *subplans = NIL;
List *subpaths;
foreach(subpaths, best_path->subpaths)
{
2001-03-22 04:01:46 +00:00
Path *subpath = (Path *) lfirst(subpaths);
subplans = lappend(subplans, create_plan(root, subpath));
}
plan = make_append(subplans, false, tlist);
return plan;
}
/*
* create_result_plan
* Create a Result plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Result *
create_result_plan(Query *root, ResultPath *best_path)
{
Result *plan;
List *tlist;
List *constclauses;
Plan *subplan;
if (best_path->path.parent)
tlist = build_relation_tlist(best_path->path.parent);
else
tlist = NIL; /* will be filled in later */
if (best_path->subpath)
subplan = create_plan(root, best_path->subpath);
else
subplan = NULL;
constclauses = order_qual_clauses(root, best_path->constantqual);
plan = make_result(tlist, (Node *) constclauses, subplan);
return plan;
}
/*
* create_material_plan
* Create a Material plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Material *
create_material_plan(Query *root, MaterialPath *best_path)
{
Material *plan;
Plan *subplan;
subplan = create_plan(root, best_path->subpath);
/* We don't want any excess columns in the materialized tuples */
disuse_physical_tlist(subplan, best_path->subpath);
plan = make_material(subplan->targetlist, subplan);
copy_path_costsize(&plan->plan, (Path *) best_path);
return plan;
}
/*
* create_unique_plan
* Create a Unique plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Plan *
create_unique_plan(Query *root, UniquePath *best_path)
{
Plan *plan;
Plan *subplan;
List *uniq_exprs;
int numGroupCols;
AttrNumber *groupColIdx;
int groupColPos;
List *newtlist;
int nextresno;
bool newitems;
List *my_tlist;
List *l;
subplan = create_plan(root, best_path->subpath);
/*
* As constructed, the subplan has a "flat" tlist containing just the
* Vars needed here and at upper levels. The values we are supposed
* to unique-ify may be expressions in these variables. We have to
* add any such expressions to the subplan's tlist. We then build
* control information showing which subplan output columns are to be
* examined by the grouping step. (Since we do not remove any
* existing subplan outputs, not all the output columns may be used
* for grouping.)
*
* Note: the reason we don't remove any subplan outputs is that there are
* scenarios where a Var is needed at higher levels even though it is
* not one of the nominal outputs of an IN clause. Consider WHERE x
* IN (SELECT y FROM t1,t2 WHERE y = z) Implied equality deduction
* will generate an "x = z" clause, which may get used instead of "x =
* y" in the upper join step. Therefore the sub-select had better
* deliver both y and z in its targetlist. It is sufficient to
* unique-ify on y, however.
*
* To find the correct list of values to unique-ify, we look in the
* information saved for IN expressions. If this code is ever used in
* other scenarios, some other way of finding what to unique-ify will
* be needed.
*/
uniq_exprs = NIL; /* just to keep compiler quiet */
foreach(l, root->in_info_list)
{
InClauseInfo *ininfo = (InClauseInfo *) lfirst(l);
if (bms_equal(ininfo->righthand, best_path->path.parent->relids))
{
uniq_exprs = ininfo->sub_targetlist;
break;
}
}
if (l == NIL) /* fell out of loop? */
elog(ERROR, "could not find UniquePath in in_info_list");
/* set up to record positions of unique columns */
numGroupCols = length(uniq_exprs);
groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
groupColPos = 0;
/* not sure if tlist might be shared with other nodes, so copy */
newtlist = copyObject(subplan->targetlist);
nextresno = length(newtlist) + 1;
newitems = false;
foreach(l, uniq_exprs)
{
Node *uniqexpr = lfirst(l);
TargetEntry *tle;
tle = tlistentry_member(uniqexpr, newtlist);
if (!tle)
{
tle = makeTargetEntry(makeResdom(nextresno,
exprType(uniqexpr),
exprTypmod(uniqexpr),
NULL,
false),
(Expr *) uniqexpr);
newtlist = lappend(newtlist, tle);
nextresno++;
newitems = true;
}
groupColIdx[groupColPos++] = tle->resdom->resno;
}
2003-08-04 00:43:34 +00:00
if (newitems)
{
/*
* If the top plan node can't do projections, we need to add a
* Result node to help it along.
*
2003-08-04 00:43:34 +00:00
* Currently, the only non-projection-capable plan type we can see
* here is Append.
*/
if (IsA(subplan, Append))
subplan = (Plan *) make_result(newtlist, NULL, subplan);
else
subplan->targetlist = newtlist;
}
/* Copy tlist again to make one we can put sorting labels on */
my_tlist = copyObject(subplan->targetlist);
if (best_path->use_hash)
{
2003-08-04 00:43:34 +00:00
long numGroups;
numGroups = (long) Min(best_path->rows, (double) LONG_MAX);
plan = (Plan *) make_agg(root,
my_tlist,
NIL,
AGG_HASHED,
numGroupCols,
groupColIdx,
numGroups,
0,
subplan);
}
else
{
List *sortList = NIL;
for (groupColPos = 0; groupColPos < numGroupCols; groupColPos++)
{
TargetEntry *tle;
tle = get_tle_by_resno(my_tlist, groupColIdx[groupColPos]);
Assert(tle != NULL);
sortList = addTargetToSortList(NULL, tle, sortList,
my_tlist, NIL, false);
}
plan = (Plan *) make_sort_from_sortclauses(root, my_tlist,
subplan, sortList);
plan = (Plan *) make_unique(my_tlist, plan, sortList);
}
plan->plan_rows = best_path->rows;
return plan;
}
/*****************************************************************************
*
* BASE-RELATION SCAN METHODS
*
*****************************************************************************/
/*
* create_seqscan_plan
* Returns a seqscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static SeqScan *
create_seqscan_plan(Path *best_path, List *tlist, List *scan_clauses)
{
SeqScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_RELATION);
scan_plan = make_seqscan(tlist,
scan_clauses,
scan_relid);
copy_path_costsize(&scan_plan->plan, best_path);
return scan_plan;
}
/*
* create_indexscan_plan
* Returns a indexscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*
* The indexqual of the path contains a sublist of implicitly-ANDed qual
* conditions for each scan of the index(es); if there is more than one
* scan then the retrieved tuple sets are ORed together. The indexqual
* and indexinfo lists must have the same length, ie, the number of scans
* that will occur. Note it is possible for a qual condition sublist
* to be empty --- then no index restrictions will be applied during that
* scan.
*/
static IndexScan *
create_indexscan_plan(Query *root,
IndexPath *best_path,
List *tlist,
List *scan_clauses)
{
List *indxqual = best_path->indexqual;
Index baserelid = best_path->path.parent->relid;
List *qpqual;
Expr *indxqual_or_expr = NULL;
List *fixed_indxqual;
List *recheck_indxqual;
FastList indexids;
List *ixinfo;
IndexScan *scan_plan;
/* it should be a base rel... */
Assert(baserelid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/*
* Build list of index OIDs.
*/
FastListInit(&indexids);
foreach(ixinfo, best_path->indexinfo)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(ixinfo);
FastAppendo(&indexids, index->indexoid);
}
/*
* The qpqual list must contain all restrictions not automatically
* handled by the index. Normally the predicates in the indxqual are
* checked fully by the index, but if the index is "lossy" for a
* particular operator (as signaled by the amopreqcheck flag in
* pg_amop), then we need to double-check that predicate in qpqual,
* because the index may return more tuples than match the predicate.
*
* Since the indexquals were generated from the restriction clauses given
* by scan_clauses, there will normally be some duplications between
* the lists. We get rid of the duplicates, then add back if lossy.
*/
if (length(indxqual) > 1)
{
/*
* Build an expression representation of the indexqual, expanding
* the implicit OR and AND semantics of the first- and
* second-level lists.
*/
FastList orclauses;
List *orclause;
FastListInit(&orclauses);
foreach(orclause, indxqual)
FastAppend(&orclauses, make_ands_explicit(lfirst(orclause)));
indxqual_or_expr = make_orclause(FastListValue(&orclauses));
qpqual = set_difference(scan_clauses, makeList1(indxqual_or_expr));
}
else if (indxqual != NIL)
{
/*
* Here, we can simply treat the first sublist as an independent
* set of qual expressions, since there is no top-level OR
* behavior.
*/
qpqual = set_difference(scan_clauses, lfirst(indxqual));
}
else
qpqual = scan_clauses;
/*
* The executor needs a copy with the indexkey on the left of each
* clause and with index attr numbers substituted for table ones. This
* pass also looks for "lossy" operators.
*/
fix_indxqual_references(indxqual, best_path,
&fixed_indxqual, &recheck_indxqual);
/*
* If there were any "lossy" operators, need to add back the
* appropriate qual clauses to the qpqual. When there is just one
* indexscan being performed (ie, we have simple AND semantics), we
* can just add the lossy clauses themselves to qpqual. If we have
* OR-of-ANDs, we'd better add the entire original indexqual to make
* sure that the semantics are correct.
*/
if (recheck_indxqual != NIL)
{
if (indxqual_or_expr)
{
/* Better do a deep copy of the original scanclauses */
qpqual = lappend(qpqual, copyObject(indxqual_or_expr));
}
else
{
/* Subroutine already copied quals, so just append to list */
Assert(length(recheck_indxqual) == 1);
qpqual = nconc(qpqual, (List *) lfirst(recheck_indxqual));
}
}
/* Finally ready to build the plan node */
scan_plan = make_indexscan(tlist,
1999-05-25 16:15:34 +00:00
qpqual,
baserelid,
FastListValue(&indexids),
1999-05-25 16:15:34 +00:00
fixed_indxqual,
indxqual,
best_path->indexscandir);
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
/* use the indexscan-specific rows estimate, not the parent rel's */
scan_plan->scan.plan.plan_rows = best_path->rows;
return scan_plan;
}
/*
* create_tidscan_plan
* Returns a tidscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static TidScan *
create_tidscan_plan(TidPath *best_path, List *tlist, List *scan_clauses)
{
TidScan *scan_plan;
Index scan_relid = best_path->path.parent->relid;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
scan_plan = make_tidscan(tlist,
scan_clauses,
scan_relid,
best_path->tideval);
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
return scan_plan;
}
/*
* create_subqueryscan_plan
* Returns a subqueryscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static SubqueryScan *
create_subqueryscan_plan(Path *best_path, List *tlist, List *scan_clauses)
{
SubqueryScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a subquery base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_SUBQUERY);
scan_plan = make_subqueryscan(tlist,
scan_clauses,
scan_relid,
best_path->parent->subplan);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_functionscan_plan
* Returns a functionscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static FunctionScan *
create_functionscan_plan(Path *best_path, List *tlist, List *scan_clauses)
{
FunctionScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a function base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_FUNCTION);
scan_plan = make_functionscan(tlist, scan_clauses, scan_relid);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*****************************************************************************
*
* JOIN METHODS
*
*****************************************************************************/
static NestLoop *
create_nestloop_plan(Query *root,
NestPath *best_path,
Plan *outer_plan,
Plan *inner_plan)
{
List *tlist = build_relation_tlist(best_path->path.parent);
List *joinrestrictclauses = best_path->joinrestrictinfo;
List *joinclauses;
List *otherclauses;
NestLoop *join_plan;
if (IsA(best_path->innerjoinpath, IndexPath))
{
/*
* An index is being used to reduce the number of tuples scanned
* in the inner relation. If there are join clauses being used
2003-08-04 00:43:34 +00:00
* with the index, we may remove those join clauses from the list
* of clauses that have to be checked as qpquals at the join node
* --- but only if there's just one indexscan in the inner path
* (otherwise, several different sets of clauses are being ORed
* together).
*
* We can also remove any join clauses that are redundant with those
* being used in the index scan; prior redundancy checks will not
* have caught this case because the join clauses would never have
* been put in the same joininfo list.
*
* This would be a waste of time if the indexpath was an ordinary
2003-08-04 00:43:34 +00:00
* indexpath and not a special innerjoin path. We will skip it in
* that case since indexjoinclauses is NIL in an ordinary
* indexpath.
*/
IndexPath *innerpath = (IndexPath *) best_path->innerjoinpath;
List *indexjoinclauses = innerpath->indexjoinclauses;
2003-08-04 00:43:34 +00:00
if (length(indexjoinclauses) == 1) /* single indexscan? */
{
joinrestrictclauses =
select_nonredundant_join_clauses(root,
joinrestrictclauses,
lfirst(indexjoinclauses),
best_path->jointype);
}
}
/* Get the join qual clauses (in plain expression form) */
if (IS_OUTER_JOIN(best_path->jointype))
{
get_actual_join_clauses(joinrestrictclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = get_actual_clauses(joinrestrictclauses);
otherclauses = NIL;
}
join_plan = make_nestloop(tlist,
joinclauses,
otherclauses,
outer_plan,
inner_plan,
best_path->jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->path);
return join_plan;
}
static MergeJoin *
create_mergejoin_plan(Query *root,
MergePath *best_path,
Plan *outer_plan,
Plan *inner_plan)
{
List *tlist = build_relation_tlist(best_path->jpath.path.parent);
List *joinclauses;
List *otherclauses;
List *mergeclauses;
MergeJoin *join_plan;
/* Get the join qual clauses (in plain expression form) */
if (IS_OUTER_JOIN(best_path->jpath.jointype))
{
get_actual_join_clauses(best_path->jpath.joinrestrictinfo,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = get_actual_clauses(best_path->jpath.joinrestrictinfo);
otherclauses = NIL;
}
/*
* Remove the mergeclauses from the list of join qual clauses, leaving
* the list of quals that must be checked as qpquals.
*/
mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
joinclauses = set_difference(joinclauses, mergeclauses);
/*
2003-08-04 00:43:34 +00:00
* Rearrange mergeclauses, if needed, so that the outer variable is
* always on the left.
*/
mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
2003-08-04 00:43:34 +00:00
best_path->jpath.outerjoinpath->parent->relids);
/*
* Create explicit sort nodes for the outer and inner join paths if
* necessary. The sort cost was already accounted for in the path.
* Make sure there are no excess columns in the inputs if sorting.
*/
if (best_path->outersortkeys)
{
disuse_physical_tlist(outer_plan, best_path->jpath.outerjoinpath);
outer_plan = (Plan *)
make_sort_from_pathkeys(root,
outer_plan,
2003-08-04 00:43:34 +00:00
best_path->jpath.outerjoinpath->parent->relids,
best_path->outersortkeys);
}
if (best_path->innersortkeys)
{
disuse_physical_tlist(inner_plan, best_path->jpath.innerjoinpath);
inner_plan = (Plan *)
make_sort_from_pathkeys(root,
inner_plan,
2003-08-04 00:43:34 +00:00
best_path->jpath.innerjoinpath->parent->relids,
best_path->innersortkeys);
}
/*
* Now we can build the mergejoin node.
*/
join_plan = make_mergejoin(tlist,
joinclauses,
otherclauses,
mergeclauses,
outer_plan,
inner_plan,
best_path->jpath.jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path);
return join_plan;
}
static HashJoin *
create_hashjoin_plan(Query *root,
HashPath *best_path,
Plan *outer_plan,
Plan *inner_plan)
{
List *tlist = build_relation_tlist(best_path->jpath.path.parent);
List *joinclauses;
List *otherclauses;
List *hashclauses;
HashJoin *join_plan;
Hash *hash_plan;
List *innerhashkeys;
List *hcl;
/* Get the join qual clauses (in plain expression form) */
if (IS_OUTER_JOIN(best_path->jpath.jointype))
{
get_actual_join_clauses(best_path->jpath.joinrestrictinfo,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = get_actual_clauses(best_path->jpath.joinrestrictinfo);
otherclauses = NIL;
}
/*
* Remove the hashclauses from the list of join qual clauses, leaving
* the list of quals that must be checked as qpquals.
*/
hashclauses = get_actual_clauses(best_path->path_hashclauses);
joinclauses = set_difference(joinclauses, hashclauses);
/*
2003-08-04 00:43:34 +00:00
* Rearrange hashclauses, if needed, so that the outer variable is
* always on the left.
*/
hashclauses = get_switched_clauses(best_path->path_hashclauses,
2003-08-04 00:43:34 +00:00
best_path->jpath.outerjoinpath->parent->relids);
/*
2003-08-04 00:43:34 +00:00
* Extract the inner hash keys (right-hand operands of the
* hashclauses) to put in the Hash node.
*/
innerhashkeys = NIL;
foreach(hcl, hashclauses)
innerhashkeys = lappend(innerhashkeys, get_rightop(lfirst(hcl)));
/* We don't want any excess columns in the hashed tuples */
disuse_physical_tlist(inner_plan, best_path->jpath.innerjoinpath);
/*
* Build the hash node and hash join node.
*/
hash_plan = make_hash(inner_plan->targetlist,
innerhashkeys,
inner_plan);
join_plan = make_hashjoin(tlist,
joinclauses,
otherclauses,
hashclauses,
outer_plan,
(Plan *) hash_plan,
best_path->jpath.jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path);
return join_plan;
}
/*****************************************************************************
*
* SUPPORTING ROUTINES
*
*****************************************************************************/
/*
* fix_indxqual_references
* Adjust indexqual clauses to the form the executor's indexqual
* machinery needs, and check for recheckable (lossy) index conditions.
*
* We have three tasks here:
* * Index keys must be represented by Var nodes with varattno set to the
* index's attribute number, not the attribute number in the original rel.
* * If the index key is on the right, commute the clause to put it on the
* left. (Someday the executor might not need this, but for now it does.)
* * If the indexable operator is marked 'amopreqcheck' in pg_amop, then
* the index is "lossy" for this operator: it may return more tuples than
* actually satisfy the operator condition. For each such operator, we
* must add (the original form of) the indexqual clause to the "qpquals"
* of the indexscan node, where the operator will be re-evaluated to
* ensure it passes.
*
* This code used to be entirely bogus for multi-index scans. Now it keeps
* track of which index applies to each subgroup of index qual clauses...
*
* Both the input list and the output lists have the form of lists of sublists
* of qual clauses --- the top-level list has one entry for each indexscan
* to be performed. The semantics are OR-of-ANDs.
*
* fixed_indexquals receives a modified copy of the indexqual list --- the
* original is not changed. Note also that the copy shares no substructure
* with the original; this is needed in case there is a subplan in it (we need
* two separate copies of the subplan tree, or things will go awry).
*
* recheck_indexquals similarly receives a full copy of whichever clauses
* need rechecking.
*/
static void
fix_indxqual_references(List *indexquals, IndexPath *index_path,
List **fixed_indexquals, List **recheck_indexquals)
{
FastList fixed_quals;
FastList recheck_quals;
Relids baserelids = index_path->path.parent->relids;
int baserelid = index_path->path.parent->relid;
List *ixinfo = index_path->indexinfo;
List *i;
FastListInit(&fixed_quals);
FastListInit(&recheck_quals);
foreach(i, indexquals)
{
List *indexqual = lfirst(i);
IndexOptInfo *index = (IndexOptInfo *) lfirst(ixinfo);
List *fixed_qual;
List *recheck_qual;
fix_indxqual_sublist(indexqual, baserelids, baserelid, index,
&fixed_qual, &recheck_qual);
FastAppend(&fixed_quals, fixed_qual);
if (recheck_qual != NIL)
FastAppend(&recheck_quals, recheck_qual);
ixinfo = lnext(ixinfo);
}
*fixed_indexquals = FastListValue(&fixed_quals);
*recheck_indexquals = FastListValue(&recheck_quals);
}
1999-05-25 16:15:34 +00:00
/*
* Fix the sublist of indexquals to be used in a particular scan.
*
* For each qual clause, commute if needed to put the indexkey operand on the
* left, and then fix its varattno. (We do not need to change the other side
* of the clause.) Also change the operator if necessary, and check for
* lossy index behavior.
*
* Returns two lists: the list of fixed indexquals, and the list (usually
* empty) of original clauses that must be rechecked as qpquals because
* the index is lossy for this operator type.
*/
static void
fix_indxqual_sublist(List *indexqual,
Relids baserelids, int baserelid,
IndexOptInfo *index,
List **fixed_quals, List **recheck_quals)
{
FastList fixed_qual;
FastList recheck_qual;
List *i;
FastListInit(&fixed_qual);
FastListInit(&recheck_qual);
foreach(i, indexqual)
{
OpExpr *clause = (OpExpr *) lfirst(i);
OpExpr *newclause;
Relids leftvarnos;
Oid opclass;
if (!IsA(clause, OpExpr) ||length(clause->args) != 2)
elog(ERROR, "indexqual clause is not binary opclause");
/*
* Make a copy that will become the fixed clause.
*
* We used to try to do a shallow copy here, but that fails if there
* is a subplan in the arguments of the opclause. So just do a
* full copy.
*/
newclause = (OpExpr *) copyObject((Node *) clause);
/*
* Check to see if the indexkey is on the right; if so, commute
* the clause. The indexkey should be the side that refers to
* (only) the base relation.
*/
leftvarnos = pull_varnos((Node *) lfirst(newclause->args));
if (!bms_equal(leftvarnos, baserelids))
CommuteClause(newclause);
bms_free(leftvarnos);
/*
* Now, determine which index attribute this is, change the
* indexkey operand as needed, and get the index opclass.
*/
lfirst(newclause->args) = fix_indxqual_operand(lfirst(newclause->args),
baserelid,
index,
&opclass);
FastAppend(&fixed_qual, newclause);
/*
* Finally, check to see if index is lossy for this operator. If
* so, add (a copy of) original form of clause to recheck list.
*/
if (op_requires_recheck(newclause->opno, opclass))
FastAppend(&recheck_qual, copyObject((Node *) clause));
}
*fixed_quals = FastListValue(&fixed_qual);
*recheck_quals = FastListValue(&recheck_qual);
}
static Node *
fix_indxqual_operand(Node *node, int baserelid, IndexOptInfo *index,
Oid *opclass)
{
/*
* We represent index keys by Var nodes having the varno of the base
* table but varattno equal to the index's attribute number (index
* column position). This is a bit hokey ... would be cleaner to use
2001-03-22 04:01:46 +00:00
* a special-purpose node type that could not be mistaken for a
* regular Var. But it will do for now.
*/
Var *result;
int pos;
List *indexprs;
/*
* Remove any binary-compatible relabeling of the indexkey
*/
if (IsA(node, RelabelType))
node = (Node *) ((RelabelType *) node)->arg;
if (IsA(node, Var) &&
((Var *) node)->varno == baserelid)
{
/* Try to match against simple index columns */
int varatt = ((Var *) node)->varattno;
if (varatt != 0)
{
for (pos = 0; pos < index->ncolumns; pos++)
{
if (index->indexkeys[pos] == varatt)
{
result = (Var *) copyObject(node);
result->varattno = pos + 1;
/* return the correct opclass, too */
*opclass = index->classlist[pos];
return (Node *) result;
}
}
}
}
/* Try to match against index expressions */
indexprs = index->indexprs;
for (pos = 0; pos < index->ncolumns; pos++)
{
if (index->indexkeys[pos] == 0)
{
Node *indexkey;
if (indexprs == NIL)
elog(ERROR, "too few entries in indexprs list");
indexkey = (Node *) lfirst(indexprs);
if (indexkey && IsA(indexkey, RelabelType))
indexkey = (Node *) ((RelabelType *) indexkey)->arg;
if (equal(node, indexkey))
{
/* Found a match */
result = makeVar(baserelid, pos + 1,
exprType(lfirst(indexprs)), -1,
0);
/* return the correct opclass, too */
*opclass = index->classlist[pos];
return (Node *) result;
}
indexprs = lnext(indexprs);
}
}
/* Ooops... */
elog(ERROR, "node is not an index attribute");
return NULL; /* keep compiler quiet */
}
/*
* get_switched_clauses
* Given a list of merge or hash joinclauses (as RestrictInfo nodes),
* extract the bare clauses, and rearrange the elements within the
* clauses, if needed, so the outer join variable is on the left and
* the inner is on the right. The original data structure is not touched;
* a modified list is returned.
*/
static List *
get_switched_clauses(List *clauses, Relids outerrelids)
{
List *t_list = NIL;
List *i;
foreach(i, clauses)
1997-04-22 03:32:38 +00:00
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
OpExpr *clause = (OpExpr *) restrictinfo->clause;
Assert(is_opclause(clause));
if (bms_is_subset(restrictinfo->right_relids, outerrelids))
{
1999-05-25 16:15:34 +00:00
/*
* Duplicate just enough of the structure to allow commuting
* the clause without changing the original list. Could use
* copyObject, but a complete deep copy is overkill.
*/
OpExpr *temp = makeNode(OpExpr);
temp->opno = clause->opno;
temp->opfuncid = InvalidOid;
temp->opresulttype = clause->opresulttype;
temp->opretset = clause->opretset;
temp->args = listCopy(clause->args);
/* Commute it --- note this modifies the temp node in-place. */
CommuteClause(temp);
t_list = lappend(t_list, temp);
}
else
t_list = lappend(t_list, clause);
}
1998-09-01 03:29:17 +00:00
return t_list;
}
/*
* order_qual_clauses
* Given a list of qual clauses that will all be evaluated at the same
* plan node, sort the list into the order we want to check the quals
* in at runtime.
*
* Ideally the order should be driven by a combination of execution cost and
* selectivity, but unfortunately we have so little information about
* execution cost of operators that it's really hard to do anything smart.
* For now, we just move any quals that contain SubPlan references (but not
* InitPlan references) to the end of the list.
*/
static List *
order_qual_clauses(Query *root, List *clauses)
{
FastList nosubplans;
FastList withsubplans;
List *l;
/* No need to work hard if the query is subselect-free */
if (!root->hasSubLinks)
return clauses;
FastListInit(&nosubplans);
FastListInit(&withsubplans);
foreach(l, clauses)
{
2003-08-04 00:43:34 +00:00
Node *clause = lfirst(l);
if (contain_subplans(clause))
FastAppend(&withsubplans, clause);
else
FastAppend(&nosubplans, clause);
}
FastConcFast(&nosubplans, &withsubplans);
return FastListValue(&nosubplans);
}
/*
* Copy cost and size info from a Path node to the Plan node created from it.
* The executor won't use this info, but it's needed by EXPLAIN.
*/
static void
copy_path_costsize(Plan *dest, Path *src)
{
if (src)
{
dest->startup_cost = src->startup_cost;
dest->total_cost = src->total_cost;
dest->plan_rows = src->parent->rows;
dest->plan_width = src->parent->width;
}
else
{
dest->startup_cost = 0;
dest->total_cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*
* Copy cost and size info from a lower plan node to an inserted node.
* This is not critical, since the decisions have already been made,
* but it helps produce more reasonable-looking EXPLAIN output.
* (Some callers alter the info after copying it.)
*/
static void
copy_plan_costsize(Plan *dest, Plan *src)
{
if (src)
{
dest->startup_cost = src->startup_cost;
dest->total_cost = src->total_cost;
dest->plan_rows = src->plan_rows;
dest->plan_width = src->plan_width;
}
else
{
dest->startup_cost = 0;
dest->total_cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*****************************************************************************
*
* PLAN NODE BUILDING ROUTINES
*
* Some of these are exported because they are called to build plan nodes
* in contexts where we're not deriving the plan node from a path node.
*
*****************************************************************************/
static SeqScan *
make_seqscan(List *qptlist,
List *qpqual,
Index scanrelid)
{
SeqScan *node = makeNode(SeqScan);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scanrelid = scanrelid;
1998-09-01 03:29:17 +00:00
return node;
}
static IndexScan *
make_indexscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *indxid,
1997-12-18 12:21:02 +00:00
List *indxqual,
List *indxqualorig,
ScanDirection indexscandir)
{
IndexScan *node = makeNode(IndexScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indxid = indxid;
node->indxqual = indxqual;
node->indxqualorig = indxqualorig;
node->indxorderdir = indexscandir;
1998-09-01 03:29:17 +00:00
return node;
}
static TidScan *
make_tidscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *tideval)
{
TidScan *node = makeNode(TidScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->tideval = tideval;
return node;
}
SubqueryScan *
make_subqueryscan(List *qptlist,
List *qpqual,
Index scanrelid,
Plan *subplan)
{
SubqueryScan *node = makeNode(SubqueryScan);
Plan *plan = &node->scan.plan;
/*
* Cost is figured here for the convenience of prepunion.c. Note this
2003-08-04 00:43:34 +00:00
* is only correct for the case where qpqual is empty; otherwise
* caller should overwrite cost with a better estimate.
*/
copy_plan_costsize(plan, subplan);
plan->total_cost += cpu_tuple_cost * subplan->plan_rows;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->subplan = subplan;
return node;
}
static FunctionScan *
make_functionscan(List *qptlist,
List *qpqual,
Index scanrelid)
{
2002-09-04 20:31:48 +00:00
FunctionScan *node = makeNode(FunctionScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
return node;
}
Append *
make_append(List *appendplans, bool isTarget, List *tlist)
{
Append *node = makeNode(Append);
Plan *plan = &node->plan;
List *subnode;
/*
* Compute cost as sum of subplan costs. We charge nothing extra for
* the Append itself, which perhaps is too optimistic, but since it
* doesn't do any selection or projection, it is a pretty cheap node.
*/
plan->startup_cost = 0;
plan->total_cost = 0;
plan->plan_rows = 0;
plan->plan_width = 0;
foreach(subnode, appendplans)
{
Plan *subplan = (Plan *) lfirst(subnode);
if (subnode == appendplans) /* first node? */
plan->startup_cost = subplan->startup_cost;
plan->total_cost += subplan->total_cost;
plan->plan_rows += subplan->plan_rows;
if (plan->plan_width < subplan->plan_width)
plan->plan_width = subplan->plan_width;
}
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->appendplans = appendplans;
node->isTarget = isTarget;
return node;
}
static NestLoop *
make_nestloop(List *tlist,
List *joinclauses,
List *otherclauses,
Plan *lefttree,
Plan *righttree,
JoinType jointype)
{
NestLoop *node = makeNode(NestLoop);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
1998-09-01 03:29:17 +00:00
return node;
}
static HashJoin *
make_hashjoin(List *tlist,
List *joinclauses,
List *otherclauses,
List *hashclauses,
Plan *lefttree,
Plan *righttree,
JoinType jointype)
{
HashJoin *node = makeNode(HashJoin);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->hashclauses = hashclauses;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
1998-09-01 03:29:17 +00:00
return node;
}
static Hash *
make_hash(List *tlist, List *hashkeys, Plan *lefttree)
{
Hash *node = makeNode(Hash);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/*
* For plausibility, make startup & total costs equal total cost of
* input plan; this only affects EXPLAIN display not decisions.
*/
plan->startup_cost = plan->total_cost;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->hashkeys = hashkeys;
1998-09-01 03:29:17 +00:00
return node;
}
static MergeJoin *
make_mergejoin(List *tlist,
List *joinclauses,
List *otherclauses,
List *mergeclauses,
Plan *lefttree,
Plan *righttree,
JoinType jointype)
{
MergeJoin *node = makeNode(MergeJoin);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->mergeclauses = mergeclauses;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
1998-09-01 03:29:17 +00:00
return node;
}
/*
* make_sort --- basic routine to build a Sort plan node
*
* Caller must have built the sortColIdx and sortOperators arrays already.
*/
static Sort *
make_sort(Query *root, List *tlist, Plan *lefttree, int numCols,
AttrNumber *sortColIdx, Oid *sortOperators)
{
Sort *node = makeNode(Sort);
Plan *plan = &node->plan;
Path sort_path; /* dummy for result of cost_sort */
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_sort(&sort_path, root, NIL,
lefttree->total_cost,
lefttree->plan_rows,
lefttree->plan_width);
plan->startup_cost = sort_path.startup_cost;
plan->total_cost = sort_path.total_cost;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->numCols = numCols;
node->sortColIdx = sortColIdx;
node->sortOperators = sortOperators;
1998-09-01 03:29:17 +00:00
return node;
}
/*
* add_sort_column --- utility subroutine for building sort info arrays
*
* We need this routine because the same column might be selected more than
* once as a sort key column; if so, the extra mentions are redundant.
*
* Caller is assumed to have allocated the arrays large enough for the
2003-08-04 00:43:34 +00:00
* max possible number of columns. Return value is the new column count.
*/
static int
add_sort_column(AttrNumber colIdx, Oid sortOp,
int numCols, AttrNumber *sortColIdx, Oid *sortOperators)
{
int i;
for (i = 0; i < numCols; i++)
{
if (sortColIdx[i] == colIdx)
{
/* Already sorting by this col, so extra sort key is useless */
return numCols;
}
}
/* Add the column */
sortColIdx[numCols] = colIdx;
sortOperators[numCols] = sortOp;
return numCols + 1;
}
/*
* make_sort_from_pathkeys
* Create sort plan to sort according to given pathkeys
*
* 'lefttree' is the node which yields input tuples
* 'relids' is the set of relids represented by the input node
* 'pathkeys' is the list of pathkeys by which the result is to be sorted
*
* We must convert the pathkey information into arrays of sort key column
* numbers and sort operator OIDs.
*
* If the pathkeys include expressions that aren't simple Vars, we will
* usually need to add resjunk items to the input plan's targetlist to
* compute these expressions (since the Sort node itself won't do it).
* If the input plan type isn't one that can do projections, this means
* adding a Result node just to do the projection.
*/
static Sort *
make_sort_from_pathkeys(Query *root, Plan *lefttree,
Relids relids, List *pathkeys)
{
List *tlist = lefttree->targetlist;
List *sort_tlist;
List *i;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
/* We will need at most length(pathkeys) sort columns; possibly less */
numsortkeys = length(pathkeys);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
numsortkeys = 0;
foreach(i, pathkeys)
{
List *keysublist = (List *) lfirst(i);
PathKeyItem *pathkey = NULL;
Resdom *resdom = NULL;
List *j;
/*
* We can sort by any one of the sort key items listed in this
* sublist. For now, we take the first one that corresponds to an
2003-08-04 00:43:34 +00:00
* available Var in the tlist. If there isn't any, use the first
* one that is an expression in the input's vars.
*
* XXX if we have a choice, is there any way of figuring out which
* might be cheapest to execute? (For example, int4lt is likely
* much cheaper to execute than numericlt, but both might appear
* in the same pathkey sublist...) Not clear that we ever will
* have a choice in practice, so it may not matter.
*/
foreach(j, keysublist)
{
pathkey = lfirst(j);
Assert(IsA(pathkey, PathKeyItem));
resdom = tlist_member(pathkey->key, tlist);
if (resdom)
break;
}
if (!resdom)
{
/* No matching Var; look for an expression */
foreach(j, keysublist)
{
pathkey = lfirst(j);
if (bms_is_subset(pull_varnos(pathkey->key), relids))
break;
}
if (!j)
elog(ERROR, "could not find pathkey item to sort");
2003-08-04 00:43:34 +00:00
/*
* Do we need to insert a Result node?
*
2003-08-04 00:43:34 +00:00
* Currently, the only non-projection-capable plan type we can
* see here is Append.
*/
if (IsA(lefttree, Append))
{
tlist = copyObject(tlist);
lefttree = (Plan *) make_result(tlist, NULL, lefttree);
}
2003-08-04 00:43:34 +00:00
/*
* Add resjunk entry to input's tlist
*/
resdom = makeResdom(length(tlist) + 1,
exprType(pathkey->key),
exprTypmod(pathkey->key),
NULL,
true);
tlist = lappend(tlist,
makeTargetEntry(resdom,
(Expr *) pathkey->key));
2003-08-04 00:43:34 +00:00
lefttree->targetlist = tlist; /* just in case NIL before */
}
2003-08-04 00:43:34 +00:00
/*
* The column might already be selected as a sort key, if the
* pathkeys contain duplicate entries. (This can happen in
* scenarios where multiple mergejoinable clauses mention the same
* var, for example.) So enter it only once in the sort arrays.
*/
numsortkeys = add_sort_column(resdom->resno, pathkey->sortop,
2003-08-04 00:43:34 +00:00
numsortkeys, sortColIdx, sortOperators);
}
Assert(numsortkeys > 0);
/* Give Sort node its own copy of the tlist (still necessary?) */
sort_tlist = copyObject(tlist);
return make_sort(root, sort_tlist, lefttree, numsortkeys,
sortColIdx, sortOperators);
}
/*
* make_sort_from_sortclauses
* Create sort plan to sort according to given sortclauses
*
* 'tlist' is the targetlist
* 'lefttree' is the node which yields input tuples
* 'sortcls' is a list of SortClauses
*/
Sort *
make_sort_from_sortclauses(Query *root, List *tlist,
Plan *lefttree, List *sortcls)
{
List *sort_tlist;
List *i;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
/* We will need at most length(sortcls) sort columns; possibly less */
numsortkeys = length(sortcls);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
numsortkeys = 0;
foreach(i, sortcls)
{
SortClause *sortcl = (SortClause *) lfirst(i);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, tlist);
Resdom *resdom = tle->resdom;
/*
* Check for the possibility of duplicate order-by clauses --- the
2003-08-04 00:43:34 +00:00
* parser should have removed 'em, but no point in sorting
* redundantly.
*/
numsortkeys = add_sort_column(resdom->resno, sortcl->sortop,
2003-08-04 00:43:34 +00:00
numsortkeys, sortColIdx, sortOperators);
}
Assert(numsortkeys > 0);
/* Give Sort node its own copy of the tlist (still necessary?) */
sort_tlist = copyObject(tlist);
return make_sort(root, sort_tlist, lefttree, numsortkeys,
sortColIdx, sortOperators);
}
/*
* make_sort_from_groupcols
* Create sort plan to sort based on grouping columns
*
* 'groupcls' is the list of GroupClauses
* 'grpColIdx' gives the column numbers to use
*
* This might look like it could be merged with make_sort_from_sortclauses,
* but presently we *must* use the grpColIdx[] array to locate sort columns,
* because the child plan's tlist is not marked with ressortgroupref info
* appropriate to the grouping node. So, only the sortop is used from the
* GroupClause entries.
*/
Sort *
make_sort_from_groupcols(Query *root,
List *groupcls,
AttrNumber *grpColIdx,
Plan *lefttree)
{
List *sub_tlist = lefttree->targetlist;
List *sort_tlist;
int grpno = 0;
List *i;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
/* We will need at most length(groupcls) sort columns; possibly less */
numsortkeys = length(groupcls);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
numsortkeys = 0;
foreach(i, groupcls)
{
GroupClause *grpcl = (GroupClause *) lfirst(i);
TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[grpno]);
Resdom *resdom = tle->resdom;
/*
* Check for the possibility of duplicate group-by clauses --- the
2003-08-04 00:43:34 +00:00
* parser should have removed 'em, but no point in sorting
* redundantly.
*/
numsortkeys = add_sort_column(resdom->resno, grpcl->sortop,
2003-08-04 00:43:34 +00:00
numsortkeys, sortColIdx, sortOperators);
grpno++;
}
Assert(numsortkeys > 0);
/* Give Sort node its own copy of the tlist (still necessary?) */
sort_tlist = copyObject(sub_tlist);
return make_sort(root, sort_tlist, lefttree, numsortkeys,
sortColIdx, sortOperators);
}
Material *
make_material(List *tlist, Plan *lefttree)
{
Material *node = makeNode(Material);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
1998-09-01 03:29:17 +00:00
return node;
}
/*
* materialize_finished_plan: stick a Material node atop a completed plan
*
* There are a couple of places where we want to attach a Material node
2003-08-04 00:43:34 +00:00
* after completion of subquery_planner(). This currently requires hackery.
* Since subquery_planner has already run SS_finalize_plan on the subplan
* tree, we have to kluge up parameter lists for the Material node.
* Possibly this could be fixed by postponing SS_finalize_plan processing
* until setrefs.c is run?
*/
Plan *
materialize_finished_plan(Plan *subplan)
{
Plan *matplan;
Path matpath; /* dummy for result of cost_material */
matplan = (Plan *) make_material(subplan->targetlist, subplan);
/* Set cost data */
cost_material(&matpath,
subplan->total_cost,
subplan->plan_rows,
subplan->plan_width);
matplan->startup_cost = matpath.startup_cost;
matplan->total_cost = matpath.total_cost;
matplan->plan_rows = subplan->plan_rows;
matplan->plan_width = subplan->plan_width;
/* parameter kluge --- see comments above */
matplan->extParam = bms_copy(subplan->extParam);
matplan->allParam = bms_copy(subplan->allParam);
return matplan;
}
Agg *
make_agg(Query *root, List *tlist, List *qual,
AggStrategy aggstrategy,
int numGroupCols, AttrNumber *grpColIdx,
long numGroups, int numAggs,
Plan *lefttree)
{
Agg *node = makeNode(Agg);
Plan *plan = &node->plan;
Path agg_path; /* dummy for result of cost_agg */
QualCost qual_cost;
node->aggstrategy = aggstrategy;
node->numCols = numGroupCols;
node->grpColIdx = grpColIdx;
node->numGroups = numGroups;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_agg(&agg_path, root,
aggstrategy, numAggs,
numGroupCols, numGroups,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = agg_path.startup_cost;
plan->total_cost = agg_path.total_cost;
/*
2003-08-04 00:43:34 +00:00
* We will produce a single output tuple if not grouping, and a tuple
* per group otherwise.
*/
if (aggstrategy == AGG_PLAIN)
plan->plan_rows = 1;
else
plan->plan_rows = numGroups;
/*
2003-08-04 00:43:34 +00:00
* We also need to account for the cost of evaluation of the qual (ie,
* the HAVING clause) and the tlist. Note that cost_qual_eval doesn't
* charge anything for Aggref nodes; this is okay since they are
* really comparable to Vars.
*
* See notes in grouping_planner about why this routine and make_group
* are the only ones in this file that worry about tlist eval cost.
*/
if (qual)
{
cost_qual_eval(&qual_cost, qual);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
}
cost_qual_eval(&qual_cost, tlist);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
plan->qual = qual;
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = (Plan *) NULL;
1998-09-01 03:29:17 +00:00
return node;
}
Group *
make_group(Query *root,
List *tlist,
int numGroupCols,
1997-09-08 20:59:27 +00:00
AttrNumber *grpColIdx,
double numGroups,
Plan *lefttree)
{
Group *node = makeNode(Group);
Plan *plan = &node->plan;
Path group_path; /* dummy for result of cost_group */
QualCost qual_cost;
node->numCols = numGroupCols;
node->grpColIdx = grpColIdx;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_group(&group_path, root,
numGroupCols, numGroups,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = group_path.startup_cost;
plan->total_cost = group_path.total_cost;
/* One output tuple per estimated result group */
plan->plan_rows = numGroups;
/*
* We also need to account for the cost of evaluation of the tlist.
*
2003-08-04 00:43:34 +00:00
* XXX this double-counts the cost of evaluation of any expressions used
* for grouping, since in reality those will have been evaluated at a
* lower plan level and will only be copied by the Group node. Worth
* fixing?
*
2003-08-04 00:43:34 +00:00
* See notes in grouping_planner about why this routine and make_agg are
* the only ones in this file that worry about tlist eval cost.
*/
cost_qual_eval(&qual_cost, tlist);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
plan->qual = NIL;
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = (Plan *) NULL;
1998-09-01 03:29:17 +00:00
return node;
}
/*
* distinctList is a list of SortClauses, identifying the targetlist items
* that should be considered by the Unique filter.
*/
Unique *
make_unique(List *tlist, Plan *lefttree, List *distinctList)
{
Unique *node = makeNode(Unique);
Plan *plan = &node->plan;
int numCols = length(distinctList);
int keyno = 0;
AttrNumber *uniqColIdx;
List *slitem;
copy_plan_costsize(plan, lefttree);
/*
* Charge one cpu_operator_cost per comparison per input tuple. We
2003-08-04 00:43:34 +00:00
* assume all columns get compared at most of the tuples. (XXX
* probably this is an overestimate.)
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols;
/*
* plan->plan_rows is left as a copy of the input subplan's plan_rows;
2003-08-04 00:43:34 +00:00
* ie, we assume the filter removes nothing. The caller must alter
* this if he has a better idea.
*/
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
/*
* convert SortClause list into array of attr indexes, as wanted by
* exec
*/
Assert(numCols > 0);
uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
foreach(slitem, distinctList)
{
SortClause *sortcl = (SortClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, tlist);
uniqColIdx[keyno++] = tle->resdom->resno;
}
node->numCols = numCols;
node->uniqColIdx = uniqColIdx;
1998-09-01 03:29:17 +00:00
return node;
}
/*
* distinctList is a list of SortClauses, identifying the targetlist items
* that should be considered by the SetOp filter.
*/
SetOp *
make_setop(SetOpCmd cmd, List *tlist, Plan *lefttree,
List *distinctList, AttrNumber flagColIdx)
{
SetOp *node = makeNode(SetOp);
Plan *plan = &node->plan;
int numCols = length(distinctList);
int keyno = 0;
AttrNumber *dupColIdx;
List *slitem;
copy_plan_costsize(plan, lefttree);
/*
* Charge one cpu_operator_cost per comparison per input tuple. We
* assume all columns get compared at most of the tuples.
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols;
/*
* We make the unsupported assumption that there will be 10% as many
* tuples out as in. Any way to do better?
*/
plan->plan_rows *= 0.1;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
/*
* convert SortClause list into array of attr indexes, as wanted by
* exec
*/
Assert(numCols > 0);
dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
foreach(slitem, distinctList)
{
SortClause *sortcl = (SortClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, tlist);
dupColIdx[keyno++] = tle->resdom->resno;
}
node->cmd = cmd;
node->numCols = numCols;
node->dupColIdx = dupColIdx;
node->flagColIdx = flagColIdx;
return node;
}
Limit *
make_limit(List *tlist, Plan *lefttree,
Node *limitOffset, Node *limitCount)
{
Limit *node = makeNode(Limit);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/*
2001-03-22 04:01:46 +00:00
* If offset/count are constants, adjust the output rows count and
* costs accordingly. This is only a cosmetic issue if we are at top
* level, but if we are building a subquery then it's important to
* report correct info to the outer planner.
*/
if (limitOffset && IsA(limitOffset, Const))
{
Const *limito = (Const *) limitOffset;
int32 offset = DatumGetInt32(limito->constvalue);
if (!limito->constisnull && offset > 0)
{
if (offset > plan->plan_rows)
offset = (int32) plan->plan_rows;
if (plan->plan_rows > 0)
plan->startup_cost +=
(plan->total_cost - plan->startup_cost)
* ((double) offset) / plan->plan_rows;
plan->plan_rows -= offset;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
}
}
if (limitCount && IsA(limitCount, Const))
{
Const *limitc = (Const *) limitCount;
int32 count = DatumGetInt32(limitc->constvalue);
if (!limitc->constisnull && count >= 0)
{
if (count > plan->plan_rows)
count = (int32) plan->plan_rows;
if (plan->plan_rows > 0)
plan->total_cost = plan->startup_cost +
(plan->total_cost - plan->startup_cost)
* ((double) count) / plan->plan_rows;
plan->plan_rows = count;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
}
}
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->limitOffset = limitOffset;
node->limitCount = limitCount;
return node;
}
Result *
make_result(List *tlist,
Node *resconstantqual,
Plan *subplan)
{
Result *node = makeNode(Result);
Plan *plan = &node->plan;
if (subplan)
copy_plan_costsize(plan, subplan);
else
{
plan->startup_cost = 0;
plan->total_cost = cpu_tuple_cost;
plan->plan_rows = 1; /* wrong if we have a set-valued function? */
plan->plan_width = 0; /* XXX try to be smarter? */
}
if (resconstantqual)
{
QualCost qual_cost;
cost_qual_eval(&qual_cost, (List *) resconstantqual);
/* resconstantqual is evaluated once at startup */
plan->startup_cost += qual_cost.startup + qual_cost.per_tuple;
plan->total_cost += qual_cost.startup + qual_cost.per_tuple;
}
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = subplan;
plan->righttree = NULL;
node->resconstantqual = resconstantqual;
return node;
}