833 lines
21 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* ginxlog.c
* WAL replay logic for inverted index.
*
*
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/access/gin/ginxlog.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
Fix GIN to support null keys, empty and null items, and full index scans. Per my recent proposal(s). Null key datums can now be returned by extractValue and extractQuery functions, and will be stored in the index. Also, placeholder entries are made for indexable items that are NULL or contain no keys according to extractValue. This means that the index is now always complete, having at least one entry for every indexed heap TID, and so we can get rid of the prohibition on full-index scans. A full-index scan is implemented much the same way as partial-match scans were already: we build a bitmap representing all the TIDs found in the index, and then drive the results off that. Also, introduce a concept of a "search mode" that can be requested by extractQuery when the operator requires matching to empty items (this is just as cheap as matching to a single key) or requires a full index scan (which is not so cheap, but it sure beats failing or giving wrong answers). The behavior remains backward compatible for opclasses that don't return any null keys or request a non-default search mode. Using these features, we can now make the GIN index opclass for anyarray behave in a way that matches the actual anyarray operators for &&, <@, @>, and = ... which it failed to do before in assorted corner cases. This commit fixes the core GIN code and ginarrayprocs.c, updates the documentation, and adds some simple regression test cases for the new behaviors using the array operators. The tsearch and contrib GIN opclass support functions still need to be looked over and probably fixed. Another thing I intend to fix separately is that this is pretty inefficient for cases where more than one scan condition needs a full-index search: we'll run duplicate GinScanEntrys, each one of which builds a large bitmap. There is some existing logic to merge duplicate GinScanEntrys but it needs refactoring to make it work for entries belonging to different scan keys. Note that most of gin.h has been split out into a new file gin_private.h, so that gin.h doesn't export anything that's not supposed to be used by GIN opclasses or the rest of the backend. I did quite a bit of other code beautification work as well, mostly fixing comments and choosing more appropriate names for things.
2011-01-07 19:16:24 -05:00
#include "access/gin_private.h"
#include "access/xlogutils.h"
#include "utils/memutils.h"
2006-10-04 00:30:14 +00:00
static MemoryContext opCtx; /* working memory for operations */
static void
ginRedoClearIncompleteSplit(XLogRecPtr lsn, RelFileNode node, BlockNumber blkno)
2006-10-04 00:30:14 +00:00
{
Buffer buffer;
Page page;
buffer = XLogReadBuffer(node, blkno, false);
if (!BufferIsValid(buffer))
return; /* page was deleted, nothing to do */
page = (Page) BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
2006-10-04 00:30:14 +00:00
{
GinPageGetOpaque(page)->flags &= ~GIN_INCOMPLETE_SPLIT;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
static void
2006-10-04 00:30:14 +00:00
ginRedoCreateIndex(XLogRecPtr lsn, XLogRecord *record)
{
RelFileNode *node = (RelFileNode *) XLogRecGetData(record);
Buffer RootBuffer,
MetaBuffer;
Page page;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/* Backup blocks are not used in create_index records */
Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK));
MetaBuffer = XLogReadBuffer(*node, GIN_METAPAGE_BLKNO, true);
Assert(BufferIsValid(MetaBuffer));
page = (Page) BufferGetPage(MetaBuffer);
GinInitMetabuffer(MetaBuffer);
PageSetLSN(page, lsn);
MarkBufferDirty(MetaBuffer);
RootBuffer = XLogReadBuffer(*node, GIN_ROOT_BLKNO, true);
Assert(BufferIsValid(RootBuffer));
page = (Page) BufferGetPage(RootBuffer);
GinInitBuffer(RootBuffer, GIN_LEAF);
PageSetLSN(page, lsn);
MarkBufferDirty(RootBuffer);
UnlockReleaseBuffer(RootBuffer);
UnlockReleaseBuffer(MetaBuffer);
}
static void
2006-10-04 00:30:14 +00:00
ginRedoCreatePTree(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogCreatePostingTree *data = (ginxlogCreatePostingTree *) XLogRecGetData(record);
char *ptr;
Buffer buffer;
Page page;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/* Backup blocks are not used in create_ptree records */
Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK));
buffer = XLogReadBuffer(data->node, data->blkno, true);
Assert(BufferIsValid(buffer));
page = (Page) BufferGetPage(buffer);
GinInitBuffer(buffer, GIN_DATA | GIN_LEAF | GIN_COMPRESSED);
ptr = XLogRecGetData(record) + sizeof(ginxlogCreatePostingTree);
/* Place page data */
memcpy(GinDataLeafPageGetPostingList(page), ptr, data->size);
GinDataLeafPageSetPostingListSize(page, data->size);
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
static void
ginRedoInsertEntry(Buffer buffer, bool isLeaf, BlockNumber rightblkno, void *rdata)
2006-10-04 00:30:14 +00:00
{
Page page = BufferGetPage(buffer);
ginxlogInsertEntry *data = (ginxlogInsertEntry *) rdata;
OffsetNumber offset = data->offset;
IndexTuple itup;
if (rightblkno != InvalidBlockNumber)
{
/* update link to right page after split */
Assert(!GinPageIsLeaf(page));
Assert(offset >= FirstOffsetNumber && offset <= PageGetMaxOffsetNumber(page));
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offset));
GinSetDownlink(itup, rightblkno);
}
if (data->isDelete)
{
Assert(GinPageIsLeaf(page));
Assert(offset >= FirstOffsetNumber && offset <= PageGetMaxOffsetNumber(page));
PageIndexTupleDelete(page, offset);
}
itup = &data->tuple;
if (PageAddItem(page, (Item) itup, IndexTupleSize(itup), offset, false, false) == InvalidOffsetNumber)
{
RelFileNode node;
ForkNumber forknum;
BlockNumber blknum;
BufferGetTag(buffer, &node, &forknum, &blknum);
elog(ERROR, "failed to add item to index page in %u/%u/%u",
node.spcNode, node.dbNode, node.relNode);
}
}
static void
ginRedoRecompress(Page page, ginxlogRecompressDataLeaf *data)
{
Pointer segment;
/* Copy the new data to the right place */
segment = ((Pointer) GinDataLeafPageGetPostingList(page))
+ data->unmodifiedsize;
memcpy(segment, data->newdata, data->length - data->unmodifiedsize);
GinDataLeafPageSetPostingListSize(page, data->length);
GinPageSetCompressed(page);
GinPageGetOpaque(page)->maxoff = InvalidOffsetNumber;
}
static void
ginRedoInsertData(Buffer buffer, bool isLeaf, BlockNumber rightblkno, void *rdata)
{
Page page = BufferGetPage(buffer);
if (isLeaf)
{
ginxlogRecompressDataLeaf *data = (ginxlogRecompressDataLeaf *) rdata;
Assert(GinPageIsLeaf(page));
ginRedoRecompress(page, data);
}
else
{
ginxlogInsertDataInternal *data = (ginxlogInsertDataInternal *) rdata;
PostingItem *oldpitem;
Assert(!GinPageIsLeaf(page));
/* update link to right page after split */
oldpitem = GinDataPageGetPostingItem(page, data->offset);
PostingItemSetBlockNumber(oldpitem, rightblkno);
GinDataPageAddPostingItem(page, &data->newitem, data->offset);
}
}
static void
ginRedoInsert(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogInsert *data = (ginxlogInsert *) XLogRecGetData(record);
Buffer buffer;
Page page;
char *payload;
BlockNumber leftChildBlkno = InvalidBlockNumber;
BlockNumber rightChildBlkno = InvalidBlockNumber;
bool isLeaf = (data->flags & GIN_INSERT_ISLEAF) != 0;
payload = XLogRecGetData(record) + sizeof(ginxlogInsert);
/*
* First clear incomplete-split flag on child page if this finishes
* a split.
*/
if (!isLeaf)
{
leftChildBlkno = BlockIdGetBlockNumber((BlockId) payload);
payload += sizeof(BlockIdData);
rightChildBlkno = BlockIdGetBlockNumber((BlockId) payload);
payload += sizeof(BlockIdData);
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
ginRedoClearIncompleteSplit(lsn, data->node, leftChildBlkno);
}
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/* If we have a full-page image, restore it and we're done */
if (record->xl_info & XLR_BKP_BLOCK(isLeaf ? 0 : 1))
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
{
(void) RestoreBackupBlock(lsn, record, isLeaf ? 0 : 1, false, false);
return;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
}
buffer = XLogReadBuffer(data->node, data->blkno, false);
if (!BufferIsValid(buffer))
return; /* page was deleted, nothing to do */
page = (Page) BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
2006-10-04 00:30:14 +00:00
{
/* How to insert the payload is tree-type specific */
if (data->flags & GIN_INSERT_ISDATA)
2006-10-04 00:30:14 +00:00
{
Assert(GinPageIsData(page));
ginRedoInsertData(buffer, isLeaf, rightChildBlkno, payload);
}
else
{
Assert(!GinPageIsData(page));
ginRedoInsertEntry(buffer, isLeaf, rightChildBlkno, payload);
}
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
static void
ginRedoSplitEntry(Page lpage, Page rpage, void *rdata)
{
ginxlogSplitEntry *data = (ginxlogSplitEntry *) rdata;
IndexTuple itup = (IndexTuple) ((char *) rdata + sizeof(ginxlogSplitEntry));
OffsetNumber i;
for (i = 0; i < data->separator; i++)
{
if (PageAddItem(lpage, (Item) itup, IndexTupleSize(itup), InvalidOffsetNumber, false, false) == InvalidOffsetNumber)
elog(ERROR, "failed to add item to gin index page");
itup = (IndexTuple) (((char *) itup) + MAXALIGN(IndexTupleSize(itup)));
}
for (i = data->separator; i < data->nitem; i++)
{
if (PageAddItem(rpage, (Item) itup, IndexTupleSize(itup), InvalidOffsetNumber, false, false) == InvalidOffsetNumber)
elog(ERROR, "failed to add item to gin index page");
itup = (IndexTuple) (((char *) itup) + MAXALIGN(IndexTupleSize(itup)));
}
}
static void
ginRedoSplitData(Page lpage, Page rpage, void *rdata)
{
bool isleaf = GinPageIsLeaf(lpage);
if (isleaf)
{
ginxlogSplitDataLeaf *data = (ginxlogSplitDataLeaf *) rdata;
Pointer lptr = (Pointer) rdata + sizeof(ginxlogSplitDataLeaf);
Pointer rptr = lptr + data->lsize;
Assert(data->lsize > 0 && data->lsize <= GinDataLeafMaxContentSize);
Assert(data->rsize > 0 && data->rsize <= GinDataLeafMaxContentSize);
memcpy(GinDataLeafPageGetPostingList(lpage), lptr, data->lsize);
memcpy(GinDataLeafPageGetPostingList(rpage), rptr, data->rsize);
GinDataLeafPageSetPostingListSize(lpage, data->lsize);
GinDataLeafPageSetPostingListSize(rpage, data->rsize);
*GinDataPageGetRightBound(lpage) = data->lrightbound;
*GinDataPageGetRightBound(rpage) = data->rrightbound;
}
else
{
ginxlogSplitDataInternal *data = (ginxlogSplitDataInternal *) rdata;
PostingItem *items = (PostingItem *) ((char *) rdata + sizeof(ginxlogSplitDataInternal));
OffsetNumber i;
OffsetNumber maxoff;
for (i = 0; i < data->separator; i++)
GinDataPageAddPostingItem(lpage, &items[i], InvalidOffsetNumber);
for (i = data->separator; i < data->nitem; i++)
GinDataPageAddPostingItem(rpage, &items[i], InvalidOffsetNumber);
/* set up right key */
maxoff = GinPageGetOpaque(lpage)->maxoff;
*GinDataPageGetRightBound(lpage) = GinDataPageGetPostingItem(lpage, maxoff)->key;
*GinDataPageGetRightBound(rpage) = data->rightbound;
}
}
static void
2006-10-04 00:30:14 +00:00
ginRedoSplit(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogSplit *data = (ginxlogSplit *) XLogRecGetData(record);
Buffer lbuffer,
rbuffer;
Page lpage,
rpage;
uint32 flags = 0;
char *payload;
bool isLeaf = (data->flags & GIN_INSERT_ISLEAF) != 0;
bool isData = (data->flags & GIN_INSERT_ISDATA) != 0;
bool isRoot = (data->flags & GIN_SPLIT_ROOT) != 0;
payload = XLogRecGetData(record) + sizeof(ginxlogSplit);
/*
* First clear incomplete-split flag on child page if this finishes
* a split
*/
if (!isLeaf)
{
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
ginRedoClearIncompleteSplit(lsn, data->node, data->leftChildBlkno);
}
if (isLeaf)
flags |= GIN_LEAF;
if (isData)
flags |= GIN_DATA;
if (isLeaf && isData)
flags |= GIN_COMPRESSED;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
lbuffer = XLogReadBuffer(data->node, data->lblkno, true);
Assert(BufferIsValid(lbuffer));
lpage = (Page) BufferGetPage(lbuffer);
GinInitBuffer(lbuffer, flags);
rbuffer = XLogReadBuffer(data->node, data->rblkno, true);
Assert(BufferIsValid(rbuffer));
rpage = (Page) BufferGetPage(rbuffer);
GinInitBuffer(rbuffer, flags);
2006-10-04 00:30:14 +00:00
GinPageGetOpaque(lpage)->rightlink = BufferGetBlockNumber(rbuffer);
GinPageGetOpaque(rpage)->rightlink = isRoot ? InvalidBlockNumber : data->rrlink;
/* Do the tree-type specific portion to restore the page contents */
if (isData)
ginRedoSplitData(lpage, rpage, payload);
2006-10-04 00:30:14 +00:00
else
ginRedoSplitEntry(lpage, rpage, payload);
PageSetLSN(rpage, lsn);
MarkBufferDirty(rbuffer);
PageSetLSN(lpage, lsn);
MarkBufferDirty(lbuffer);
if (isRoot)
2006-10-04 00:30:14 +00:00
{
BlockNumber rootBlkno = data->rrlink;
Buffer rootBuf = XLogReadBuffer(data->node, rootBlkno, true);
2006-10-04 00:30:14 +00:00
Page rootPage = BufferGetPage(rootBuf);
GinInitBuffer(rootBuf, flags & ~GIN_LEAF & ~GIN_COMPRESSED);
if (isData)
2006-10-04 00:30:14 +00:00
{
Assert(rootBlkno != GIN_ROOT_BLKNO);
ginDataFillRoot(NULL, BufferGetPage(rootBuf),
BufferGetBlockNumber(lbuffer),
BufferGetPage(lbuffer),
BufferGetBlockNumber(rbuffer),
BufferGetPage(rbuffer));
2006-10-04 00:30:14 +00:00
}
else
{
Assert(rootBlkno == GIN_ROOT_BLKNO);
ginEntryFillRoot(NULL, BufferGetPage(rootBuf),
BufferGetBlockNumber(lbuffer),
BufferGetPage(lbuffer),
BufferGetBlockNumber(rbuffer),
BufferGetPage(rbuffer));
}
PageSetLSN(rootPage, lsn);
MarkBufferDirty(rootBuf);
UnlockReleaseBuffer(rootBuf);
2006-10-04 00:30:14 +00:00
}
UnlockReleaseBuffer(rbuffer);
UnlockReleaseBuffer(lbuffer);
}
/*
* This is functionally the same as heap_xlog_newpage.
*/
static void
2006-10-04 00:30:14 +00:00
ginRedoVacuumPage(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogVacuumPage *xlrec = (ginxlogVacuumPage *) XLogRecGetData(record);
char *blk = ((char *) xlrec) + sizeof(ginxlogVacuumPage);
Buffer buffer;
Page page;
Assert(xlrec->hole_offset < BLCKSZ);
Assert(xlrec->hole_length < BLCKSZ);
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/* If we have a full-page image, restore it and we're done */
if (record->xl_info & XLR_BKP_BLOCK(0))
{
(void) RestoreBackupBlock(lsn, record, 0, false, false);
return;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
}
buffer = XLogReadBuffer(xlrec->node, xlrec->blkno, true);
if (!BufferIsValid(buffer))
return;
page = (Page) BufferGetPage(buffer);
if (xlrec->hole_length == 0)
2006-10-04 00:30:14 +00:00
{
memcpy((char *) page, blk, BLCKSZ);
}
else
{
memcpy((char *) page, blk, xlrec->hole_offset);
/* must zero-fill the hole */
MemSet((char *) page + xlrec->hole_offset, 0, xlrec->hole_length);
memcpy((char *) page + (xlrec->hole_offset + xlrec->hole_length),
blk + xlrec->hole_offset,
BLCKSZ - (xlrec->hole_offset + xlrec->hole_length));
}
2006-10-04 00:30:14 +00:00
PageSetLSN(page, lsn);
2006-10-04 00:30:14 +00:00
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
2006-10-04 00:30:14 +00:00
static void
ginRedoVacuumDataLeafPage(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogVacuumDataLeafPage *xlrec = (ginxlogVacuumDataLeafPage *) XLogRecGetData(record);
Buffer buffer;
Page page;
/* If we have a full-page image, restore it and we're done */
if (record->xl_info & XLR_BKP_BLOCK(0))
{
(void) RestoreBackupBlock(lsn, record, 0, false, false);
return;
}
buffer = XLogReadBuffer(xlrec->node, xlrec->blkno, false);
if (!BufferIsValid(buffer))
return;
page = (Page) BufferGetPage(buffer);
Assert(GinPageIsLeaf(page));
Assert(GinPageIsData(page));
if (lsn > PageGetLSN(page))
{
ginRedoRecompress(page, &xlrec->data);
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
static void
2006-10-04 00:30:14 +00:00
ginRedoDeletePage(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogDeletePage *data = (ginxlogDeletePage *) XLogRecGetData(record);
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
Buffer dbuffer;
Buffer pbuffer;
Buffer lbuffer;
Page page;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
if (record->xl_info & XLR_BKP_BLOCK(0))
dbuffer = RestoreBackupBlock(lsn, record, 0, false, true);
else
2006-10-04 00:30:14 +00:00
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
dbuffer = XLogReadBuffer(data->node, data->blkno, false);
if (BufferIsValid(dbuffer))
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
page = BufferGetPage(dbuffer);
if (lsn > PageGetLSN(page))
{
Assert(GinPageIsData(page));
GinPageGetOpaque(page)->flags = GIN_DELETED;
PageSetLSN(page, lsn);
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
MarkBufferDirty(dbuffer);
}
}
}
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
if (record->xl_info & XLR_BKP_BLOCK(1))
pbuffer = RestoreBackupBlock(lsn, record, 1, false, true);
else
2006-10-04 00:30:14 +00:00
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
pbuffer = XLogReadBuffer(data->node, data->parentBlkno, false);
if (BufferIsValid(pbuffer))
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
page = BufferGetPage(pbuffer);
if (lsn > PageGetLSN(page))
{
Assert(GinPageIsData(page));
Assert(!GinPageIsLeaf(page));
GinPageDeletePostingItem(page, data->parentOffset);
PageSetLSN(page, lsn);
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
MarkBufferDirty(pbuffer);
}
}
}
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
if (record->xl_info & XLR_BKP_BLOCK(2))
(void) RestoreBackupBlock(lsn, record, 2, false, false);
else if (data->leftBlkno != InvalidBlockNumber)
2006-10-04 00:30:14 +00:00
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
lbuffer = XLogReadBuffer(data->node, data->leftBlkno, false);
if (BufferIsValid(lbuffer))
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
page = BufferGetPage(lbuffer);
if (lsn > PageGetLSN(page))
{
Assert(GinPageIsData(page));
GinPageGetOpaque(page)->rightlink = data->rightLink;
PageSetLSN(page, lsn);
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
MarkBufferDirty(lbuffer);
}
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
UnlockReleaseBuffer(lbuffer);
}
}
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
if (BufferIsValid(pbuffer))
UnlockReleaseBuffer(pbuffer);
if (BufferIsValid(dbuffer))
UnlockReleaseBuffer(dbuffer);
}
static void
ginRedoUpdateMetapage(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogUpdateMeta *data = (ginxlogUpdateMeta *) XLogRecGetData(record);
Buffer metabuffer;
Page metapage;
Buffer buffer;
metabuffer = XLogReadBuffer(data->node, GIN_METAPAGE_BLKNO, false);
if (!BufferIsValid(metabuffer))
return; /* assume index was deleted, nothing to do */
metapage = BufferGetPage(metabuffer);
if (lsn > PageGetLSN(metapage))
{
memcpy(GinPageGetMeta(metapage), &data->metadata, sizeof(GinMetaPageData));
PageSetLSN(metapage, lsn);
MarkBufferDirty(metabuffer);
}
if (data->ntuples > 0)
{
/*
* insert into tail page
*/
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
{
buffer = XLogReadBuffer(data->node, data->metadata.tail, false);
if (BufferIsValid(buffer))
{
Page page = BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
{
OffsetNumber l,
2011-04-10 11:42:00 -04:00
off = (PageIsEmpty(page)) ? FirstOffsetNumber :
OffsetNumberNext(PageGetMaxOffsetNumber(page));
int i,
2011-04-10 11:42:00 -04:00
tupsize;
IndexTuple tuples = (IndexTuple) (XLogRecGetData(record) + sizeof(ginxlogUpdateMeta));
for (i = 0; i < data->ntuples; i++)
{
tupsize = IndexTupleSize(tuples);
l = PageAddItem(page, (Item) tuples, tupsize, off, false, false);
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add item to index page");
tuples = (IndexTuple) (((char *) tuples) + tupsize);
off++;
}
/*
* Increase counter of heap tuples
*/
GinPageGetOpaque(page)->maxoff++;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
}
}
else if (data->prevTail != InvalidBlockNumber)
{
/*
* New tail
*/
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
buffer = XLogReadBuffer(data->node, data->prevTail, false);
if (BufferIsValid(buffer))
{
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
Page page = BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
{
GinPageGetOpaque(page)->rightlink = data->newRightlink;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
}
}
UnlockReleaseBuffer(metabuffer);
}
static void
ginRedoInsertListPage(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogInsertListPage *data = (ginxlogInsertListPage *) XLogRecGetData(record);
Buffer buffer;
Page page;
OffsetNumber l,
off = FirstOffsetNumber;
int i,
tupsize;
IndexTuple tuples = (IndexTuple) (XLogRecGetData(record) + sizeof(ginxlogInsertListPage));
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/* If we have a full-page image, restore it and we're done */
if (record->xl_info & XLR_BKP_BLOCK(0))
{
(void) RestoreBackupBlock(lsn, record, 0, false, false);
return;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
}
buffer = XLogReadBuffer(data->node, data->blkno, true);
Assert(BufferIsValid(buffer));
page = BufferGetPage(buffer);
GinInitBuffer(buffer, GIN_LIST);
GinPageGetOpaque(page)->rightlink = data->rightlink;
if (data->rightlink == InvalidBlockNumber)
{
/* tail of sublist */
GinPageSetFullRow(page);
GinPageGetOpaque(page)->maxoff = 1;
}
else
{
GinPageGetOpaque(page)->maxoff = 0;
}
for (i = 0; i < data->ntuples; i++)
{
tupsize = IndexTupleSize(tuples);
l = PageAddItem(page, (Item) tuples, tupsize, off, false, false);
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add item to index page");
tuples = (IndexTuple) (((char *) tuples) + tupsize);
}
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
static void
ginRedoDeleteListPages(XLogRecPtr lsn, XLogRecord *record)
{
ginxlogDeleteListPages *data = (ginxlogDeleteListPages *) XLogRecGetData(record);
Buffer metabuffer;
Page metapage;
int i;
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/* Backup blocks are not used in delete_listpage records */
Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK));
metabuffer = XLogReadBuffer(data->node, GIN_METAPAGE_BLKNO, false);
if (!BufferIsValid(metabuffer))
return; /* assume index was deleted, nothing to do */
metapage = BufferGetPage(metabuffer);
if (lsn > PageGetLSN(metapage))
{
memcpy(GinPageGetMeta(metapage), &data->metadata, sizeof(GinMetaPageData));
PageSetLSN(metapage, lsn);
MarkBufferDirty(metabuffer);
}
Fix multiple problems in WAL replay. Most of the replay functions for WAL record types that modify more than one page failed to ensure that those pages were locked correctly to ensure that concurrent queries could not see inconsistent page states. This is a hangover from coding decisions made long before Hot Standby was added, when it was hardly necessary to acquire buffer locks during WAL replay at all, let alone hold them for carefully-chosen periods. The key problem was that RestoreBkpBlocks was written to hold lock on each page restored from a full-page image for only as long as it took to update that page. This was guaranteed to break any WAL replay function in which there was any update-ordering constraint between pages, because even if the nominal order of the pages is the right one, any mixture of full-page and non-full-page updates in the same record would result in out-of-order updates. Moreover, it wouldn't work for situations where there's a requirement to maintain lock on one page while updating another. Failure to honor an update ordering constraint in this way is thought to be the cause of bug #7648 from Daniel Farina: what seems to have happened there is that a btree page being split was rewritten from a full-page image before the new right sibling page was written, and because lock on the original page was not maintained it was possible for hot standby queries to try to traverse the page's right-link to the not-yet-existing sibling page. To fix, get rid of RestoreBkpBlocks as such, and instead create a new function RestoreBackupBlock that restores just one full-page image at a time. This function can be invoked by WAL replay functions at the points where they would otherwise perform non-full-page updates; in this way, the physical order of page updates remains the same no matter which pages are replaced by full-page images. We can then further adjust the logic in individual replay functions if it is necessary to hold buffer locks for overlapping periods. A side benefit is that we can simplify the handling of concurrency conflict resolution by moving that code into the record-type-specfic functions; there's no more need to contort the code layout to keep conflict resolution in front of the RestoreBkpBlocks call. In connection with that, standardize on zero-based numbering rather than one-based numbering for referencing the full-page images. In HEAD, I removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are still there in the header files in previous branches, but are no longer used by the code. In addition, fix some other bugs identified in the course of making these changes: spgRedoAddNode could fail to update the parent downlink at all, if the parent tuple is in the same page as either the old or new split tuple and we're not doing a full-page image: it would get fooled by the LSN having been advanced already. This would result in permanent index corruption, not just transient failure of concurrent queries. Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old tail page as a candidate for a full-page image; in the worst case this could result in torn-page corruption. heap_xlog_freeze() was inconsistent about using a cleanup lock or plain exclusive lock: it did the former in the normal path but the latter for a full-page image. A plain exclusive lock seems sufficient, so change to that. Also, remove gistRedoPageDeleteRecord(), which has been dead code since VACUUM FULL was rewritten. Back-patch to 9.0, where hot standby was introduced. Note however that 9.0 had a significantly different WAL-logging scheme for GIST index updates, and it doesn't appear possible to make that scheme safe for concurrent hot standby queries, because it can leave inconsistent states in the index even between WAL records. Given the lack of complaints from the field, we won't work too hard on fixing that branch.
2012-11-12 22:05:08 -05:00
/*
* In normal operation, shiftList() takes exclusive lock on all the
* pages-to-be-deleted simultaneously. During replay, however, it should
* be all right to lock them one at a time. This is dependent on the fact
* that we are deleting pages from the head of the list, and that readers
* share-lock the next page before releasing the one they are on. So we
* cannot get past a reader that is on, or due to visit, any page we are
* going to delete. New incoming readers will block behind our metapage
* lock and then see a fully updated page list.
*/
for (i = 0; i < data->ndeleted; i++)
{
Buffer buffer = XLogReadBuffer(data->node, data->toDelete[i], false);
if (BufferIsValid(buffer))
{
Page page = BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
{
GinPageGetOpaque(page)->flags = GIN_DELETED;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
}
UnlockReleaseBuffer(metabuffer);
}
2006-10-04 00:30:14 +00:00
void
gin_redo(XLogRecPtr lsn, XLogRecord *record)
{
uint8 info = record->xl_info & ~XLR_INFO_MASK;
MemoryContext oldCtx;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 01:32:45 +00:00
/*
2012-02-04 22:37:34 -05:00
* GIN indexes do not require any conflict processing. NB: If we ever
* implement a similar optimization as we have in b-tree, and remove
* killed tuples outside VACUUM, we'll need to handle that here.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 01:32:45 +00:00
*/
oldCtx = MemoryContextSwitchTo(opCtx);
2006-10-04 00:30:14 +00:00
switch (info)
{
case XLOG_GIN_CREATE_INDEX:
ginRedoCreateIndex(lsn, record);
break;
2006-10-04 00:30:14 +00:00
case XLOG_GIN_CREATE_PTREE:
ginRedoCreatePTree(lsn, record);
break;
2006-10-04 00:30:14 +00:00
case XLOG_GIN_INSERT:
ginRedoInsert(lsn, record);
break;
2006-10-04 00:30:14 +00:00
case XLOG_GIN_SPLIT:
ginRedoSplit(lsn, record);
break;
2006-10-04 00:30:14 +00:00
case XLOG_GIN_VACUUM_PAGE:
ginRedoVacuumPage(lsn, record);
break;
case XLOG_GIN_VACUUM_DATA_LEAF_PAGE:
ginRedoVacuumDataLeafPage(lsn, record);
break;
2006-10-04 00:30:14 +00:00
case XLOG_GIN_DELETE_PAGE:
ginRedoDeletePage(lsn, record);
break;
case XLOG_GIN_UPDATE_META_PAGE:
ginRedoUpdateMetapage(lsn, record);
break;
case XLOG_GIN_INSERT_LISTPAGE:
ginRedoInsertListPage(lsn, record);
break;
case XLOG_GIN_DELETE_LISTPAGE:
ginRedoDeleteListPages(lsn, record);
break;
default:
elog(PANIC, "gin_redo: unknown op code %u", info);
}
MemoryContextSwitchTo(oldCtx);
MemoryContextReset(opCtx);
}
2006-10-04 00:30:14 +00:00
void
gin_xlog_startup(void)
{
opCtx = AllocSetContextCreate(CurrentMemoryContext,
2006-10-04 00:30:14 +00:00
"GIN recovery temporary context",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
}
2006-10-04 00:30:14 +00:00
void
gin_xlog_cleanup(void)
{
MemoryContextDelete(opCtx);
}