are mostly excluded by constraints: do the CE test a bit earlier to save
some adjust_appendrel_attrs() work on excluded children, and arrange to
use array indexing rather than rt_fetch() to fetch RTEs in the main body
of the planner. The latter is something I'd wanted to do for awhile anyway,
but seeing list_nth_cell() as 35% of the runtime gets one's attention.
provide just a boolean 'amcanorder', instead of fields that specify the
sort operator strategy numbers. We have decided to require ordering-capable
AMs to use btree-compatible strategy numbers, so the old fields are
overkill (and indeed misleading about what's allowed).
per-column options for btree indexes. The planner's support for this is still
pretty rudimentary; it does not yet know how to plan mergejoins with
nondefault ordering options. The documentation is pretty rudimentary, too.
I'll work on improving that stuff later.
Note incompatible change from prior behavior: ORDER BY ... USING will now be
rejected if the operator is not a less-than or greater-than member of some
btree opclass. This prevents less-than-sane behavior if an operator that
doesn't actually define a proper sort ordering is selected.
cases. Operator classes now exist within "operator families". While most
families are equivalent to a single class, related classes can be grouped
into one family to represent the fact that they are semantically compatible.
Cross-type operators are now naturally adjunct parts of a family, without
having to wedge them into a particular opclass as we had done originally.
This commit restructures the catalogs and cleans up enough of the fallout so
that everything still works at least as well as before, but most of the work
needed to actually improve the planner's behavior will come later. Also,
there are not yet CREATE/DROP/ALTER OPERATOR FAMILY commands; the only way
to create a new family right now is to allow CREATE OPERATOR CLASS to make
one by default. I owe some more documentation work, too. But that can all
be done in smaller pieces once this infrastructure is in place.
operator strategy numbers, ie, GiST and GIN. This is almost cosmetic
enough to not need a catversion bump, but since the opr_sanity regression
test has to change in sync with the catalog entry, I figured I'd better
do one.
tables in the query compete for cache space, not just the one we are
currently costing an indexscan for. This seems more realistic, and it
definitely will help in examples recently exhibited by Stefan
Kaltenbrunner. To get the total size of all the tables involved, we must
tweak the handling of 'append relations' a bit --- formerly we looked up
information about the child tables on-the-fly during set_append_rel_pathlist,
but it needs to be done before we start doing any cost estimation, so
push it into the add_base_rels_to_query scan.
contradictory WHERE-clauses applied to a relation. This makes the
GUC variable constraint_exclusion rather inappropriately named,
but I've refrained for the moment from renaming it.
Per example from Martin Lesser.
(e.g. "INSERT ... VALUES (...), (...), ...") and elsewhere as allowed
by the spec. (e.g. similar to a FROM clause subselect). initdb required.
Joe Conway and Tom Lane.
(table or index) before trying to open its relcache entry. This fixes
race conditions in which someone else commits a change to the relation's
catalog entries while we are in process of doing relcache load. Problems
of that ilk have been reported sporadically for years, but it was not
really practical to fix until recently --- for instance, the recent
addition of WAL-log support for in-place updates helped.
Along the way, remove pg_am.amconcurrent: all AMs are now expected to support
concurrent update.
... in fact, it will be applied now in any query whatsoever. I'm still
a bit concerned about the cycles that might be expended in failed proof
attempts, but given that CE is turned off by default, it's the user's
choice whether to expend those cycles or not. (Possibly we should
change the simple bool constraint_exclusion parameter to something
more fine-grained?)
inheritance trees on-the-fly, which pretty well constrained us to considering
only one way of planning inheritance, expand inheritance sets during the
planner prep phase, and build a side data structure that can be consulted
later to find which RTEs are members of which inheritance sets. As proof of
concept, use the data structure to plan joins against inheritance sets more
efficiently: we can now use indexes on the set members in inner-indexscan
joins. (The generated plans could be improved further, but it'll take some
executor changes.) This data structure will also support handling UNION ALL
subqueries in the same way as inheritance sets, but that aspect of it isn't
finished yet.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
nonconsecutive columns of a multicolumn index, as per discussion around
mid-May (pghackers thread "Best way to scan on-disk bitmaps"). This
turns out to require only minimal changes in btree, and so far as I can
see none at all in GiST. btcostestimate did need some work, but its
original assumption that index selectivity == heap selectivity was
quite bogus even before this.
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
that we acquire a lock on relations added to the query due to inheritance.
Formerly, no such lock was held throughout planning, which meant that
a schema change could occur to invalidate the plan before it's even
been completed.
aren't doing anything useful (ie, neither selection nor projection).
Also, extend to SubqueryScan the hacks already in place to avoid
unnecessary ExecProject calls when the result would just be the same
tuple the subquery already delivered. This saves some overhead in
UNION and other set operations, as well as avoiding overhead for
unflatten-able subqueries. Per example from Sokolov Yura.
but the code is basically working. Along the way, rewrite the entire
approach to processing OR index conditions, and make it work in join
cases for the first time ever. orindxpath.c is now basically obsolete,
but I left it in for the time being to allow easy comparison testing
against the old implementation.
indexes. Replace all heap_openr and index_openr calls by heap_open
and index_open. Remove runtime lookups of catalog OID numbers in
various places. Remove relcache's support for looking up system
catalogs by name. Bulky but mostly very boring patch ...
few palloc's. I also chose to eliminate the restype and restypmod fields
entirely, since they are redundant with information stored in the node's
contained expression; re-examining the expression at need seems simpler
and more reliable than trying to keep restype/restypmod up to date.
initdb forced due to change in contents of stored rules.
change saves a great deal of space in pg_proc and its primary index,
and it eliminates the former requirement that INDEX_MAX_KEYS and
FUNC_MAX_ARGS have the same value. INDEX_MAX_KEYS is still embedded
in the on-disk representation (because it affects index tuple header
size), but FUNC_MAX_ARGS is not. I believe it would now be possible
to increase FUNC_MAX_ARGS at little cost, but haven't experimented yet.
There are still a lot of vestigial references to FUNC_MAX_ARGS, which
I will clean up in a separate pass. However, getting rid of it
altogether would require changing the FunctionCallInfoData struct,
and I'm not sure I want to buy into that.
structs. There are many places in the planner where we were passing
both a rel and an index to subroutines, and now need only pass the
index struct. Notationally simpler, and perhaps a tad faster.
never-yet-vacuumed relation. This restores the pre-8.0 behavior of
avoiding seqscans during initial data loading, while still allowing
reasonable optimization after a table has been vacuumed. Several
regression test cases revert to 7.4-like behavior, which is probably
a good sign. Per gripes from Keith Browne and others.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
In particular, there was a mathematical tie between the two possible
nestloop-with-materialized-inner-scan plans for a join (ie, we computed
the same cost with either input on the inside), resulting in a roundoff
error driven choice, if the relations were both small enough to fit in
sort_mem. Add a small cost factor to ensure we prefer materializing the
smaller input. This changes several regression test plans, but with any
luck we will now have more stability across platforms.
a relation's number of blocks, rather than the possibly-obsolete value
in pg_class.relpages. Scale the value in pg_class.reltuples correspondingly
to arrive at a hopefully more accurate number of rows. When pg_class
contains 0/0, estimate a tuple width from the column datatypes and divide
that into current file size to estimate number of rows. This improved
methodology allows us to jettison the ancient hacks that put bogus default
values into pg_class when a table is first created. Also, per a suggestion
from Simon, make VACUUM (but not VACUUM FULL or ANALYZE) adjust the value
it puts into pg_class.reltuples to try to represent the mean tuple density
instead of the minimal density that actually prevails just after VACUUM.
These changes alter the plans selected for certain regression tests, so
update the expected files accordingly. (I removed join_1.out because
it's not clear if it still applies; we can add back any variant versions
as they are shown to be needed.)
of locking used by REINDEX. REINDEX needs only ShareLock on the parent
table, same as CREATE INDEX, plus an exclusive lock on the specific index
being processed.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
first time generate an OR indexscan for a two-column index when the WHERE
condition is like 'col1 = foo AND (col2 = bar OR col2 = baz)' --- before,
the OR had to be on the first column of the index or we'd not notice the
possibility of using it. Some progress towards extracting OR indexscans
from subclauses of an OR that references multiple relations, too, although
this code is #ifdef'd out because it needs more work.
pghackers proposal of 8-Nov. All the existing cross-type comparison
operators (int2/int4/int8 and float4/float8) have appropriate support.
The original proposal of storing the right-hand-side datatype as part of
the primary key for pg_amop and pg_amproc got modified a bit in the event;
it is easier to store zero as the 'default' case and only store a nonzero
when the operator is actually cross-type. Along the way, remove the
long-since-defunct bigbox_ops operator class.
Remove the 'strategy map' code, which was a large amount of mechanism
that no longer had any use except reverse-mapping from procedure OID to
strategy number. Passing the strategy number to the index AM in the
first place is simpler and faster.
This is a preliminary step in planned support for cross-datatype index
operations. I'm committing it now since the ScanKeyEntryInitialize()
API change touches quite a lot of files, and I want to commit those
changes before the tree drifts under me.