This provides a speedup of about 4X when NBuffers is large enough.
There is also a useful reduction in sinval traffic, since we
only do CacheInvalidateSmgr() once not once per fork.
Simon Riggs, reviewed and somewhat revised by Tom Lane
Currently, the only way to see the numbers this gathers is via
EXPLAIN (ANALYZE, BUFFERS), but the plan is to add visibility through
the stats collector and pg_stat_statements in subsequent patches.
Ants Aasma, reviewed by Greg Smith, with some further changes by me.
To make it wake up promptly when activity starts again, backends nudge it
by setting a latch in MarkBufferDirty(). The latch is kept set while
bgwriter is active, so there is very little overhead from that when the
system is busy. It is only armed before going into longer sleep.
Peter Geoghegan, with some changes by me.
We need not wait until the commit record is durably on disk, because
in the event of a crash the page we're updating with hint bits will
be gone anyway. Per off-list report from Heikki Linnakangas, this
can significantly degrade the performance of unlogged tables; I was
able to show a 2x speedup from this patch on a pgbench run with scale
factor 15. In practice, this will mostly help small, heavily updated
tables, because on larger tables you're unlikely to run into the same
row again before the commit record makes it out to disk.
The contents of an unlogged table are WAL-logged; thus, they are not
available on standby servers and are truncated whenever the database
system enters recovery. Indexes on unlogged tables are also unlogged.
Unlogged GiST indexes are not currently supported.
This allows us to reliably remove all leftover temporary relation
files on cluster startup without reference to system catalogs or WAL;
therefore, we no longer include temporary relations in XLOG_XACT_COMMIT
and XLOG_XACT_ABORT WAL records.
Since these changes require including a backend ID in each
SharedInvalSmgrMsg, the size of the SharedInvalidationMessage.id
field has been reduced from two bytes to one, and the maximum number
of connections has been reduced from INT_MAX / 4 to 2^23-1. It would
be possible to remove these restrictions by increasing the size of
SharedInvalidationMessage by 4 bytes, but right now that doesn't seem
like a good trade-off.
Review by Jaime Casanova and Tom Lane.
woken by alarm we send SIGUSR1 to all backends requesting that they
check to see if they are blocking Startup process. If so, they throw
ERROR/FATAL as for other conflict resolutions. Deadlock stop gap
removed. max_standby_delay = -1 option removed to prevent deadlock.
This patch also removes buffer-usage statistics from the track_counts
output, since this (or the global server statistics) is deemed to be a better
interface to this information.
Itagaki Takahiro, reviewed by Euler Taveira de Oliveira.
GUC variable effective_io_concurrency controls how many concurrent block
prefetch requests will be issued.
(The best way to handle this for plain index scans is still under debate,
so that part is not applied yet --- tgl)
Greg Stark
truncations in FSM code, call FreeSpaceMapTruncateRel from smgr_redo. To
make that cleaner from modularity point of view, move the WAL-logging one
level up to RelationTruncate, and move RelationTruncate and all the
related WAL-logging to new src/backend/catalog/storage.c file. Introduce
new RelationCreateStorage and RelationDropStorage functions that are used
instead of calling smgrcreate/smgrscheduleunlink directly. Move the
pending rel deletion stuff from smgrcreate/smgrscheduleunlink to the new
functions. This leaves smgr.c as a thin wrapper around md.c; all the
transactional stuff is now in storage.c.
This will make it easier to add new forks with similar truncation logic,
like the visibility map.
(but not locked, as that would risk deadlocks). Also, make it work in a small
ring of buffers to avoid having bulk inserts trash the whole buffer arena.
Robert Haas, after an idea of Simon Riggs'.
functions into one ReadBufferExtended function, that takes the strategy
and mode as argument. There's three modes, RBM_NORMAL which is the default
used by plain ReadBuffer(), RBM_ZERO, which replaces ZeroOrReadBuffer, and
a new mode RBM_ZERO_ON_ERROR, which allows callers to read corrupt pages
without throwing an error. The FSM needs the new mode to recover from
corrupt pages, which could happend if we crash after extending an FSM file,
and the new page is "torn".
Add fork number to some error messages in bufmgr.c, that still lacked it.
of multiple forks, and each fork can be created and grown separately.
The bulk of this patch is about changing the smgr API to include an extra
ForkNumber argument in every smgr function. Also, smgrscheduleunlink and
smgrdounlink no longer implicitly call smgrclose, because other forks might
still exist after unlinking one. The callers of those functions have been
modified to call smgrclose instead.
This patch in itself doesn't have any user-visible effect, but provides the
infrastructure needed for upcoming patches. The additional forks envisioned
are a rewritten FSM implementation that doesn't rely on a fixed-size shared
memory block, and a visibility map to allow skipping portions of a table in
VACUUM that have no dead tuples.
corresponding struct definitions. This allows other headers to avoid including
certain highly-loaded headers such as rel.h and relscan.h, instead using just
relcache.h, heapam.h or genam.h, which are more lightweight and thus cause less
unnecessary dependencies.
forks. XLogOpenRelation() and the associated light-weight relation cache in
xlogutils.c is gone, and XLogReadBuffer() now takes a RelFileNode as argument,
instead of Relation.
For functions that still need a Relation struct during WAL replay, there's a
new function called CreateFakeRelcacheEntry() that returns a fake entry like
XLogOpenRelation() used to.
more logical that way, and also it reduces the amount of unnecessary includes
in bufpage.h, which is widely used.
Zdenek Kotala.
My previous patch to bufpage.h should also have credited him as author, but I
forgot (sorry about that).
buffers that cannot possibly need to be cleaned, and estimates how many
buffers it should try to clean based on moving averages of recent allocation
requests and density of reusable buffers. The patch also adds a couple
more columns to pg_stat_bgwriter to help measure the effectiveness of the
bgwriter.
Greg Smith, building on his own work and ideas from several other people,
in particular a much older patch from Itagaki Takahiro.
columns, and the new version can be stored on the same heap page, we no longer
generate extra index entries for the new version. Instead, index searches
follow the HOT-chain links to ensure they find the correct tuple version.
In addition, this patch introduces the ability to "prune" dead tuples on a
per-page basis, without having to do a complete VACUUM pass to recover space.
VACUUM is still needed to clean up dead index entries, however.
Pavan Deolasee, with help from a bunch of other people.
over a fairly long period of time, rather than being spat out in a burst.
This happens only for background checkpoints carried out by the bgwriter;
other cases, such as a shutdown checkpoint, are still done at full speed.
Remove the "all buffers" scan in the bgwriter, and associated stats
infrastructure, since this seems no longer very useful when the checkpoint
itself is properly throttled.
Original patch by Itagaki Takahiro, reworked by Heikki Linnakangas,
and some minor API editorialization by me.
buffers, rather than blowing out the whole shared-buffer arena. Aside from
avoiding cache spoliation, this fixes the problem that VACUUM formerly tended
to cause a WAL flush for every page it modified, because we had it hacked to
use only a single buffer. Those flushes will now occur only once per
ring-ful. The exact ring size, and the threshold for seqscans to switch into
the ring usage pattern, remain under debate; but the infrastructure seems
done. The key bit of infrastructure is a new optional BufferAccessStrategy
object that can be passed to ReadBuffer operations; this replaces the former
StrategyHintVacuum API.
This patch also changes the buffer usage-count methodology a bit: we now
advance usage_count when first pinning a buffer, rather than when last
unpinning it. To preserve the behavior that a buffer's lifetime starts to
decrease when it's released, the clock sweep code is modified to not decrement
usage_count of pinned buffers.
Work not done in this commit: teach GiST and GIN indexes to use the vacuum
BufferAccessStrategy for vacuum-driven fetches.
Original patch by Simon, reworked by Heikki and again by Tom.
from the WAL data, don't bother to physically read it; just have bufmgr.c
return a zeroed-out buffer instead. This speeds recovery significantly,
and also avoids unnecessary failures when a page-to-be-overwritten has corrupt
page headers on disk. This replaces a former kluge that accomplished the
latter by pretending zero_damaged_pages was always ON during WAL recovery;
which was OK when the kluge was put in, but is unsafe when restoring a WAL
log that was written with full_page_writes off.
Heikki Linnakangas
misleadingly-named WriteBuffer routine, and instead require routines that
change buffer pages to call MarkBufferDirty (which does exactly what it says).
We also require that they do so before calling XLogInsert; this takes care of
the synchronization requirement documented in SyncOneBuffer. Note that
because bufmgr takes the buffer content lock (in shared mode) while writing
out any buffer, it doesn't matter whether MarkBufferDirty is executed before
the buffer content change is complete, so long as the content change is
completed before releasing exclusive lock on the buffer. So it's OK to set
the dirtybit before we fill in the LSN.
This eliminates the former kluge of needing to set the dirtybit in LockBuffer.
Aside from making the code more transparent, we can also add some new
debugging assertions, in particular that the caller of MarkBufferDirty must
hold the buffer content lock, not merely a pin.
This commit doesn't make much functional change, but it does eliminate some
duplicated code --- for instance, PageIsNew tests are now done inside
XLogReadBuffer rather than by each caller.
The GIST xlog code still needs a lot of love, but I'll worry about that
separately.
to 'Size' (that is, size_t), and install overflow detection checks in it.
This allows us to remove the former arbitrary restrictions on NBuffers
etc. It won't make any difference in a 32-bit machine, but in a 64-bit
machine you could theoretically have terabytes of shared buffers.
(How efficiently we could manage 'em remains to be seen.) Similarly,
num_temp_buffers, work_mem, and maintenance_work_mem can be set above
2Gb on a 64-bit machine. Original patch from Koichi Suzuki, additional
work by moi.
computation. On modern machines this is as fast if not faster, and we
don't have to clog the CPU's L2 cache with a tens-of-KB pointer array.
If we ever decide to adopt a more dynamic allocation method for shared
buffers, we'll probably have to revert this patch, but in the meantime
we might as well save a few bytes and nanoseconds. Per Qingqing Zhou.
exit, instead of trying to take shortcuts. Introduce some additional
shutdown callback routines to eliminate kluges like having ProcKill
be responsible for shutting down the buffer manager. Ensure that the
order of operations during shutdown is predictable and what you would
expect given the module layering.
to write out data that we are about to tell the filesystem to drop.
smgr_internal_unlink already had a DropRelFileNodeBuffers call to
get rid of dead buffers without a write after it's no longer possible
to roll back the deleting transaction. Adding a similar call in
smgrtruncate simplifies callers and makes the overall division of
labor clearer. This patch removes the former behavior that VACUUM
would write all dirty buffers of a relation unconditionally.
the freelist, plus per-buffer spinlocks that protect access to individual
shared buffer headers. This requires abandoning a global freelist (since
the freelist is a global contention point), which shoots down ARC and 2Q
as well as plain LRU management. Adopt a clock sweep algorithm instead.
Preliminary results show substantial improvement in multi-backend situations.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
pins at end of transaction, and reduce AtEOXact_Buffers to an Assert
cross-check that this was done correctly. When not USE_ASSERT_CHECKING,
AtEOXact_Buffers is a complete no-op. This gets rid of an O(NBuffers)
bottleneck during transaction commit/abort, which recent testing has shown
becomes significant above a few tens of thousands of shared buffers.
http://archives.postgresql.org/pgsql-hackers/2004-10/msg00464.php.
This fix is intended to be permanent: it moves the responsibility for
calling SetBufferCommitInfoNeedsSave() into the tqual.c routines,
eliminating the requirement for callers to test whether t_infomask changed.
Also, tighten validity checking on buffer IDs in bufmgr.c --- several
routines were paranoid about out-of-range shared buffer numbers but not
about out-of-range local ones, which seems a tad pointless.