Operator classes can specify whether or not they support this; this preserves the flexibility to use lossy representations within an index. In passing, move constant data about a given index into the rd_amcache cache area, instead of doing fresh lookups each time we start an index operation. This is mainly to try to make sure that spgcanreturn() has insignificant cost; I still don't have any proof that it matters for actual index accesses. Also, get rid of useless copying of FmgrInfo pointers; we can perfectly well use the relcache's versions in-place.
604 lines
15 KiB
C
604 lines
15 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* spgtextproc.c
|
|
* implementation of compressed-suffix tree over text
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/access/spgist/spgtextproc.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/spgist.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/pg_locale.h"
|
|
|
|
|
|
/*
|
|
* In the worst case, a inner tuple in a text suffix tree could have as many
|
|
* as 256 nodes (one for each possible byte value). Each node can take 16
|
|
* bytes on MAXALIGN=8 machines. The inner tuple must fit on an index page
|
|
* of size BLCKSZ. Rather than assuming we know the exact amount of overhead
|
|
* imposed by page headers, tuple headers, etc, we leave 100 bytes for that
|
|
* (the actual overhead should be no more than 56 bytes at this writing, so
|
|
* there is slop in this number). The upshot is that the maximum safe prefix
|
|
* length is this:
|
|
*/
|
|
#define SPGIST_MAX_PREFIX_LENGTH (BLCKSZ - 256 * 16 - 100)
|
|
|
|
/* Struct for sorting values in picksplit */
|
|
typedef struct spgNodePtr
|
|
{
|
|
Datum d;
|
|
int i;
|
|
uint8 c;
|
|
} spgNodePtr;
|
|
|
|
|
|
Datum
|
|
spg_text_config(PG_FUNCTION_ARGS)
|
|
{
|
|
/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
|
|
spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
|
|
|
|
cfg->prefixType = TEXTOID;
|
|
cfg->labelType = CHAROID;
|
|
cfg->canReturnData = true;
|
|
cfg->longValuesOK = true; /* suffixing will shorten long values */
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
/*
|
|
* Form a text datum from the given not-necessarily-null-terminated string,
|
|
* using short varlena header format if possible
|
|
*/
|
|
static Datum
|
|
formTextDatum(const char *data, int datalen)
|
|
{
|
|
char *p;
|
|
|
|
p = (char *) palloc(datalen + VARHDRSZ);
|
|
|
|
if (datalen + VARHDRSZ_SHORT <= VARATT_SHORT_MAX)
|
|
{
|
|
SET_VARSIZE_SHORT(p, datalen + VARHDRSZ_SHORT);
|
|
if (datalen)
|
|
memcpy(p + VARHDRSZ_SHORT, data, datalen);
|
|
}
|
|
else
|
|
{
|
|
SET_VARSIZE(p, datalen + VARHDRSZ);
|
|
memcpy(p + VARHDRSZ, data, datalen);
|
|
}
|
|
|
|
return PointerGetDatum(p);
|
|
}
|
|
|
|
/*
|
|
* Find the length of the common prefix of a and b
|
|
*/
|
|
static int
|
|
commonPrefix(const char *a, const char *b, int lena, int lenb)
|
|
{
|
|
int i = 0;
|
|
|
|
while (i < lena && i < lenb && *a == *b)
|
|
{
|
|
a++;
|
|
b++;
|
|
i++;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Binary search an array of uint8 datums for a match to c
|
|
*
|
|
* On success, *i gets the match location; on failure, it gets where to insert
|
|
*/
|
|
static bool
|
|
searchChar(Datum *nodeLabels, int nNodes, uint8 c, int *i)
|
|
{
|
|
int StopLow = 0,
|
|
StopHigh = nNodes;
|
|
|
|
while (StopLow < StopHigh)
|
|
{
|
|
int StopMiddle = (StopLow + StopHigh) >> 1;
|
|
uint8 middle = DatumGetUInt8(nodeLabels[StopMiddle]);
|
|
|
|
if (c < middle)
|
|
StopHigh = StopMiddle;
|
|
else if (c > middle)
|
|
StopLow = StopMiddle + 1;
|
|
else
|
|
{
|
|
*i = StopMiddle;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
*i = StopHigh;
|
|
return false;
|
|
}
|
|
|
|
Datum
|
|
spg_text_choose(PG_FUNCTION_ARGS)
|
|
{
|
|
spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
|
|
spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
|
|
text *inText = DatumGetTextPP(in->datum);
|
|
char *inStr = VARDATA_ANY(inText);
|
|
int inSize = VARSIZE_ANY_EXHDR(inText);
|
|
uint8 nodeChar = '\0';
|
|
int i = 0;
|
|
int commonLen = 0;
|
|
|
|
/* Check for prefix match, set nodeChar to first byte after prefix */
|
|
if (in->hasPrefix)
|
|
{
|
|
text *prefixText = DatumGetTextPP(in->prefixDatum);
|
|
char *prefixStr = VARDATA_ANY(prefixText);
|
|
int prefixSize = VARSIZE_ANY_EXHDR(prefixText);
|
|
|
|
commonLen = commonPrefix(inStr + in->level,
|
|
prefixStr,
|
|
inSize - in->level,
|
|
prefixSize);
|
|
|
|
if (commonLen == prefixSize)
|
|
{
|
|
if (inSize - in->level > commonLen)
|
|
nodeChar = *(uint8 *) (inStr + in->level + commonLen);
|
|
else
|
|
nodeChar = '\0';
|
|
}
|
|
else
|
|
{
|
|
/* Must split tuple because incoming value doesn't match prefix */
|
|
out->resultType = spgSplitTuple;
|
|
|
|
if (commonLen == 0)
|
|
{
|
|
out->result.splitTuple.prefixHasPrefix = false;
|
|
}
|
|
else
|
|
{
|
|
out->result.splitTuple.prefixHasPrefix = true;
|
|
out->result.splitTuple.prefixPrefixDatum =
|
|
formTextDatum(prefixStr, commonLen);
|
|
}
|
|
out->result.splitTuple.nodeLabel =
|
|
UInt8GetDatum(*(prefixStr + commonLen));
|
|
|
|
if (prefixSize - commonLen == 1)
|
|
{
|
|
out->result.splitTuple.postfixHasPrefix = false;
|
|
}
|
|
else
|
|
{
|
|
out->result.splitTuple.postfixHasPrefix = true;
|
|
out->result.splitTuple.postfixPrefixDatum =
|
|
formTextDatum(prefixStr + commonLen + 1,
|
|
prefixSize - commonLen - 1);
|
|
}
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
}
|
|
else if (inSize > in->level)
|
|
{
|
|
nodeChar = *(uint8 *) (inStr + in->level);
|
|
}
|
|
else
|
|
{
|
|
nodeChar = '\0';
|
|
}
|
|
|
|
/* Look up nodeChar in the node label array */
|
|
if (searchChar(in->nodeLabels, in->nNodes, nodeChar, &i))
|
|
{
|
|
/*
|
|
* Descend to existing node. (If in->allTheSame, the core code will
|
|
* ignore our nodeN specification here, but that's OK. We still
|
|
* have to provide the correct levelAdd and restDatum values, and
|
|
* those are the same regardless of which node gets chosen by core.)
|
|
*/
|
|
out->resultType = spgMatchNode;
|
|
out->result.matchNode.nodeN = i;
|
|
out->result.matchNode.levelAdd = commonLen + 1;
|
|
if (inSize - in->level - commonLen - 1 > 0)
|
|
out->result.matchNode.restDatum =
|
|
formTextDatum(inStr + in->level + commonLen + 1,
|
|
inSize - in->level - commonLen - 1);
|
|
else
|
|
out->result.matchNode.restDatum =
|
|
formTextDatum(NULL, 0);
|
|
}
|
|
else if (in->allTheSame)
|
|
{
|
|
/*
|
|
* Can't use AddNode action, so split the tuple. The upper tuple
|
|
* has the same prefix as before and uses an empty node label for
|
|
* the lower tuple. The lower tuple has no prefix and the same
|
|
* node labels as the original tuple.
|
|
*/
|
|
out->resultType = spgSplitTuple;
|
|
out->result.splitTuple.prefixHasPrefix = in->hasPrefix;
|
|
out->result.splitTuple.prefixPrefixDatum = in->prefixDatum;
|
|
out->result.splitTuple.nodeLabel = UInt8GetDatum('\0');
|
|
out->result.splitTuple.postfixHasPrefix = false;
|
|
}
|
|
else
|
|
{
|
|
/* Add a node for the not-previously-seen nodeChar value */
|
|
out->resultType = spgAddNode;
|
|
out->result.addNode.nodeLabel = UInt8GetDatum(nodeChar);
|
|
out->result.addNode.nodeN = i;
|
|
}
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
/* qsort comparator to sort spgNodePtr structs by "c" */
|
|
static int
|
|
cmpNodePtr(const void *a, const void *b)
|
|
{
|
|
const spgNodePtr *aa = (const spgNodePtr *) a;
|
|
const spgNodePtr *bb = (const spgNodePtr *) b;
|
|
|
|
if (aa->c == bb->c)
|
|
return 0;
|
|
else if (aa->c > bb->c)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
Datum
|
|
spg_text_picksplit(PG_FUNCTION_ARGS)
|
|
{
|
|
spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
|
|
spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
|
|
text *text0 = DatumGetTextPP(in->datums[0]);
|
|
int i,
|
|
commonLen;
|
|
spgNodePtr *nodes;
|
|
|
|
/* Identify longest common prefix, if any */
|
|
commonLen = VARSIZE_ANY_EXHDR(text0);
|
|
for (i = 1; i < in->nTuples && commonLen > 0; i++)
|
|
{
|
|
text *texti = DatumGetTextPP(in->datums[i]);
|
|
int tmp = commonPrefix(VARDATA_ANY(text0),
|
|
VARDATA_ANY(texti),
|
|
VARSIZE_ANY_EXHDR(text0),
|
|
VARSIZE_ANY_EXHDR(texti));
|
|
|
|
if (tmp < commonLen)
|
|
commonLen = tmp;
|
|
}
|
|
|
|
/*
|
|
* Limit the prefix length, if necessary, to ensure that the resulting
|
|
* inner tuple will fit on a page.
|
|
*/
|
|
commonLen = Min(commonLen, SPGIST_MAX_PREFIX_LENGTH);
|
|
|
|
/* Set node prefix to be that string, if it's not empty */
|
|
if (commonLen == 0)
|
|
{
|
|
out->hasPrefix = false;
|
|
}
|
|
else
|
|
{
|
|
out->hasPrefix = true;
|
|
out->prefixDatum = formTextDatum(VARDATA_ANY(text0), commonLen);
|
|
}
|
|
|
|
/* Extract the node label (first non-common byte) from each value */
|
|
nodes = (spgNodePtr *) palloc(sizeof(spgNodePtr) * in->nTuples);
|
|
|
|
for (i = 0; i < in->nTuples; i++)
|
|
{
|
|
text *texti = DatumGetTextPP(in->datums[i]);
|
|
|
|
if (commonLen < VARSIZE_ANY_EXHDR(texti))
|
|
nodes[i].c = *(uint8 *) (VARDATA_ANY(texti) + commonLen);
|
|
else
|
|
nodes[i].c = '\0'; /* use \0 if string is all common */
|
|
nodes[i].i = i;
|
|
nodes[i].d = in->datums[i];
|
|
}
|
|
|
|
/*
|
|
* Sort by label bytes so that we can group the values into nodes. This
|
|
* also ensures that the nodes are ordered by label value, allowing the
|
|
* use of binary search in searchChar.
|
|
*/
|
|
qsort(nodes, in->nTuples, sizeof(*nodes), cmpNodePtr);
|
|
|
|
/* And emit results */
|
|
out->nNodes = 0;
|
|
out->nodeLabels = (Datum *) palloc(sizeof(Datum) * in->nTuples);
|
|
out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples);
|
|
out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples);
|
|
|
|
for (i = 0; i < in->nTuples; i++)
|
|
{
|
|
text *texti = DatumGetTextPP(nodes[i].d);
|
|
Datum leafD;
|
|
|
|
if (i == 0 || nodes[i].c != nodes[i - 1].c)
|
|
{
|
|
out->nodeLabels[out->nNodes] = UInt8GetDatum(nodes[i].c);
|
|
out->nNodes++;
|
|
}
|
|
|
|
if (commonLen < VARSIZE_ANY_EXHDR(texti))
|
|
leafD = formTextDatum(VARDATA_ANY(texti) + commonLen + 1,
|
|
VARSIZE_ANY_EXHDR(texti) - commonLen - 1);
|
|
else
|
|
leafD = formTextDatum(NULL, 0);
|
|
|
|
out->leafTupleDatums[nodes[i].i] = leafD;
|
|
out->mapTuplesToNodes[nodes[i].i] = out->nNodes - 1;
|
|
}
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
spg_text_inner_consistent(PG_FUNCTION_ARGS)
|
|
{
|
|
spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
|
|
spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
|
|
StrategyNumber strategy = in->strategy;
|
|
text *inText;
|
|
int inSize;
|
|
int i;
|
|
text *reconstrText = NULL;
|
|
int maxReconstrLen = 0;
|
|
text *prefixText = NULL;
|
|
int prefixSize = 0;
|
|
|
|
/*
|
|
* If it's a collation-aware operator, but the collation is C, we can
|
|
* treat it as non-collation-aware.
|
|
*/
|
|
if (strategy > 10 &&
|
|
lc_collate_is_c(PG_GET_COLLATION()))
|
|
strategy -= 10;
|
|
|
|
inText = DatumGetTextPP(in->query);
|
|
inSize = VARSIZE_ANY_EXHDR(inText);
|
|
|
|
/*
|
|
* Reconstruct values represented at this tuple, including parent data,
|
|
* prefix of this tuple if any, and the node label if any. in->level
|
|
* should be the length of the previously reconstructed value, and the
|
|
* number of bytes added here is prefixSize or prefixSize + 1.
|
|
*
|
|
* Note: we assume that in->reconstructedValue isn't toasted and doesn't
|
|
* have a short varlena header. This is okay because it must have been
|
|
* created by a previous invocation of this routine, and we always emit
|
|
* long-format reconstructed values.
|
|
*/
|
|
Assert(in->level == 0 ? DatumGetPointer(in->reconstructedValue) == NULL :
|
|
VARSIZE_ANY_EXHDR(DatumGetPointer(in->reconstructedValue)) == in->level);
|
|
|
|
maxReconstrLen = in->level + 1;
|
|
if (in->hasPrefix)
|
|
{
|
|
prefixText = DatumGetTextPP(in->prefixDatum);
|
|
prefixSize = VARSIZE_ANY_EXHDR(prefixText);
|
|
maxReconstrLen += prefixSize;
|
|
}
|
|
|
|
reconstrText = palloc(VARHDRSZ + maxReconstrLen);
|
|
SET_VARSIZE(reconstrText, VARHDRSZ + maxReconstrLen);
|
|
|
|
if (in->level)
|
|
memcpy(VARDATA(reconstrText),
|
|
VARDATA(DatumGetPointer(in->reconstructedValue)),
|
|
in->level);
|
|
if (prefixSize)
|
|
memcpy(((char *) VARDATA(reconstrText)) + in->level,
|
|
VARDATA_ANY(prefixText),
|
|
prefixSize);
|
|
/* last byte of reconstrText will be filled in below */
|
|
|
|
/*
|
|
* Scan the child nodes. For each one, complete the reconstructed value
|
|
* and see if it's consistent with the query. If so, emit an entry into
|
|
* the output arrays.
|
|
*/
|
|
out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
|
|
out->levelAdds = (int *) palloc(sizeof(int) * in->nNodes);
|
|
out->reconstructedValues = (Datum *) palloc(sizeof(Datum) * in->nNodes);
|
|
out->nNodes = 0;
|
|
|
|
for (i = 0; i < in->nNodes; i++)
|
|
{
|
|
uint8 nodeChar = DatumGetUInt8(in->nodeLabels[i]);
|
|
int thisLen;
|
|
int r;
|
|
bool res = false;
|
|
|
|
/* If nodeChar is zero, don't include it in data */
|
|
if (nodeChar == '\0')
|
|
thisLen = maxReconstrLen - 1;
|
|
else
|
|
{
|
|
((char *) VARDATA(reconstrText))[maxReconstrLen - 1] = nodeChar;
|
|
thisLen = maxReconstrLen;
|
|
}
|
|
|
|
r = memcmp(VARDATA(reconstrText), VARDATA_ANY(inText),
|
|
Min(inSize, thisLen));
|
|
|
|
switch (strategy)
|
|
{
|
|
case BTLessStrategyNumber:
|
|
case BTLessEqualStrategyNumber:
|
|
if (r <= 0)
|
|
res = true;
|
|
break;
|
|
case BTEqualStrategyNumber:
|
|
if (r == 0 && inSize >= thisLen)
|
|
res = true;
|
|
break;
|
|
case BTGreaterEqualStrategyNumber:
|
|
case BTGreaterStrategyNumber:
|
|
if (r >= 0)
|
|
res = true;
|
|
break;
|
|
case BTLessStrategyNumber + 10:
|
|
case BTLessEqualStrategyNumber + 10:
|
|
case BTGreaterEqualStrategyNumber + 10:
|
|
case BTGreaterStrategyNumber + 10:
|
|
/*
|
|
* with non-C collation we need to traverse whole tree :-(
|
|
*/
|
|
res = true;
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized strategy number: %d",
|
|
in->strategy);
|
|
break;
|
|
}
|
|
|
|
if (res)
|
|
{
|
|
out->nodeNumbers[out->nNodes] = i;
|
|
out->levelAdds[out->nNodes] = thisLen - in->level;
|
|
SET_VARSIZE(reconstrText, VARHDRSZ + thisLen);
|
|
out->reconstructedValues[out->nNodes] =
|
|
datumCopy(PointerGetDatum(reconstrText), false, -1);
|
|
out->nNodes++;
|
|
}
|
|
}
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
spg_text_leaf_consistent(PG_FUNCTION_ARGS)
|
|
{
|
|
spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
|
|
spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
|
|
StrategyNumber strategy = in->strategy;
|
|
text *query = DatumGetTextPP(in->query);
|
|
int level = in->level;
|
|
text *leafValue,
|
|
*reconstrValue = NULL;
|
|
char *fullValue;
|
|
int fullLen;
|
|
int queryLen;
|
|
int r;
|
|
bool res;
|
|
|
|
/* all tests are exact */
|
|
out->recheck = false;
|
|
|
|
leafValue = DatumGetTextPP(in->leafDatum);
|
|
|
|
if (DatumGetPointer(in->reconstructedValue))
|
|
reconstrValue = DatumGetTextP(in->reconstructedValue);
|
|
|
|
Assert(level == 0 ? reconstrValue == NULL :
|
|
VARSIZE_ANY_EXHDR(reconstrValue) == level);
|
|
|
|
fullLen = level + VARSIZE_ANY_EXHDR(leafValue);
|
|
|
|
queryLen = VARSIZE_ANY_EXHDR(query);
|
|
|
|
/*
|
|
* For an equality check, we needn't reconstruct fullValue if not same
|
|
* length; it can't match
|
|
*/
|
|
if (strategy == BTEqualStrategyNumber && queryLen != fullLen)
|
|
PG_RETURN_BOOL(false);
|
|
|
|
/* Else, reconstruct the full string represented by this leaf tuple */
|
|
if (VARSIZE_ANY_EXHDR(leafValue) == 0 && level > 0)
|
|
{
|
|
fullValue = VARDATA(reconstrValue);
|
|
out->leafValue = PointerGetDatum(reconstrValue);
|
|
}
|
|
else
|
|
{
|
|
text *fullText = palloc(VARHDRSZ + fullLen);
|
|
|
|
SET_VARSIZE(fullText, VARHDRSZ + fullLen);
|
|
fullValue = VARDATA(fullText);
|
|
if (level)
|
|
memcpy(fullValue, VARDATA(reconstrValue), level);
|
|
if (VARSIZE_ANY_EXHDR(leafValue) > 0)
|
|
memcpy(fullValue + level, VARDATA_ANY(leafValue),
|
|
VARSIZE_ANY_EXHDR(leafValue));
|
|
out->leafValue = PointerGetDatum(fullText);
|
|
}
|
|
|
|
/* Run the appropriate type of comparison */
|
|
if (strategy > 10)
|
|
{
|
|
/* Collation-aware comparison */
|
|
strategy -= 10;
|
|
|
|
/* If asserts are enabled, verify encoding of reconstructed string */
|
|
Assert(pg_verifymbstr(fullValue, fullLen, false));
|
|
|
|
r = varstr_cmp(fullValue, Min(queryLen, fullLen),
|
|
VARDATA_ANY(query), Min(queryLen, fullLen),
|
|
PG_GET_COLLATION());
|
|
}
|
|
else
|
|
{
|
|
/* Non-collation-aware comparison */
|
|
r = memcmp(fullValue, VARDATA_ANY(query), Min(queryLen, fullLen));
|
|
}
|
|
|
|
if (r == 0)
|
|
{
|
|
if (queryLen > fullLen)
|
|
r = -1;
|
|
else if (queryLen < fullLen)
|
|
r = 1;
|
|
}
|
|
|
|
switch (strategy)
|
|
{
|
|
case BTLessStrategyNumber:
|
|
res = (r < 0);
|
|
break;
|
|
case BTLessEqualStrategyNumber:
|
|
res = (r <= 0);
|
|
break;
|
|
case BTEqualStrategyNumber:
|
|
res = (r == 0);
|
|
break;
|
|
case BTGreaterEqualStrategyNumber:
|
|
res = (r >= 0);
|
|
break;
|
|
case BTGreaterStrategyNumber:
|
|
res = (r > 0);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized strategy number: %d", in->strategy);
|
|
res = false;
|
|
break;
|
|
}
|
|
|
|
PG_RETURN_BOOL(res);
|
|
}
|