Add support function requests for estimating the selectivity, cost, and number of result rows (if a SRF) of the target function. The lack of a way to estimate selectivity of a boolean-returning function in WHERE has been a recognized deficiency of the planner since Berkeley days. This commit finally fixes it. In addition, non-constant estimates of cost and number of output rows are now possible. We still fall back to looking at procost and prorows if the support function doesn't service the request, of course. To make concrete use of the possibility of estimating output rowcount for SRFs, this commit adds support functions for array_unnest(anyarray) and the integer variants of generate_series; the lack of plausible rowcount estimates for those, even when it's obvious to a human, has been a repeated subject of complaints. Obviously, much more could now be done in this line, but I'm mostly just trying to get the infrastructure in place. Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
1449 lines
30 KiB
C
1449 lines
30 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* int8.c
|
|
* Internal 64-bit integer operations
|
|
*
|
|
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/int8.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "common/int.h"
|
|
#include "funcapi.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "nodes/supportnodes.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "utils/int8.h"
|
|
#include "utils/builtins.h"
|
|
|
|
|
|
#define MAXINT8LEN 25
|
|
|
|
typedef struct
|
|
{
|
|
int64 current;
|
|
int64 finish;
|
|
int64 step;
|
|
} generate_series_fctx;
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 64-bit integers.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* Formatting and conversion routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/*
|
|
* scanint8 --- try to parse a string into an int8.
|
|
*
|
|
* If errorOK is false, ereport a useful error message if the string is bad.
|
|
* If errorOK is true, just return "false" for bad input.
|
|
*/
|
|
bool
|
|
scanint8(const char *str, bool errorOK, int64 *result)
|
|
{
|
|
const char *ptr = str;
|
|
int64 tmp = 0;
|
|
bool neg = false;
|
|
|
|
/*
|
|
* Do our own scan, rather than relying on sscanf which might be broken
|
|
* for long long.
|
|
*
|
|
* As INT64_MIN can't be stored as a positive 64 bit integer, accumulate
|
|
* value as a negative number.
|
|
*/
|
|
|
|
/* skip leading spaces */
|
|
while (*ptr && isspace((unsigned char) *ptr))
|
|
ptr++;
|
|
|
|
/* handle sign */
|
|
if (*ptr == '-')
|
|
{
|
|
ptr++;
|
|
neg = true;
|
|
}
|
|
else if (*ptr == '+')
|
|
ptr++;
|
|
|
|
/* require at least one digit */
|
|
if (unlikely(!isdigit((unsigned char) *ptr)))
|
|
goto invalid_syntax;
|
|
|
|
/* process digits */
|
|
while (*ptr && isdigit((unsigned char) *ptr))
|
|
{
|
|
int8 digit = (*ptr++ - '0');
|
|
|
|
if (unlikely(pg_mul_s64_overflow(tmp, 10, &tmp)) ||
|
|
unlikely(pg_sub_s64_overflow(tmp, digit, &tmp)))
|
|
goto out_of_range;
|
|
}
|
|
|
|
/* allow trailing whitespace, but not other trailing chars */
|
|
while (*ptr != '\0' && isspace((unsigned char) *ptr))
|
|
ptr++;
|
|
|
|
if (unlikely(*ptr != '\0'))
|
|
goto invalid_syntax;
|
|
|
|
if (!neg)
|
|
{
|
|
/* could fail if input is most negative number */
|
|
if (unlikely(tmp == PG_INT64_MIN))
|
|
goto out_of_range;
|
|
tmp = -tmp;
|
|
}
|
|
|
|
*result = tmp;
|
|
return true;
|
|
|
|
out_of_range:
|
|
if (!errorOK)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("value \"%s\" is out of range for type %s",
|
|
str, "bigint")));
|
|
return false;
|
|
|
|
invalid_syntax:
|
|
if (!errorOK)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
"bigint", str)));
|
|
return false;
|
|
}
|
|
|
|
/* int8in()
|
|
*/
|
|
Datum
|
|
int8in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
int64 result;
|
|
|
|
(void) scanint8(str, false, &result);
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
|
|
/* int8out()
|
|
*/
|
|
Datum
|
|
int8out(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val = PG_GETARG_INT64(0);
|
|
char buf[MAXINT8LEN + 1];
|
|
char *result;
|
|
|
|
pg_lltoa(val, buf);
|
|
result = pstrdup(buf);
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int8recv - converts external binary format to int8
|
|
*/
|
|
Datum
|
|
int8recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_INT64(pq_getmsgint64(buf));
|
|
}
|
|
|
|
/*
|
|
* int8send - converts int8 to binary format
|
|
*/
|
|
Datum
|
|
int8send(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint64(&buf, arg1);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relational operators for int8s, including cross-data-type comparisons.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* int8relop()
|
|
* Is val1 relop val2?
|
|
*/
|
|
Datum
|
|
int8eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int8ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int8lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int8gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int8le(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int8ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int84relop()
|
|
* Is 64-bit val1 relop 32-bit val2?
|
|
*/
|
|
Datum
|
|
int84eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int84ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int84lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int84gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int84le(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int84ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int48relop()
|
|
* Is 32-bit val1 relop 64-bit val2?
|
|
*/
|
|
Datum
|
|
int48eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int48ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int48lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int48gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int48le(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int48ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int82relop()
|
|
* Is 64-bit val1 relop 16-bit val2?
|
|
*/
|
|
Datum
|
|
int82eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int82ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int82lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int82gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int82le(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int82ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int28relop()
|
|
* Is 16-bit val1 relop 64-bit val2?
|
|
*/
|
|
Datum
|
|
int28eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int28ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int28lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int28gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int28le(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int28ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/*
|
|
* in_range support function for int8.
|
|
*
|
|
* Note: we needn't supply int8_int4 or int8_int2 variants, as implicit
|
|
* coercion of the offset value takes care of those scenarios just as well.
|
|
*/
|
|
Datum
|
|
in_range_int8_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val = PG_GETARG_INT64(0);
|
|
int64 base = PG_GETARG_INT64(1);
|
|
int64 offset = PG_GETARG_INT64(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int64 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Arithmetic operators on 64-bit integers.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
int8um(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(arg == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8up(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
PG_RETURN_INT64(arg);
|
|
}
|
|
|
|
Datum
|
|
int8pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8div(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT64_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce INT64_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* int8abs()
|
|
* Absolute value
|
|
*/
|
|
Datum
|
|
int8abs(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = (arg1 < 0) ? -arg1 : arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* int8mod()
|
|
* Modulo operation.
|
|
*/
|
|
Datum
|
|
int8mod(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT64_MIN % -1,
|
|
* which is a bit silly since the correct answer is perfectly
|
|
* well-defined, namely zero.
|
|
*/
|
|
if (arg2 == -1)
|
|
PG_RETURN_INT64(0);
|
|
|
|
/* No overflow is possible */
|
|
|
|
PG_RETURN_INT64(arg1 % arg2);
|
|
}
|
|
|
|
|
|
Datum
|
|
int8inc(PG_FUNCTION_ARGS)
|
|
{
|
|
/*
|
|
* When int8 is pass-by-reference, we provide this special case to avoid
|
|
* palloc overhead for COUNT(): when called as an aggregate, we know that
|
|
* the argument is modifiable local storage, so just update it in-place.
|
|
* (If int8 is pass-by-value, then of course this is useless as well as
|
|
* incorrect, so just ifdef it out.)
|
|
*/
|
|
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
|
|
|
|
if (unlikely(pg_add_s64_overflow(*arg, 1, arg)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_POINTER(arg);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Not called as an aggregate, so just do it the dumb way */
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg, 1, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
int8dec(PG_FUNCTION_ARGS)
|
|
{
|
|
/*
|
|
* When int8 is pass-by-reference, we provide this special case to avoid
|
|
* palloc overhead for COUNT(): when called as an aggregate, we know that
|
|
* the argument is modifiable local storage, so just update it in-place.
|
|
* (If int8 is pass-by-value, then of course this is useless as well as
|
|
* incorrect, so just ifdef it out.)
|
|
*/
|
|
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
|
|
|
|
if (unlikely(pg_sub_s64_overflow(*arg, 1, arg)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_POINTER(arg);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Not called as an aggregate, so just do it the dumb way */
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg, 1, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* These functions are exactly like int8inc/int8dec but are used for
|
|
* aggregates that count only non-null values. Since the functions are
|
|
* declared strict, the null checks happen before we ever get here, and all we
|
|
* need do is increment the state value. We could actually make these pg_proc
|
|
* entries point right at int8inc/int8dec, but then the opr_sanity regression
|
|
* test would complain about mismatched entries for a built-in function.
|
|
*/
|
|
|
|
Datum
|
|
int8inc_any(PG_FUNCTION_ARGS)
|
|
{
|
|
return int8inc(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
int8inc_float8_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
return int8inc(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
int8dec_any(PG_FUNCTION_ARGS)
|
|
{
|
|
return int8dec(fcinfo);
|
|
}
|
|
|
|
|
|
Datum
|
|
int8larger(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
result = ((arg1 > arg2) ? arg1 : arg2);
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
result = ((arg1 < arg2) ? arg1 : arg2);
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84div(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT64_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce INT64_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48div(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
PG_RETURN_INT64((int64) arg1 / arg2);
|
|
}
|
|
|
|
Datum
|
|
int82pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int82mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int82mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int82div(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT64_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce INT64_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28div(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
PG_RETURN_INT64((int64) arg1 / arg2);
|
|
}
|
|
|
|
/* Binary arithmetics
|
|
*
|
|
* int8and - returns arg1 & arg2
|
|
* int8or - returns arg1 | arg2
|
|
* int8xor - returns arg1 # arg2
|
|
* int8not - returns ~arg1
|
|
* int8shl - returns arg1 << arg2
|
|
* int8shr - returns arg1 >> arg2
|
|
*/
|
|
|
|
Datum
|
|
int8and(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_INT64(arg1 & arg2);
|
|
}
|
|
|
|
Datum
|
|
int8or(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_INT64(arg1 | arg2);
|
|
}
|
|
|
|
Datum
|
|
int8xor(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_INT64(arg1 ^ arg2);
|
|
}
|
|
|
|
Datum
|
|
int8not(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
|
|
PG_RETURN_INT64(~arg1);
|
|
}
|
|
|
|
Datum
|
|
int8shl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT64(arg1 << arg2);
|
|
}
|
|
|
|
Datum
|
|
int8shr(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT64(arg1 >> arg2);
|
|
}
|
|
|
|
/*----------------------------------------------------------
|
|
* Conversion operators.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
int48(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_INT64((int64) arg);
|
|
}
|
|
|
|
Datum
|
|
int84(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
if (unlikely(arg < PG_INT32_MIN) || unlikely(arg > PG_INT32_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) arg);
|
|
}
|
|
|
|
Datum
|
|
int28(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT64((int64) arg);
|
|
}
|
|
|
|
Datum
|
|
int82(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
if (unlikely(arg < PG_INT16_MIN) || unlikely(arg > PG_INT16_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) arg);
|
|
}
|
|
|
|
Datum
|
|
i8tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
float8 result;
|
|
|
|
result = arg;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/* dtoi8()
|
|
* Convert float8 to 8-byte integer.
|
|
*/
|
|
Datum
|
|
dtoi8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/*
|
|
* Range check. We must be careful here that the boundary values are
|
|
* expressed exactly in the float domain. We expect PG_INT64_MIN to be an
|
|
* exact power of 2, so it will be represented exactly; but PG_INT64_MAX
|
|
* isn't, and might get rounded off, so avoid using it.
|
|
*/
|
|
if (unlikely(num < (float8) PG_INT64_MIN ||
|
|
num >= -((float8) PG_INT64_MIN) ||
|
|
isnan(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64((int64) num);
|
|
}
|
|
|
|
Datum
|
|
i8tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
float4 result;
|
|
|
|
result = arg;
|
|
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/* ftoi8()
|
|
* Convert float4 to 8-byte integer.
|
|
*/
|
|
Datum
|
|
ftoi8(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/*
|
|
* Range check. We must be careful here that the boundary values are
|
|
* expressed exactly in the float domain. We expect PG_INT64_MIN to be an
|
|
* exact power of 2, so it will be represented exactly; but PG_INT64_MAX
|
|
* isn't, and might get rounded off, so avoid using it.
|
|
*/
|
|
if (unlikely(num < (float4) PG_INT64_MIN ||
|
|
num >= -((float4) PG_INT64_MIN) ||
|
|
isnan(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64((int64) num);
|
|
}
|
|
|
|
Datum
|
|
i8tooid(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
if (unlikely(arg < 0) || unlikely(arg > PG_UINT32_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("OID out of range")));
|
|
|
|
PG_RETURN_OID((Oid) arg);
|
|
}
|
|
|
|
Datum
|
|
oidtoi8(PG_FUNCTION_ARGS)
|
|
{
|
|
Oid arg = PG_GETARG_OID(0);
|
|
|
|
PG_RETURN_INT64((int64) arg);
|
|
}
|
|
|
|
/*
|
|
* non-persistent numeric series generator
|
|
*/
|
|
Datum
|
|
generate_series_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
return generate_series_step_int8(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
generate_series_step_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
generate_series_fctx *fctx;
|
|
int64 result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int64 start = PG_GETARG_INT64(0);
|
|
int64 finish = PG_GETARG_INT64(1);
|
|
int64 step = 1;
|
|
|
|
/* see if we were given an explicit step size */
|
|
if (PG_NARGS() == 3)
|
|
step = PG_GETARG_INT64(2);
|
|
if (step == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("step size cannot equal zero")));
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* allocate memory for user context */
|
|
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
|
|
|
|
/*
|
|
* Use fctx to keep state from call to call. Seed current with the
|
|
* original start value
|
|
*/
|
|
fctx->current = start;
|
|
fctx->finish = finish;
|
|
fctx->step = step;
|
|
|
|
funcctx->user_fctx = fctx;
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/*
|
|
* get the saved state and use current as the result for this iteration
|
|
*/
|
|
fctx = funcctx->user_fctx;
|
|
result = fctx->current;
|
|
|
|
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
|
|
(fctx->step < 0 && fctx->current >= fctx->finish))
|
|
{
|
|
/*
|
|
* Increment current in preparation for next iteration. If next-value
|
|
* computation overflows, this is the final result.
|
|
*/
|
|
if (pg_add_s64_overflow(fctx->current, fctx->step, &fctx->current))
|
|
fctx->step = 0;
|
|
|
|
/* do when there is more left to send */
|
|
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
|
|
}
|
|
else
|
|
/* do when there is no more left */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/*
|
|
* Planner support function for generate_series(int8, int8 [, int8])
|
|
*/
|
|
Datum
|
|
generate_series_int8_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
Node *ret = NULL;
|
|
|
|
if (IsA(rawreq, SupportRequestRows))
|
|
{
|
|
/* Try to estimate the number of rows returned */
|
|
SupportRequestRows *req = (SupportRequestRows *) rawreq;
|
|
|
|
if (is_funcclause(req->node)) /* be paranoid */
|
|
{
|
|
List *args = ((FuncExpr *) req->node)->args;
|
|
Node *arg1,
|
|
*arg2,
|
|
*arg3;
|
|
|
|
/* We can use estimated argument values here */
|
|
arg1 = estimate_expression_value(req->root, linitial(args));
|
|
arg2 = estimate_expression_value(req->root, lsecond(args));
|
|
if (list_length(args) >= 3)
|
|
arg3 = estimate_expression_value(req->root, lthird(args));
|
|
else
|
|
arg3 = NULL;
|
|
|
|
/*
|
|
* If any argument is constant NULL, we can safely assume that
|
|
* zero rows are returned. Otherwise, if they're all non-NULL
|
|
* constants, we can calculate the number of rows that will be
|
|
* returned. Use double arithmetic to avoid overflow hazards.
|
|
*/
|
|
if ((IsA(arg1, Const) &&
|
|
((Const *) arg1)->constisnull) ||
|
|
(IsA(arg2, Const) &&
|
|
((Const *) arg2)->constisnull) ||
|
|
(arg3 != NULL && IsA(arg3, Const) &&
|
|
((Const *) arg3)->constisnull))
|
|
{
|
|
req->rows = 0;
|
|
ret = (Node *) req;
|
|
}
|
|
else if (IsA(arg1, Const) &&
|
|
IsA(arg2, Const) &&
|
|
(arg3 == NULL || IsA(arg3, Const)))
|
|
{
|
|
double start,
|
|
finish,
|
|
step;
|
|
|
|
start = DatumGetInt64(((Const *) arg1)->constvalue);
|
|
finish = DatumGetInt64(((Const *) arg2)->constvalue);
|
|
step = arg3 ? DatumGetInt64(((Const *) arg3)->constvalue) : 1;
|
|
|
|
/* This equation works for either sign of step */
|
|
if (step != 0)
|
|
{
|
|
req->rows = floor((finish - start + step) / step);
|
|
ret = (Node *) req;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PG_RETURN_POINTER(ret);
|
|
}
|