so that all executable expression nodes inherit from a common supertype Expr. This is somewhat of an exercise in code purity rather than any real functional advance, but getting rid of the extra Oper or Func node formerly used in each operator or function call should provide at least a little space and speed improvement. initdb forced by changes in stored-rules representation.
452 lines
12 KiB
C
452 lines
12 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_node.c
|
|
* various routines that make nodes for querytrees
|
|
*
|
|
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/parser/parse_node.c,v 1.75 2002/12/12 15:49:39 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "parser/parsetree.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_node.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/int8.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/varbit.h"
|
|
|
|
|
|
/* make_parsestate()
|
|
* Allocate and initialize a new ParseState.
|
|
* The CALLER is responsible for freeing the ParseState* returned.
|
|
*/
|
|
ParseState *
|
|
make_parsestate(ParseState *parentParseState)
|
|
{
|
|
ParseState *pstate;
|
|
|
|
pstate = palloc0(sizeof(ParseState));
|
|
|
|
pstate->parentParseState = parentParseState;
|
|
pstate->p_last_resno = 1;
|
|
|
|
return pstate;
|
|
}
|
|
|
|
|
|
/* make_operand()
|
|
* Ensure argument type match by forcing conversion of constants.
|
|
*/
|
|
Node *
|
|
make_operand(Node *tree, Oid orig_typeId, Oid target_typeId)
|
|
{
|
|
Node *result;
|
|
|
|
if (tree != NULL)
|
|
{
|
|
/* must coerce? */
|
|
if (target_typeId != orig_typeId)
|
|
result = coerce_type(tree, orig_typeId, target_typeId,
|
|
COERCION_IMPLICIT, COERCE_IMPLICIT_CAST);
|
|
else
|
|
result = tree;
|
|
}
|
|
else
|
|
{
|
|
/* otherwise, this is a NULL value */
|
|
result = (Node *) makeNullConst(target_typeId);
|
|
}
|
|
|
|
return result;
|
|
} /* make_operand() */
|
|
|
|
|
|
/* make_op()
|
|
* Operator construction.
|
|
*
|
|
* Transform operator expression ensuring type compatibility.
|
|
* This is where some type conversion happens.
|
|
*/
|
|
Expr *
|
|
make_op(List *opname, Node *ltree, Node *rtree)
|
|
{
|
|
Oid ltypeId,
|
|
rtypeId;
|
|
Operator tup;
|
|
Form_pg_operator opform;
|
|
Node *left,
|
|
*right;
|
|
OpExpr *result;
|
|
|
|
ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree);
|
|
rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree);
|
|
|
|
/* right operator? */
|
|
if (rtree == NULL)
|
|
{
|
|
tup = right_oper(opname, ltypeId, false);
|
|
opform = (Form_pg_operator) GETSTRUCT(tup);
|
|
left = make_operand(ltree, ltypeId, opform->oprleft);
|
|
right = NULL;
|
|
}
|
|
|
|
/* left operator? */
|
|
else if (ltree == NULL)
|
|
{
|
|
tup = left_oper(opname, rtypeId, false);
|
|
opform = (Form_pg_operator) GETSTRUCT(tup);
|
|
right = make_operand(rtree, rtypeId, opform->oprright);
|
|
left = NULL;
|
|
}
|
|
|
|
/* otherwise, binary operator */
|
|
else
|
|
{
|
|
tup = oper(opname, ltypeId, rtypeId, false);
|
|
opform = (Form_pg_operator) GETSTRUCT(tup);
|
|
left = make_operand(ltree, ltypeId, opform->oprleft);
|
|
right = make_operand(rtree, rtypeId, opform->oprright);
|
|
}
|
|
|
|
result = makeNode(OpExpr);
|
|
result->opno = oprid(tup);
|
|
result->opfuncid = InvalidOid;
|
|
result->opresulttype = opform->oprresult;
|
|
result->opretset = get_func_retset(opform->oprcode);
|
|
|
|
if (!left)
|
|
result->args = makeList1(right);
|
|
else if (!right)
|
|
result->args = makeList1(left);
|
|
else
|
|
result->args = makeList2(left, right);
|
|
|
|
ReleaseSysCache(tup);
|
|
|
|
return (Expr *) result;
|
|
} /* make_op() */
|
|
|
|
|
|
/*
|
|
* make_var
|
|
* Build a Var node for an attribute identified by RTE and attrno
|
|
*/
|
|
Var *
|
|
make_var(ParseState *pstate, RangeTblEntry *rte, int attrno)
|
|
{
|
|
int vnum,
|
|
sublevels_up;
|
|
Oid vartypeid;
|
|
int32 type_mod;
|
|
|
|
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
|
|
get_rte_attribute_type(rte, attrno, &vartypeid, &type_mod);
|
|
return makeVar(vnum, attrno, vartypeid, type_mod, sublevels_up);
|
|
}
|
|
|
|
/*
|
|
* transformArraySubscripts()
|
|
* Transform array subscripting. This is used for both
|
|
* array fetch and array assignment.
|
|
*
|
|
* In an array fetch, we are given a source array value and we produce an
|
|
* expression that represents the result of extracting a single array element
|
|
* or an array slice.
|
|
*
|
|
* In an array assignment, we are given a destination array value plus a
|
|
* source value that is to be assigned to a single element or a slice of
|
|
* that array. We produce an expression that represents the new array value
|
|
* with the source data inserted into the right part of the array.
|
|
*
|
|
* pstate Parse state
|
|
* arrayBase Already-transformed expression for the array as a whole
|
|
* (may be NULL if we are handling an INSERT)
|
|
* arrayType OID of array's datatype
|
|
* arrayTypMod typmod to be applied to array elements
|
|
* indirection Untransformed list of subscripts (must not be NIL)
|
|
* forceSlice If true, treat subscript as array slice in all cases
|
|
* assignFrom NULL for array fetch, else transformed expression for source.
|
|
*/
|
|
ArrayRef *
|
|
transformArraySubscripts(ParseState *pstate,
|
|
Node *arrayBase,
|
|
Oid arrayType,
|
|
int32 arrayTypMod,
|
|
List *indirection,
|
|
bool forceSlice,
|
|
Node *assignFrom)
|
|
{
|
|
Oid elementType,
|
|
resultType;
|
|
HeapTuple type_tuple_array,
|
|
type_tuple_element;
|
|
Form_pg_type type_struct_array,
|
|
type_struct_element;
|
|
bool isSlice = forceSlice;
|
|
List *upperIndexpr = NIL;
|
|
List *lowerIndexpr = NIL;
|
|
List *idx;
|
|
ArrayRef *aref;
|
|
|
|
/* Get the type tuple for the array */
|
|
type_tuple_array = SearchSysCache(TYPEOID,
|
|
ObjectIdGetDatum(arrayType),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(type_tuple_array))
|
|
elog(ERROR, "transformArraySubscripts: Cache lookup failed for array type %u",
|
|
arrayType);
|
|
type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple_array);
|
|
|
|
elementType = type_struct_array->typelem;
|
|
if (elementType == InvalidOid)
|
|
elog(ERROR, "transformArraySubscripts: type %s is not an array",
|
|
NameStr(type_struct_array->typname));
|
|
|
|
/* Get the type tuple for the array element type */
|
|
type_tuple_element = SearchSysCache(TYPEOID,
|
|
ObjectIdGetDatum(elementType),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(type_tuple_element))
|
|
elog(ERROR, "transformArraySubscripts: Cache lookup failed for array element type %u",
|
|
elementType);
|
|
type_struct_element = (Form_pg_type) GETSTRUCT(type_tuple_element);
|
|
|
|
/*
|
|
* A list containing only single subscripts refers to a single array
|
|
* element. If any of the items are double subscripts (lower:upper),
|
|
* then the subscript expression means an array slice operation. In
|
|
* this case, we supply a default lower bound of 1 for any items that
|
|
* contain only a single subscript. The forceSlice parameter forces us
|
|
* to treat the operation as a slice, even if no lower bounds are
|
|
* mentioned. Otherwise, we have to prescan the indirection list to
|
|
* see if there are any double subscripts.
|
|
*/
|
|
if (!isSlice)
|
|
{
|
|
foreach(idx, indirection)
|
|
{
|
|
A_Indices *ai = (A_Indices *) lfirst(idx);
|
|
|
|
if (ai->lidx != NULL)
|
|
{
|
|
isSlice = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The type represented by the subscript expression is the element
|
|
* type if we are fetching a single element, but it is the same as the
|
|
* array type if we are fetching a slice or storing.
|
|
*/
|
|
if (isSlice || assignFrom != NULL)
|
|
resultType = arrayType;
|
|
else
|
|
resultType = elementType;
|
|
|
|
/*
|
|
* Transform the subscript expressions.
|
|
*/
|
|
foreach(idx, indirection)
|
|
{
|
|
A_Indices *ai = (A_Indices *) lfirst(idx);
|
|
Node *subexpr;
|
|
|
|
if (isSlice)
|
|
{
|
|
if (ai->lidx)
|
|
{
|
|
subexpr = transformExpr(pstate, ai->lidx, NULL);
|
|
/* If it's not int4 already, try to coerce */
|
|
subexpr = coerce_to_target_type(subexpr, exprType(subexpr),
|
|
INT4OID, -1,
|
|
COERCION_ASSIGNMENT,
|
|
COERCE_IMPLICIT_CAST);
|
|
if (subexpr == NULL)
|
|
elog(ERROR, "array index expressions must be integers");
|
|
}
|
|
else
|
|
{
|
|
/* Make a constant 1 */
|
|
subexpr = (Node *) makeConst(INT4OID,
|
|
sizeof(int32),
|
|
Int32GetDatum(1),
|
|
false,
|
|
true); /* pass by value */
|
|
}
|
|
lowerIndexpr = lappend(lowerIndexpr, subexpr);
|
|
}
|
|
subexpr = transformExpr(pstate, ai->uidx, NULL);
|
|
/* If it's not int4 already, try to coerce */
|
|
subexpr = coerce_to_target_type(subexpr, exprType(subexpr),
|
|
INT4OID, -1,
|
|
COERCION_ASSIGNMENT,
|
|
COERCE_IMPLICIT_CAST);
|
|
if (subexpr == NULL)
|
|
elog(ERROR, "array index expressions must be integers");
|
|
upperIndexpr = lappend(upperIndexpr, subexpr);
|
|
}
|
|
|
|
/*
|
|
* If doing an array store, coerce the source value to the right type.
|
|
*/
|
|
if (assignFrom != NULL)
|
|
{
|
|
Oid typesource = exprType(assignFrom);
|
|
Oid typeneeded = isSlice ? arrayType : elementType;
|
|
|
|
if (typesource != InvalidOid)
|
|
{
|
|
assignFrom = coerce_to_target_type(assignFrom, typesource,
|
|
typeneeded, arrayTypMod,
|
|
COERCION_ASSIGNMENT,
|
|
COERCE_IMPLICIT_CAST);
|
|
if (assignFrom == NULL)
|
|
elog(ERROR, "Array assignment requires type %s"
|
|
" but expression is of type %s"
|
|
"\n\tYou will need to rewrite or cast the expression",
|
|
format_type_be(typeneeded),
|
|
format_type_be(typesource));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ready to build the ArrayRef node.
|
|
*/
|
|
aref = makeNode(ArrayRef);
|
|
aref->refrestype = resultType; /* XXX should save element type
|
|
* OID too */
|
|
aref->refattrlength = type_struct_array->typlen;
|
|
aref->refelemlength = type_struct_element->typlen;
|
|
aref->refelembyval = type_struct_element->typbyval;
|
|
aref->refelemalign = type_struct_element->typalign;
|
|
aref->refupperindexpr = upperIndexpr;
|
|
aref->reflowerindexpr = lowerIndexpr;
|
|
aref->refexpr = (Expr *) arrayBase;
|
|
aref->refassgnexpr = (Expr *) assignFrom;
|
|
|
|
ReleaseSysCache(type_tuple_array);
|
|
ReleaseSysCache(type_tuple_element);
|
|
|
|
return aref;
|
|
}
|
|
|
|
/*
|
|
* make_const
|
|
*
|
|
* Convert a Value node (as returned by the grammar) to a Const node
|
|
* of the "natural" type for the constant. Note that this routine is
|
|
* only used when there is no explicit cast for the constant, so we
|
|
* have to guess what type is wanted.
|
|
*
|
|
* For string literals we produce a constant of type UNKNOWN ---- whose
|
|
* representation is the same as text, but it indicates to later type
|
|
* resolution that we're not sure that it should be considered text.
|
|
* Explicit "NULL" constants are also typed as UNKNOWN.
|
|
*
|
|
* For integers and floats we produce int4, int8, or numeric depending
|
|
* on the value of the number. XXX This should include int2 as well,
|
|
* but additional cleanup is needed before we can do that; else cases
|
|
* like "WHERE int4var = 42" will fail to be indexable.
|
|
*/
|
|
Const *
|
|
make_const(Value *value)
|
|
{
|
|
Datum val;
|
|
int64 val64;
|
|
Oid typeid;
|
|
int typelen;
|
|
bool typebyval;
|
|
Const *con;
|
|
|
|
switch (nodeTag(value))
|
|
{
|
|
case T_Integer:
|
|
val = Int32GetDatum(intVal(value));
|
|
|
|
typeid = INT4OID;
|
|
typelen = sizeof(int32);
|
|
typebyval = true;
|
|
break;
|
|
|
|
case T_Float:
|
|
/* could be an oversize integer as well as a float ... */
|
|
if (scanint8(strVal(value), true, &val64))
|
|
{
|
|
val = Int64GetDatum(val64);
|
|
|
|
typeid = INT8OID;
|
|
typelen = sizeof(int64);
|
|
typebyval = false; /* XXX might change someday */
|
|
}
|
|
else
|
|
{
|
|
val = DirectFunctionCall3(numeric_in,
|
|
CStringGetDatum(strVal(value)),
|
|
ObjectIdGetDatum(InvalidOid),
|
|
Int32GetDatum(-1));
|
|
|
|
typeid = NUMERICOID;
|
|
typelen = -1; /* variable len */
|
|
typebyval = false;
|
|
}
|
|
break;
|
|
|
|
case T_String:
|
|
val = DirectFunctionCall1(unknownin,
|
|
CStringGetDatum(strVal(value)));
|
|
|
|
typeid = UNKNOWNOID; /* will be coerced later */
|
|
typelen = -1; /* variable len */
|
|
typebyval = false;
|
|
break;
|
|
|
|
case T_BitString:
|
|
val = DirectFunctionCall3(bit_in,
|
|
CStringGetDatum(strVal(value)),
|
|
ObjectIdGetDatum(InvalidOid),
|
|
Int32GetDatum(-1));
|
|
typeid = BITOID;
|
|
typelen = -1;
|
|
typebyval = false;
|
|
break;
|
|
|
|
default:
|
|
elog(WARNING, "make_const: unknown type %d", nodeTag(value));
|
|
/* FALLTHROUGH */
|
|
|
|
case T_Null:
|
|
/* return a null const */
|
|
con = makeConst(UNKNOWNOID,
|
|
-1,
|
|
(Datum) NULL,
|
|
true,
|
|
false);
|
|
return con;
|
|
}
|
|
|
|
con = makeConst(typeid,
|
|
typelen,
|
|
val,
|
|
false,
|
|
typebyval);
|
|
|
|
return con;
|
|
}
|