postgres/src/backend/parser/parse_clause.c
Tom Lane 1763a7c1ea Tweak GROUP BY so that it will still accept result-column names, but only
after trying to resolve the item as an input-column name.  This allows us
to be compliant with the SQL92 spec for queries that fall within the spec,
while still accepting the same out-of-spec queries as 6.5 did.  You'll only
lose if there is an output column name that is the same as an input
column name, but doesn't refer to the same value.  7.0 will interpret
such a GROUP BY spec differently than 6.5 did.  No way around that, because
6.5 was clearly not spec compliant.
2000-03-15 23:31:19 +00:00

1255 lines
33 KiB
C

/*-------------------------------------------------------------------------
*
* parse_clause.c
* handle clauses in parser
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/parser/parse_clause.c,v 1.57 2000/03/15 23:31:04 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "miscadmin.h"
#include "optimizer/tlist.h"
#include "parse.h"
#include "nodes/makefuncs.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "parser/parse_target.h"
#define ORDER_CLAUSE 0
#define GROUP_CLAUSE 1
#define DISTINCT_ON_CLAUSE 2
static char *clauseText[] = {"ORDER BY", "GROUP BY", "DISTINCT ON"};
static TargetEntry *findTargetlistEntry(ParseState *pstate, Node *node,
List *tlist, int clause);
static void parseFromClause(ParseState *pstate, List *frmList);
RangeTblEntry *transformTableEntry(ParseState *pstate, RangeVar *r);
static List *addTargetToSortList(TargetEntry *tle, List *sortlist,
List *targetlist, char *opname);
static bool exprIsInSortList(Node *expr, List *sortList, List *targetList);
#ifndef DISABLE_OUTER_JOINS
static Node *transformUsingClause(ParseState *pstate, List *using, List *left, List *right);
#endif
/*
* makeRangeTable -
* Build the initial range table from the FROM clause.
*/
void
makeRangeTable(ParseState *pstate, List *frmList)
{
/* Currently, nothing to do except this: */
parseFromClause(pstate, frmList);
}
/*
* setTargetTable
* Add the target relation of INSERT or UPDATE to the range table,
* and make the special links to it in the ParseState.
*
* Note that the target is not marked as either inFromCl or inJoinSet.
* For INSERT, we don't want the target to be joined to; it's a
* destination of tuples, not a source. For UPDATE/DELETE, we do
* need to scan or join the target. This will happen without the
* inJoinSet flag because the planner's preprocess_targetlist()
* adds the destination's CTID attribute to the targetlist, and
* therefore the destination will be a referenced table even if
* there is no other use of any of its attributes. Tricky, eh?
*/
void
setTargetTable(ParseState *pstate, char *relname)
{
RangeTblEntry *rte;
int sublevels_up;
if ((refnameRangeTablePosn(pstate, relname, &sublevels_up) == 0)
|| (sublevels_up != 0))
rte = addRangeTableEntry(pstate, relname,
makeAttr(relname, NULL),
FALSE, FALSE, FALSE);
else
rte = refnameRangeTableEntry(pstate, relname);
/* This could only happen for multi-action rules */
if (pstate->p_target_relation != NULL)
heap_close(pstate->p_target_relation, AccessShareLock);
pstate->p_target_rangetblentry = rte;
pstate->p_target_relation = heap_open(rte->relid, AccessShareLock);
/* will close relation later, see analyze.c */
}
Node *
mergeInnerJoinQuals(ParseState *pstate, Node *clause);
Node *
mergeInnerJoinQuals(ParseState *pstate, Node *clause)
{
A_Expr *expr = (A_Expr *) pstate->p_join_quals;
if (expr == NULL)
return clause;
if (clause != NULL)
{
A_Expr *a = makeNode(A_Expr);
a->oper = AND;
a->opname = NULL;
a->lexpr = (Node *) expr;
a->rexpr = clause;
expr = a;
}
/* Make sure that we don't do this twice... */
pstate->p_join_quals = NULL;
return (Node *) expr;
} /* mergeInnerJoinQuals() */
/*
* transformWhereClause -
* transforms the qualification and make sure it is of type Boolean
*/
Node *
transformWhereClause(ParseState *pstate, Node *clause)
{
Node *qual;
if (pstate->p_join_quals != NULL)
clause = mergeInnerJoinQuals(pstate, clause);
if (clause == NULL)
return NULL;
pstate->p_in_where_clause = true;
qual = transformExpr(pstate, clause, EXPR_COLUMN_FIRST);
pstate->p_in_where_clause = false;
if (exprType(qual) != BOOLOID)
{
elog(ERROR, "WHERE clause must return type bool, not type %s",
typeidTypeName(exprType(qual)));
}
return qual;
}
#ifndef DISABLE_JOIN_SYNTAX
char *
AttrString(Attr *attr);
char *
AttrString(Attr *attr)
{
Value *val;
Assert(length(attr->attrs) == 1);
val = lfirst(attr->attrs);
Assert(IsA(val, String));
return strVal(val);
}
List *
ListTableAsAttrs(ParseState *pstate, char *table);
List *
ListTableAsAttrs(ParseState *pstate, char *table)
{
Attr *attr = expandTable(pstate, table, TRUE);
List *rlist = NIL;
List *col;
foreach(col, attr->attrs)
{
Attr *a = makeAttr(table, strVal((Value *) lfirst(col)));
rlist = lappend(rlist, a);
}
return rlist;
}
List *
makeUniqueAttrList(List *candidates, List *idents);
List *
makeUniqueAttrList(List *attrs, List *filter)
{
List *result = NULL;
List *candidate;
foreach(candidate, attrs)
{
List *fmember;
bool match = FALSE;
Attr *cattr = lfirst(candidate);
Assert(IsA(cattr, Attr));
Assert(length(cattr->attrs) == 1);
foreach(fmember, filter)
{
Attr *fattr = lfirst(fmember);
Assert(IsA(fattr, Attr));
Assert(length(fattr->attrs) == 1);
if (strcmp(strVal(lfirst(cattr->attrs)), strVal(lfirst(fattr->attrs))) == 0)
{
match = TRUE;
break;
}
}
if (!match)
result = lappend(result, cattr);
}
return result;
}
List *
makeAttrList(Attr *attr);
List *
makeAttrList(Attr *attr)
{
List *result = NULL;
char *name = attr->relname;
List *col;
foreach (col, attr->attrs)
{
Attr *newattr = makeAttr(name, strVal((Value *) lfirst(col)));
result = lappend(result, newattr);
}
return result;
}
/* ExpandAttrs()
* Take an existing attribute node and return a list of attribute nodes
* with one attribute name per node.
*/
List *
ExpandAttrs(Attr *attr);
List *
ExpandAttrs(Attr *attr)
{
List *col;
char *relname = attr->relname;
List *rlist = NULL;
Assert(attr != NULL);
if ((attr->attrs == NULL) || (length(attr->attrs) <= 1))
return lcons(attr, NIL);
foreach(col, attr->attrs)
{
Attr *attr = lfirst(col);
rlist = lappend(rlist, makeAttr(relname, AttrString(attr)));
}
return rlist;
}
/* transformUsingClause()
* Take an ON or USING clause from a join expression and expand if necessary.
*/
static Node *
transformUsingClause(ParseState *pstate, List *usingList, List *leftList, List *rightList)
{
A_Expr *expr = NULL;
List *using;
foreach(using, usingList)
{
List *col;
A_Expr *e;
Attr *uattr = lfirst(using);
Attr *lattr = NULL, *rattr = NULL;
/* find the first instances of this column in the shape list
* and the last table in the shape list...
*/
foreach (col, leftList)
{
Attr *attr = lfirst(col);
if (strcmp(AttrString(attr), AttrString(uattr)) == 0)
{
lattr = attr;
break;
}
}
foreach (col, rightList)
{
Attr *attr = lfirst(col);
if (strcmp(AttrString(attr), AttrString(uattr)) == 0)
{
rattr = attr;
break;
}
}
Assert((lattr != NULL) && (rattr != NULL));
e = makeNode(A_Expr);
e->oper = OP;
e->opname = "=";
e->lexpr = (Node *) lattr;
e->rexpr = (Node *) rattr;
if (expr != NULL)
{
A_Expr *a = makeNode(A_Expr);
a->oper = AND;
a->opname = NULL;
a->lexpr = (Node *) expr;
a->rexpr = (Node *) e;
expr = a;
}
else
expr = e;
}
return ((Node *) transformExpr(pstate, (Node *) expr, EXPR_COLUMN_FIRST));
} /* transformUsiongClause() */
#endif
RangeTblEntry *
transformTableEntry(ParseState *pstate, RangeVar *r)
{
RelExpr *baserel = r->relExpr;
char *relname = baserel->relname;
#if 0
char *refname;
List *columns;
#endif
RangeTblEntry *rte;
#if 0
if (r->name != NULL)
refname = r->name->relname;
else
refname = NULL;
columns = ListTableAsAttrs(pstate, relname);
/* alias might be specified... */
if (r->name != NULL)
{
#ifndef DISABLE_JOIN_SYNTAX
if (length(columns) > 0)
{
if (length(r->name->attrs) > 0)
{
if (length(columns) != length(r->name->attrs))
elog(ERROR, "'%s' has %d columns but %d %s specified",
relname, length(columns), length(r->name->attrs),
((length(r->name->attrs) != 1)? "aliases": "alias"));
aliasList = nconc(aliasList, r->name->attrs);
}
else
{
r->name->attrs = columns;
aliasList = nconc(aliasList, r->name->attrs);
}
}
else
{
elog(NOTICE, "transformTableEntry: column aliases not handled (internal error)");
}
#else
elog(ERROR, "Column aliases not yet supported");
#endif
}
else
{
refname = relname;
aliasList = nconc(aliasList, columns);
}
#endif
if (r->name == NULL)
r->name = makeAttr(relname, NULL);
/*
* marks this entry to indicate it comes from the FROM clause. In SQL,
* the target list can only refer to range variables specified in the
* from clause but we follow the more powerful POSTQUEL semantics and
* automatically generate the range variable if not specified. However
* there are times we need to know whether the entries are legitimate.
*
* eg. select * from foo f where f.x = 1; will generate wrong answer if
* we expand * to foo.x.
*/
rte = addRangeTableEntry(pstate, relname, r->name,
baserel->inh, TRUE, TRUE);
return rte;
} /* transformTableEntry() */
/*
* parseFromClause -
* turns the table references specified in the from-clause into a
* range table. The range table may grow as we transform the expressions
* in the target list. (Note that this happens because in POSTQUEL, we
* allow references to relations not specified in the from-clause. We
* also allow now as an extension.)
*
* The FROM clause can now contain JoinExpr nodes, which contain parsing info
* for inner and outer joins. The USING clause must be expanded into a qualification
* for an inner join at least, since that is compatible with the old syntax.
* Not sure yet how to handle outer joins, but it will become clear eventually?
* - thomas 1998-12-16
*/
static void
parseFromClause(ParseState *pstate, List *frmList)
{
List *fl;
foreach(fl, frmList)
{
Node *n = lfirst(fl);
/*
* marks this entry to indicate it comes from the FROM clause. In
* SQL, the target list can only refer to range variables
* specified in the from clause but we follow the more powerful
* POSTQUEL semantics and automatically generate the range
* variable if not specified. However there are times we need to
* know whether the entries are legitimate.
*
* eg. select * from foo f where f.x = 1; will generate wrong answer
* if we expand * to foo.x.
*/
/* Plain vanilla inner join, just like we've always had? */
if (IsA(n, RangeVar))
{
transformTableEntry(pstate, (RangeVar *) n);
}
/* A newfangled join expression? */
else if (IsA(n, JoinExpr))
{
#ifndef DISABLE_JOIN_SYNTAX
RangeTblEntry *l_rte, *r_rte;
Attr *l_name, *r_name = NULL;
JoinExpr *j = (JoinExpr *) n;
if (j->alias != NULL)
elog(ERROR, "JOIN table aliases are not supported");
/* nested join? then handle the left one first... */
if (IsA(j->larg, JoinExpr))
{
parseFromClause(pstate, lcons(j->larg, NIL));
l_name = ((JoinExpr *)j->larg)->alias;
}
else
{
Assert(IsA(j->larg, RangeVar));
l_rte = transformTableEntry(pstate, (RangeVar *) j->larg);
l_name = expandTable(pstate, l_rte->eref->relname, TRUE);
}
if (IsA(j->rarg, JoinExpr))
{
parseFromClause(pstate, lcons(j->rarg, NIL));
l_name = ((JoinExpr *)j->larg)->alias;
}
else
{
Assert(IsA(j->rarg, RangeVar));
r_rte = transformTableEntry(pstate, (RangeVar *) j->rarg);
r_name = expandTable(pstate, r_rte->eref->relname, TRUE);
}
/* Natural join does not explicitly specify columns; must generate columns to join.
* Need to run through the list of columns from each table or join result
* and match up the column names. Use the first table, and check every
* column in the second table for a match.
*/
if (j->isNatural)
{
List *lx, *rx;
List *rlist = NULL;
foreach(lx, l_name->attrs)
{
Ident *id = NULL;
Value *l_col = lfirst(lx);
Assert(IsA(l_col, String));
foreach(rx, r_name->attrs)
{
Value *r_col = lfirst(rx);
Assert(IsA(r_col, String));
if (strcmp(strVal(l_col), strVal(r_col)) == 0)
{
id = (Ident *) makeNode(Ident);
id->name = strVal(l_col);
break;
}
}
/* right column matched? then keep as join column... */
if (id != NULL)
rlist = lappend(rlist, id);
}
j->quals = rlist;
printf("NATURAL JOIN columns are %s\n", nodeToString(rlist));
}
if (j->jointype == INNER_P)
{
/* CROSS JOIN */
if (j->quals == NULL)
{
printf("CROSS JOIN...\n");
}
/* JOIN/USING
* This is an inner join, so rip apart the join node and
* transform into a traditional FROM list. NATURAL JOIN
* and JOIN USING both change the shape of the result.
* Need to generate a list of result columns to use for
* target list expansion and validation.
*/
else if (IsA(j->quals, List))
{
/*
* List of Ident nodes means column names from a real USING
* clause. Determine the shape of the joined table.
*/
List *ucols, *ucol;
List *shape = NULL;
List *alias = NULL;
List *l_shape, *r_shape;
List *l_cols = makeAttrList(l_name);
List *r_cols = makeAttrList(r_name);
printf("USING input tables are:\n %s\n %s\n",
nodeToString(l_name), nodeToString(r_name));
printf("USING expanded tables are:\n %s\n %s\n",
nodeToString(l_cols), nodeToString(r_cols));
/* Columns from the USING clause... */
ucols = (List *)j->quals;
foreach(ucol, ucols)
{
List *col;
Attr *l_attr = NULL, *r_attr = NULL;
Ident *id = lfirst(ucol);
Attr *attr = makeAttr("", id->name);
foreach(col, l_cols)
{
attr = lfirst(col);
if (strcmp(AttrString(attr), id->name) == 0)
{
l_attr = attr;
break;
}
}
foreach(col, r_cols)
{
attr = lfirst(col);
if (strcmp(AttrString(attr), id->name) == 0)
{
r_attr = attr;
break;
}
}
if (l_attr == NULL)
elog(ERROR, "USING column '%s' not found in table '%s'",
id->name, l_name->relname);
if (r_attr == NULL)
elog(ERROR, "USING column '%s' not found in table '%s'",
id->name, r_name->relname);
shape = lappend(shape, l_attr);
alias = lappend(alias, makeAttr("", AttrString(l_attr)));
}
printf("JOIN/USING join columns are %s\n", nodeToString(shape));
/* Remaining columns from the left side... */
l_shape = makeUniqueAttrList(makeAttrList(l_name), shape);
printf("JOIN/USING left columns are %s\n", nodeToString(l_shape));
r_shape = makeUniqueAttrList(makeAttrList(r_name), shape);
printf("JOIN/USING right columns are %s\n", nodeToString(r_shape));
printf("JOIN/USING input quals are %s\n", nodeToString(j->quals));
j->quals = (List *) transformUsingClause(pstate, shape, l_cols, r_cols);
printf("JOIN/USING transformed quals are %s\n", nodeToString(j->quals));
alias = nconc(nconc(alias, listCopy(l_shape)), listCopy(r_shape));
shape = nconc(nconc(shape, l_shape), r_shape);
printf("JOIN/USING shaped table is %s\n", nodeToString(shape));
printf("JOIN/USING alias list is %s\n", nodeToString(alias));
pstate->p_shape = shape;
pstate->p_alias = alias;
}
/* otherwise, must be an expression from an ON clause... */
else
{
j->quals = (List *) lcons(j->quals, NIL);
}
pstate->p_join_quals = (Node *) j->quals;
#if 0
if (qual == NULL)
elog(ERROR, "JOIN/ON not supported in this context");
printf("Table aliases are %s\n", nodeToString(*aliasList));
#endif
#if 0
if (*qual == NULL)
{
#endif
#if 0
/* merge qualified join clauses... */
if (j->quals != NULL)
{
if (*qual != NULL)
{
A_Expr *a = makeNode(A_Expr);
a->oper = AND;
a->opname = NULL;
a->lexpr = (Node *) *qual;
a->rexpr = (Node *) j->quals;
*qual = (Node *)a;
}
else
{
*qual = (Node *)j->quals;
}
}
#endif
#if 0
}
else
{
elog(ERROR, "Multiple JOIN/ON clauses not handled (internal error)");
*qual = lappend(*qual, j->quals);
}
#endif
/*
* if we are transforming this node back into a FROM list,
* then we will need to replace the node with two nodes.
* Will need access to the previous list item to change
* the link pointer to reference these new nodes. Try
* accumulating and returning a new list.
* - thomas 1999-01-08 Not doing this yet though!
*/
}
else if ((j->jointype == LEFT)
|| (j->jointype == RIGHT)
|| (j->jointype == FULL))
elog(ERROR, "OUTER JOIN is not yet supported");
else
elog(ERROR, "Unrecognized JOIN clause; tag is %d (internal error)",
j->jointype);
#else
elog(ERROR, "JOIN expressions are not yet implemented");
#endif
}
else
elog(ERROR, "parseFromClause: unexpected FROM clause node (internal error)"
"\n\t%s", nodeToString(n));
}
} /* parseFromClause() */
/*
* findTargetlistEntry -
* Returns the targetlist entry matching the given (untransformed) node.
* If no matching entry exists, one is created and appended to the target
* list as a "resjunk" node.
*
* node the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched
* tlist the existing target list (NB: this will never be NIL, which is a
* good thing since we'd be unable to append to it if it were...)
* clause identifies clause type being processed.
*/
static TargetEntry *
findTargetlistEntry(ParseState *pstate, Node *node, List *tlist, int clause)
{
TargetEntry *target_result = NULL;
List *tl;
Node *expr;
/*----------
* Handle two special cases as mandated by the SQL92 spec:
*
* 1. Bare ColumnName (no qualifier or subscripts)
* For a bare identifier, we search for a matching column name
* in the existing target list. Multiple matches are an error
* unless they refer to identical values; for example,
* we allow SELECT a, a FROM table ORDER BY a
* but not SELECT a AS b, b FROM table ORDER BY b
* If no match is found, we fall through and treat the identifier
* as an expression.
* For GROUP BY, it is incorrect to match the grouping item against
* targetlist entries: according to SQL92, an identifier in GROUP BY
* is a reference to a column name exposed by FROM, not to a target
* list column. However, many implementations (including pre-7.0
* PostgreSQL) accept this anyway. So for GROUP BY, we look first
* to see if the identifier matches any FROM column name, and only
* try for a targetlist name if it doesn't. This ensures that we
* adhere to the spec in the case where the name could be both.
* DISTINCT ON isn't in the standard, so we can do what we like there;
* we choose to make it work like ORDER BY, on the rather flimsy
* grounds that ordinary DISTINCT works on targetlist entries.
*
* 2. IntegerConstant
* This means to use the n'th item in the existing target list.
* Note that it would make no sense to order/group/distinct by an
* actual constant, so this does not create a conflict with our
* extension to order/group by an expression.
* GROUP BY column-number is not allowed by SQL92, but since
* the standard has no other behavior defined for this syntax,
* we may as well accept this common extension.
*
* Note that pre-existing resjunk targets must not be used in either case,
* since the user didn't write them in his SELECT list.
*
* If neither special case applies, fall through to treat the item as
* an expression.
*----------
*/
if (IsA(node, Ident) && ((Ident *) node)->indirection == NIL)
{
char *name = ((Ident *) node)->name;
if (clause == GROUP_CLAUSE)
{
/*
* In GROUP BY, we must prefer a match against a FROM-clause
* column to one against the targetlist. Look to see if there is
* a matching column. If so, fall through to let transformExpr()
* do the rest. NOTE: if name could refer ambiguously to more
* than one column name exposed by FROM, colnameRangeTableEntry
* will elog(ERROR). That's just what we want here.
*/
if (colnameRangeTableEntry(pstate, name) != NULL)
name = NULL;
}
if (name != NULL)
{
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
Resdom *resnode = tle->resdom;
if (!resnode->resjunk &&
strcmp(resnode->resname, name) == 0)
{
if (target_result != NULL)
{
if (! equal(target_result->expr, tle->expr))
elog(ERROR, "%s '%s' is ambiguous",
clauseText[clause], name);
}
else
target_result = tle;
/* Stay in loop to check for ambiguity */
}
}
if (target_result != NULL)
return target_result; /* return the first match */
}
}
if (IsA(node, A_Const))
{
Value *val = &((A_Const *) node)->val;
int targetlist_pos = 0;
int target_pos;
if (! IsA(val, Integer))
elog(ERROR, "Non-integer constant in %s", clauseText[clause]);
target_pos = intVal(val);
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
Resdom *resnode = tle->resdom;
if (!resnode->resjunk)
{
if (++targetlist_pos == target_pos)
return tle; /* return the unique match */
}
}
elog(ERROR, "%s position %d is not in target list",
clauseText[clause], target_pos);
}
/*
* Otherwise, we have an expression (this is a Postgres extension
* not found in SQL92). Convert the untransformed node to a
* transformed expression, and search for a match in the tlist.
* NOTE: it doesn't really matter whether there is more than one
* match. Also, we are willing to match a resjunk target here,
* though the above cases must ignore resjunk targets.
*/
expr = transformExpr(pstate, node, EXPR_COLUMN_FIRST);
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
if (equal(expr, tle->expr))
return tle;
}
/*
* If no matches, construct a new target entry which is appended to
* the end of the target list. This target is given resjunk = TRUE
* so that it will not be projected into the final tuple.
*/
target_result = transformTargetEntry(pstate, node, expr, NULL, true);
lappend(tlist, target_result);
return target_result;
}
/*
* transformGroupClause -
* transform a Group By clause
*
*/
List *
transformGroupClause(ParseState *pstate, List *grouplist, List *targetlist)
{
List *glist = NIL,
*gl;
foreach(gl, grouplist)
{
TargetEntry *tle;
tle = findTargetlistEntry(pstate, lfirst(gl),
targetlist, GROUP_CLAUSE);
/* avoid making duplicate grouplist entries */
if (! exprIsInSortList(tle->expr, glist, targetlist))
{
GroupClause *grpcl = makeNode(GroupClause);
grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
grpcl->sortop = oprid(oper("<",
tle->resdom->restype,
tle->resdom->restype, false));
glist = lappend(glist, grpcl);
}
}
return glist;
}
/*
* transformSortClause -
* transform an ORDER BY clause
*/
List *
transformSortClause(ParseState *pstate,
List *orderlist,
List *targetlist)
{
List *sortlist = NIL;
List *olitem;
foreach(olitem, orderlist)
{
SortGroupBy *sortby = lfirst(olitem);
TargetEntry *tle;
tle = findTargetlistEntry(pstate, sortby->node,
targetlist, ORDER_CLAUSE);
sortlist = addTargetToSortList(tle, sortlist, targetlist,
sortby->useOp);
}
return sortlist;
}
/*
* transformDistinctClause -
* transform a DISTINCT or DISTINCT ON clause
*
* Since we may need to add items to the query's sortClause list, that list
* is passed by reference. We might also need to add items to the query's
* targetlist, but we assume that cannot be empty initially, so we can
* lappend to it even though the pointer is passed by value.
*/
List *
transformDistinctClause(ParseState *pstate, List *distinctlist,
List *targetlist, List **sortClause)
{
List *result = NIL;
List *slitem;
List *dlitem;
/* No work if there was no DISTINCT clause */
if (distinctlist == NIL)
return NIL;
if (lfirst(distinctlist) == NIL)
{
/* We had SELECT DISTINCT */
/*
* All non-resjunk elements from target list that are not already
* in the sort list should be added to it. (We don't really care
* what order the DISTINCT fields are checked in, so we can leave
* the user's ORDER BY spec alone, and just add additional sort keys
* to it to ensure that all targetlist items get sorted.)
*/
*sortClause = addAllTargetsToSortList(*sortClause, targetlist);
/*
* Now, DISTINCT list consists of all non-resjunk sortlist items.
* Actually, all the sortlist items had better be non-resjunk!
* Otherwise, user wrote SELECT DISTINCT with an ORDER BY item
* that does not appear anywhere in the SELECT targetlist, and
* we can't implement that with only one sorting pass...
*/
foreach(slitem, *sortClause)
{
SortClause *scl = (SortClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(scl, targetlist);
if (tle->resdom->resjunk)
elog(ERROR, "For SELECT DISTINCT, ORDER BY expressions must appear in target list");
else
result = lappend(result, copyObject(scl));
}
}
else
{
/* We had SELECT DISTINCT ON (expr, ...) */
/*
* If the user writes both DISTINCT ON and ORDER BY, then the two
* expression lists must match (until one or the other runs out).
* Otherwise the ORDER BY requires a different sort order than the
* DISTINCT does, and we can't implement that with only one sort pass
* (and if we do two passes, the results will be rather unpredictable).
* However, it's OK to have more DISTINCT ON expressions than ORDER BY
* expressions; we can just add the extra DISTINCT values to the sort
* list, much as we did above for ordinary DISTINCT fields.
*
* Actually, it'd be OK for the common prefixes of the two lists to
* match in any order, but implementing that check seems like more
* trouble than it's worth.
*/
List *nextsortlist = *sortClause;
foreach(dlitem, distinctlist)
{
TargetEntry *tle;
tle = findTargetlistEntry(pstate, lfirst(dlitem),
targetlist, DISTINCT_ON_CLAUSE);
if (nextsortlist != NIL)
{
SortClause *scl = (SortClause *) lfirst(nextsortlist);
if (tle->resdom->ressortgroupref != scl->tleSortGroupRef)
elog(ERROR, "SELECT DISTINCT ON expressions must match initial ORDER BY expressions");
result = lappend(result, copyObject(scl));
nextsortlist = lnext(nextsortlist);
}
else
{
*sortClause = addTargetToSortList(tle, *sortClause,
targetlist, NULL);
/* Probably, the tle should always have been added at the
* end of the sort list ... but search to be safe.
*/
foreach(slitem, *sortClause)
{
SortClause *scl = (SortClause *) lfirst(slitem);
if (tle->resdom->ressortgroupref == scl->tleSortGroupRef)
{
result = lappend(result, copyObject(scl));
break;
}
}
if (slitem == NIL)
elog(ERROR, "transformDistinctClause: failed to add DISTINCT ON clause to target list");
}
}
}
return result;
}
/*
* addAllTargetsToSortList
* Make sure all non-resjunk targets in the targetlist are in the
* ORDER BY list, adding the not-yet-sorted ones to the end of the list.
* This is typically used to help implement SELECT DISTINCT.
*
* Returns the updated ORDER BY list.
*/
List *
addAllTargetsToSortList(List *sortlist, List *targetlist)
{
List *i;
foreach(i, targetlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(i);
if (! tle->resdom->resjunk)
sortlist = addTargetToSortList(tle, sortlist, targetlist, NULL);
}
return sortlist;
}
/*
* addTargetToSortList
* If the given targetlist entry isn't already in the ORDER BY list,
* add it to the end of the list, using the sortop with given name
* or any available sort operator if opname == NULL.
*
* Returns the updated ORDER BY list.
*/
static List *
addTargetToSortList(TargetEntry *tle, List *sortlist, List *targetlist,
char *opname)
{
/* avoid making duplicate sortlist entries */
if (! exprIsInSortList(tle->expr, sortlist, targetlist))
{
SortClause *sortcl = makeNode(SortClause);
sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
if (opname)
sortcl->sortop = oprid(oper(opname,
tle->resdom->restype,
tle->resdom->restype, false));
else
sortcl->sortop = any_ordering_op(tle->resdom->restype);
sortlist = lappend(sortlist, sortcl);
}
return sortlist;
}
/*
* assignSortGroupRef
* Assign the targetentry an unused ressortgroupref, if it doesn't
* already have one. Return the assigned or pre-existing refnumber.
*
* 'tlist' is the targetlist containing (or to contain) the given targetentry.
*/
Index
assignSortGroupRef(TargetEntry *tle, List *tlist)
{
Index maxRef;
List *l;
if (tle->resdom->ressortgroupref) /* already has one? */
return tle->resdom->ressortgroupref;
/* easiest way to pick an unused refnumber: max used + 1 */
maxRef = 0;
foreach(l, tlist)
{
Index ref = ((TargetEntry *) lfirst(l))->resdom->ressortgroupref;
if (ref > maxRef)
maxRef = ref;
}
tle->resdom->ressortgroupref = maxRef + 1;
return tle->resdom->ressortgroupref;
}
/*
* exprIsInSortList
* Is the given expression already in the sortlist?
* Note we will say 'yes' if it is equal() to any sortlist item,
* even though that might be a different targetlist member.
*
* Works for both SortClause and GroupClause lists.
*/
static bool
exprIsInSortList(Node *expr, List *sortList, List *targetList)
{
List *i;
foreach(i, sortList)
{
SortClause *scl = (SortClause *) lfirst(i);
if (equal(expr, get_sortgroupclause_expr(scl, targetList)))
return true;
}
return false;
}
/* transformUnionClause()
* Transform a UNION clause.
* Note that the union clause is actually a fully-formed select structure.
* So, it is evaluated as a select, then the resulting target fields
* are matched up to ensure correct types in the results.
* The select clause parsing is done recursively, so the unions are evaluated
* right-to-left. One might want to look at all columns from all clauses before
* trying to coerce, but unless we keep track of the call depth we won't know
* when to do this because of the recursion.
* Let's just try matching in pairs for now (right to left) and see if it works.
* - thomas 1998-05-22
*/
#ifdef NOT_USED
static List *
transformUnionClause(List *unionClause, List *targetlist)
{
List *union_list = NIL;
List *qlist,
*qlist_item;
if (unionClause)
{
/* recursion */
qlist = parse_analyze(unionClause, NULL);
foreach(qlist_item, qlist)
{
Query *query = (Query *) lfirst(qlist_item);
List *prev_target = targetlist;
List *next_target;
int prev_len = 0,
next_len = 0;
foreach(prev_target, targetlist)
if (!((TargetEntry *) lfirst(prev_target))->resdom->resjunk)
prev_len++;
foreach(next_target, query->targetList)
if (!((TargetEntry *) lfirst(next_target))->resdom->resjunk)
next_len++;
if (prev_len != next_len)
elog(ERROR, "Each UNION clause must have the same number of columns");
foreach(next_target, query->targetList)
{
Oid itype;
Oid otype;
otype = ((TargetEntry *) lfirst(prev_target))->resdom->restype;
itype = ((TargetEntry *) lfirst(next_target))->resdom->restype;
/* one or both is a NULL column? then don't convert... */
if (otype == InvalidOid)
{
/* propagate a known type forward, if available */
if (itype != InvalidOid)
((TargetEntry *) lfirst(prev_target))->resdom->restype = itype;
#if FALSE
else
{
((TargetEntry *) lfirst(prev_target))->resdom->restype = UNKNOWNOID;
((TargetEntry *) lfirst(next_target))->resdom->restype = UNKNOWNOID;
}
#endif
}
else if (itype == InvalidOid)
{
}
/* they don't match in type? then convert... */
else if (itype != otype)
{
Node *expr;
expr = ((TargetEntry *) lfirst(next_target))->expr;
expr = CoerceTargetExpr(NULL, expr, itype, otype, -1);
if (expr == NULL)
{
elog(ERROR, "Unable to transform %s to %s"
"\n\tEach UNION clause must have compatible target types",
typeidTypeName(itype),
typeidTypeName(otype));
}
((TargetEntry *) lfirst(next_target))->expr = expr;
((TargetEntry *) lfirst(next_target))->resdom->restype = otype;
}
/* both are UNKNOWN? then evaluate as text... */
else if (itype == UNKNOWNOID)
{
((TargetEntry *) lfirst(next_target))->resdom->restype = TEXTOID;
((TargetEntry *) lfirst(prev_target))->resdom->restype = TEXTOID;
}
prev_target = lnext(prev_target);
}
union_list = lappend(union_list, query);
}
return union_list;
}
else
return NIL;
}
#endif