ruby/zjit.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

709 lines
16 KiB
C
Raw Normal View History

2025-02-06 11:35:55 -05:00
#include "internal.h"
#include "internal/sanitizers.h"
#include "internal/string.h"
#include "internal/hash.h"
#include "internal/variable.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "internal/fixnum.h"
#include "internal/numeric.h"
#include "internal/gc.h"
#include "internal/vm.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "insns.inc"
#include "insns_info.inc"
#include "vm_sync.h"
#include "vm_insnhelper.h"
#include "probes.h"
#include "probes_helper.h"
#include "iseq.h"
#include "ruby/debug.h"
#include "internal/cont.h"
#include "zjit.h"
2025-02-06 11:35:55 -05:00
// For mmapp(), sysconf()
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
#include <errno.h>
2025-02-06 12:23:31 -05:00
uint32_t
rb_zjit_get_page_size(void)
{
#if defined(_SC_PAGESIZE)
long page_size = sysconf(_SC_PAGESIZE);
if (page_size <= 0) rb_bug("zjit: failed to get page size");
// 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected.
// Though our design sort of assume we have fine grained control over memory protection
// which require small page sizes.
if (page_size > 0x40000000l) rb_bug("zjit page size too large");
return (uint32_t)page_size;
#else
#error "ZJIT supports POSIX only for now"
2025-02-06 12:23:31 -05:00
#endif
}
2025-02-06 15:21:08 -05:00
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
// Align the current write position to a multiple of bytes
static uint8_t *
align_ptr(uint8_t *ptr, uint32_t multiple)
{
// Compute the pointer modulo the given alignment boundary
uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;
// If the pointer is already aligned, stop
if (rem == 0)
return ptr;
// Pad the pointer by the necessary amount to align it
uint32_t pad = multiple - rem;
return ptr + pad;
}
#endif
2025-02-06 11:39:06 -05:00
// Address space reservation. Memory pages are mapped on an as needed basis.
// See the Rust mm module for details.
uint8_t *
rb_zjit_reserve_addr_space(uint32_t mem_size)
{
#ifndef _WIN32
uint8_t *mem_block;
// On Linux
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE);
uint8_t *const cfunc_sample_addr = (void *)(uintptr_t)&rb_zjit_reserve_addr_space;
uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX;
// Align the requested address to page size
uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size);
// Probe for addresses close to this function using MAP_FIXED_NOREPLACE
// to improve odds of being in range for 32-bit relative call instructions.
do {
mem_block = mmap(
req_addr,
mem_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
-1,
0
);
// If we succeeded, stop
if (mem_block != MAP_FAILED) {
ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space");
break;
}
// -4MiB. Downwards to probe away from the heap. (On x86/A64 Linux
// main_code_addr < heap_addr, and in case we are in a shared
// library mapped higher than the heap, downwards is still better
// since it's towards the end of the heap rather than the stack.)
req_addr -= 4 * 1024 * 1024;
} while (req_addr < probe_region_end);
// On MacOS and other platforms
#else
// Try to map a chunk of memory as executable
mem_block = mmap(
(void *)rb_zjit_reserve_addr_space,
mem_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0
);
#endif
// Fallback
if (mem_block == MAP_FAILED) {
// Try again without the address hint (e.g., valgrind)
mem_block = mmap(
NULL,
mem_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0
);
if (mem_block != MAP_FAILED) {
ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space:fallback");
}
}
// Check that the memory mapping was successful
if (mem_block == MAP_FAILED) {
perror("ruby: zjit: mmap:");
if(errno == ENOMEM) {
// No crash report if it's only insufficient memory
exit(EXIT_FAILURE);
}
rb_bug("mmap failed");
}
return mem_block;
#else
// Windows not supported for now
return NULL;
#endif
}
2025-02-14 17:49:53 -08:00
unsigned long
rb_RSTRING_LEN(VALUE str)
{
return RSTRING_LEN(str);
}
char *
rb_RSTRING_PTR(VALUE str)
{
return RSTRING_PTR(str);
}
2025-02-06 11:35:55 -05:00
void
rb_zjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec, bool jit_exception)
{
RB_VM_LOCK_ENTER();
rb_vm_barrier();
// Compile a block version starting at the current instruction
uint8_t *rb_zjit_iseq_gen_entry_point(const rb_iseq_t *iseq, rb_execution_context_t *ec); // defined in Rust
uintptr_t code_ptr = (uintptr_t)rb_zjit_iseq_gen_entry_point(iseq, ec);
// TODO: support jit_exception
iseq->body->jit_entry = (rb_jit_func_t)code_ptr;
RB_VM_LOCK_LEAVE();
}
unsigned int
rb_iseq_encoded_size(const rb_iseq_t *iseq)
{
return iseq->body->iseq_size;
}
// Get the opcode given a program counter. Can return trace opcode variants.
int
rb_iseq_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
// ZJIT should only use iseqs after AST to bytecode compilation
RUBY_ASSERT_ALWAYS(FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED));
const VALUE at_pc = *pc;
return rb_vm_insn_addr2opcode((const void *)at_pc);
}
// Get the PC for a given index in an iseq
VALUE *
rb_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
{
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
RUBY_ASSERT_ALWAYS(insn_idx < iseq->body->iseq_size);
VALUE *encoded = iseq->body->iseq_encoded;
VALUE *pc = &encoded[insn_idx];
return pc;
}
2025-02-06 13:58:23 -05:00
const char *
rb_insn_name(VALUE insn)
{
return insn_name(insn);
}
struct rb_control_frame_struct *
rb_get_ec_cfp(const rb_execution_context_t *ec)
{
return ec->cfp;
}
const rb_iseq_t *
rb_get_cfp_iseq(struct rb_control_frame_struct *cfp)
{
return cfp->iseq;
}
VALUE *
rb_get_cfp_pc(struct rb_control_frame_struct *cfp)
{
return (VALUE*)cfp->pc;
}
VALUE *
rb_get_cfp_sp(struct rb_control_frame_struct *cfp)
{
return cfp->sp;
}
VALUE
rb_get_cfp_self(struct rb_control_frame_struct *cfp)
{
return cfp->self;
}
VALUE *
rb_get_cfp_ep(struct rb_control_frame_struct *cfp)
{
return (VALUE*)cfp->ep;
}
const VALUE *
rb_get_cfp_ep_level(struct rb_control_frame_struct *cfp, uint32_t lv)
{
uint32_t i;
const VALUE *ep = (VALUE*)cfp->ep;
for (i = 0; i < lv; i++) {
ep = VM_ENV_PREV_EP(ep);
}
return ep;
}
extern VALUE *rb_vm_base_ptr(struct rb_control_frame_struct *cfp);
rb_method_type_t
rb_get_cme_def_type(const rb_callable_method_entry_t *cme)
{
if (UNDEFINED_METHOD_ENTRY_P(cme)) {
return VM_METHOD_TYPE_UNDEF;
}
else {
return cme->def->type;
}
}
ID
rb_get_cme_def_body_attr_id(const rb_callable_method_entry_t *cme)
{
return cme->def->body.attr.id;
}
enum method_optimized_type
rb_get_cme_def_body_optimized_type(const rb_callable_method_entry_t *cme)
{
return cme->def->body.optimized.type;
}
unsigned int
rb_get_cme_def_body_optimized_index(const rb_callable_method_entry_t *cme)
{
return cme->def->body.optimized.index;
}
rb_method_cfunc_t *
rb_get_cme_def_body_cfunc(const rb_callable_method_entry_t *cme)
{
return UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
}
uintptr_t
rb_get_def_method_serial(const rb_method_definition_t *def)
{
return def->method_serial;
}
ID
rb_get_def_original_id(const rb_method_definition_t *def)
{
return def->original_id;
}
int
rb_get_mct_argc(const rb_method_cfunc_t *mct)
{
return mct->argc;
}
void *
rb_get_mct_func(const rb_method_cfunc_t *mct)
{
return (void*)(uintptr_t)mct->func; // this field is defined as type VALUE (*func)(ANYARGS)
}
const rb_iseq_t *
rb_get_def_iseq_ptr(rb_method_definition_t *def)
{
return def_iseq_ptr(def);
}
const rb_iseq_t *
rb_get_iseq_body_local_iseq(const rb_iseq_t *iseq)
{
return iseq->body->local_iseq;
}
VALUE *
rb_get_iseq_body_iseq_encoded(const rb_iseq_t *iseq)
{
return iseq->body->iseq_encoded;
}
unsigned
rb_get_iseq_body_stack_max(const rb_iseq_t *iseq)
{
return iseq->body->stack_max;
}
enum rb_iseq_type
rb_get_iseq_body_type(const rb_iseq_t *iseq)
{
return iseq->body->type;
}
bool
rb_get_iseq_flags_has_lead(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_lead;
}
bool
rb_get_iseq_flags_has_opt(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_opt;
}
bool
rb_get_iseq_flags_has_kw(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_kw;
}
bool
rb_get_iseq_flags_has_post(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_post;
}
bool
rb_get_iseq_flags_has_kwrest(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_kwrest;
}
bool
rb_get_iseq_flags_anon_kwrest(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.anon_kwrest;
}
bool
rb_get_iseq_flags_has_rest(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_rest;
}
bool
rb_get_iseq_flags_ruby2_keywords(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.ruby2_keywords;
}
bool
rb_get_iseq_flags_has_block(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.has_block;
}
bool
rb_get_iseq_flags_ambiguous_param0(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.ambiguous_param0;
}
bool
rb_get_iseq_flags_accepts_no_kwarg(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.accepts_no_kwarg;
}
bool
rb_get_iseq_flags_forwardable(const rb_iseq_t *iseq)
{
return iseq->body->param.flags.forwardable;
}
// This is defined only as a named struct inside rb_iseq_constant_body.
// By giving it a separate typedef, we make it nameable by rust-bindgen.
// Bindgen's temp/anon name isn't guaranteed stable.
typedef struct rb_iseq_param_keyword rb_iseq_param_keyword_struct;
const rb_iseq_param_keyword_struct *
rb_get_iseq_body_param_keyword(const rb_iseq_t *iseq)
{
return iseq->body->param.keyword;
}
unsigned
rb_get_iseq_body_param_size(const rb_iseq_t *iseq)
{
return iseq->body->param.size;
}
int
rb_get_iseq_body_param_lead_num(const rb_iseq_t *iseq)
{
return iseq->body->param.lead_num;
}
int
rb_get_iseq_body_param_opt_num(const rb_iseq_t *iseq)
{
return iseq->body->param.opt_num;
}
const VALUE *
rb_get_iseq_body_param_opt_table(const rb_iseq_t *iseq)
{
return iseq->body->param.opt_table;
}
unsigned int
rb_get_iseq_body_local_table_size(const rb_iseq_t *iseq)
{
return iseq->body->local_table_size;
}
int
rb_get_cikw_keyword_len(const struct rb_callinfo_kwarg *cikw)
{
return cikw->keyword_len;
}
VALUE
rb_get_cikw_keywords_idx(const struct rb_callinfo_kwarg *cikw, int idx)
{
return cikw->keywords[idx];
}
const struct rb_callinfo *
rb_get_call_data_ci(const struct rb_call_data *cd)
{
return cd->ci;
}
// The FL_TEST() macro
VALUE
rb_FL_TEST(VALUE obj, VALUE flags)
{
return RB_FL_TEST(obj, flags);
}
// The FL_TEST_RAW() macro, normally an internal implementation detail
VALUE
rb_FL_TEST_RAW(VALUE obj, VALUE flags)
{
return FL_TEST_RAW(obj, flags);
}
// The RB_TYPE_P macro
bool
rb_RB_TYPE_P(VALUE obj, enum ruby_value_type t)
{
return RB_TYPE_P(obj, t);
}
long
rb_RSTRUCT_LEN(VALUE st)
{
return RSTRUCT_LEN(st);
}
bool
rb_BASIC_OP_UNREDEFINED_P(enum ruby_basic_operators bop, uint32_t klass)
{
return BASIC_OP_UNREDEFINED_P(bop, klass);
}
// For debug builds
void
rb_assert_iseq_handle(VALUE handle)
{
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_iseq));
}
void
rb_assert_cme_handle(VALUE handle)
{
RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(handle));
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_ment));
}
int
rb_IMEMO_TYPE_P(VALUE imemo, enum imemo_type imemo_type)
{
return IMEMO_TYPE_P(imemo, imemo_type);
}
// Release the VM lock. The lock level must point to the same integer used to
// acquire the lock.
void
rb_zjit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line)
{
rb_vm_lock_leave(recursive_lock_level, file, line);
}
bool
rb_zjit_mark_writable(void *mem_block, uint32_t mem_size)
{
return mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE) == 0;
}
void
rb_zjit_mark_executable(void *mem_block, uint32_t mem_size)
{
// Do not call mprotect when mem_size is zero. Some platforms may return
// an error for it. https://github.com/Shopify/ruby/issues/450
if (mem_size == 0) {
return;
}
if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) {
rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s",
mem_block, (unsigned long)mem_size, strerror(errno));
}
}
// Free the specified memory block.
bool
rb_zjit_mark_unused(void *mem_block, uint32_t mem_size)
{
// On Linux, you need to use madvise MADV_DONTNEED to free memory.
// We might not need to call this on macOS, but it's not really documented.
// We generally prefer to do the same thing on both to ease testing too.
madvise(mem_block, mem_size, MADV_DONTNEED);
// On macOS, mprotect PROT_NONE seems to reduce RSS.
// We also call this on Linux to avoid executing unused pages.
return mprotect(mem_block, mem_size, PROT_NONE) == 0;
}
// Invalidate icache for arm64.
// `start` is inclusive and `end` is exclusive.
void
rb_zjit_icache_invalidate(void *start, void *end)
{
// Clear/invalidate the instruction cache. Compiles to nothing on x86_64
// but required on ARM before running freshly written code.
// On Darwin it's the same as calling sys_icache_invalidate().
#ifdef __GNUC__
__builtin___clear_cache(start, end);
#elif defined(__aarch64__)
#error No instruction cache clear available with this compiler on Aarch64!
#endif
}
unsigned int
rb_vm_ci_argc(const struct rb_callinfo *ci)
{
return vm_ci_argc(ci);
}
ID
rb_vm_ci_mid(const struct rb_callinfo *ci)
{
return vm_ci_mid(ci);
}
unsigned int
rb_vm_ci_flag(const struct rb_callinfo *ci)
{
return vm_ci_flag(ci);
}
const struct rb_callinfo_kwarg *
rb_vm_ci_kwarg(const struct rb_callinfo *ci)
{
return vm_ci_kwarg(ci);
}
rb_method_visibility_t
rb_METHOD_ENTRY_VISI(const rb_callable_method_entry_t *me)
{
return METHOD_ENTRY_VISI(me);
}
VALUE
rb_yarv_class_of(VALUE obj)
{
return rb_class_of(obj);
}
// Acquire the VM lock and then signal all other Ruby threads (ractors) to
// contend for the VM lock, putting them to sleep. ZJIT uses this to evict
// threads running inside generated code so among other things, it can
// safely change memory protection of regions housing generated code.
void
rb_zjit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line)
{
rb_vm_lock_enter(recursive_lock_level, file, line);
rb_vm_barrier();
}
VALUE
rb_RCLASS_ORIGIN(VALUE c)
{
return RCLASS_ORIGIN(c);
}
// Convert a given ISEQ's instructions to zjit_* instructions
void
rb_zjit_profile_iseq(const rb_iseq_t *iseq)
{
// This table encodes an opcode into the instruction's address
const void *const *insn_table = rb_vm_get_insns_address_table();
unsigned int insn_idx = 0;
while (insn_idx < iseq->body->iseq_size) {
int insn = rb_vm_insn_decode(iseq->body->iseq_encoded[insn_idx]);
int zjit_insn = vm_insn_to_zjit_insn(insn);
if (insn != zjit_insn) {
iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[zjit_insn];
}
insn_idx += insn_len(insn);
}
}
// Get profiling information for ISEQ
void *
rb_iseq_get_zjit_payload(const rb_iseq_t *iseq)
{
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
if (iseq->body) {
return iseq->body->zjit_payload;
}
else {
// Body is NULL when constructing the iseq.
return NULL;
}
}
// Set profiling information for ISEQ
void
rb_iseq_set_zjit_payload(const rb_iseq_t *iseq, void *payload)
{
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
RUBY_ASSERT_ALWAYS(iseq->body);
RUBY_ASSERT_ALWAYS(NULL == iseq->body->zjit_payload);
iseq->body->zjit_payload = payload;
}
// Primitives used by zjit.rb
VALUE rb_zjit_assert_compiles(rb_execution_context_t *ec, VALUE self);
2025-03-13 12:16:58 -04:00
void
rb_zjit_print_exception(void)
{
VALUE exception = rb_errinfo();
rb_set_errinfo(Qnil);
assert(RTEST(exception));
rb_warn("Ruby error: %"PRIsVALUE"", rb_funcall(exception, rb_intern("full_message"), 0));
}
// Preprocessed zjit.rb generated during build
#include "zjit.rbinc"