ruby/ext/json/vendor/fpconv.c

480 lines
13 KiB
C

// Boost Software License - Version 1.0 - August 17th, 2003
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// The contents of this file is extracted from https://github.com/night-shift/fpconv
// It was slightly modified to append ".0" to plain floats, for use with the https://github.com/ruby/json package.
#include <stdbool.h>
#include <string.h>
#include <stdint.h>
#define npowers 87
#define steppowers 8
#define firstpower -348 /* 10 ^ -348 */
#define expmax -32
#define expmin -60
typedef struct Fp {
uint64_t frac;
int exp;
} Fp;
static const Fp powers_ten[] = {
{ 18054884314459144840U, -1220 }, { 13451937075301367670U, -1193 },
{ 10022474136428063862U, -1166 }, { 14934650266808366570U, -1140 },
{ 11127181549972568877U, -1113 }, { 16580792590934885855U, -1087 },
{ 12353653155963782858U, -1060 }, { 18408377700990114895U, -1034 },
{ 13715310171984221708U, -1007 }, { 10218702384817765436U, -980 },
{ 15227053142812498563U, -954 }, { 11345038669416679861U, -927 },
{ 16905424996341287883U, -901 }, { 12595523146049147757U, -874 },
{ 9384396036005875287U, -847 }, { 13983839803942852151U, -821 },
{ 10418772551374772303U, -794 }, { 15525180923007089351U, -768 },
{ 11567161174868858868U, -741 }, { 17236413322193710309U, -715 },
{ 12842128665889583758U, -688 }, { 9568131466127621947U, -661 },
{ 14257626930069360058U, -635 }, { 10622759856335341974U, -608 },
{ 15829145694278690180U, -582 }, { 11793632577567316726U, -555 },
{ 17573882009934360870U, -529 }, { 13093562431584567480U, -502 },
{ 9755464219737475723U, -475 }, { 14536774485912137811U, -449 },
{ 10830740992659433045U, -422 }, { 16139061738043178685U, -396 },
{ 12024538023802026127U, -369 }, { 17917957937422433684U, -343 },
{ 13349918974505688015U, -316 }, { 9946464728195732843U, -289 },
{ 14821387422376473014U, -263 }, { 11042794154864902060U, -236 },
{ 16455045573212060422U, -210 }, { 12259964326927110867U, -183 },
{ 18268770466636286478U, -157 }, { 13611294676837538539U, -130 },
{ 10141204801825835212U, -103 }, { 15111572745182864684U, -77 },
{ 11258999068426240000U, -50 }, { 16777216000000000000U, -24 },
{ 12500000000000000000U, 3 }, { 9313225746154785156U, 30 },
{ 13877787807814456755U, 56 }, { 10339757656912845936U, 83 },
{ 15407439555097886824U, 109 }, { 11479437019748901445U, 136 },
{ 17105694144590052135U, 162 }, { 12744735289059618216U, 189 },
{ 9495567745759798747U, 216 }, { 14149498560666738074U, 242 },
{ 10542197943230523224U, 269 }, { 15709099088952724970U, 295 },
{ 11704190886730495818U, 322 }, { 17440603504673385349U, 348 },
{ 12994262207056124023U, 375 }, { 9681479787123295682U, 402 },
{ 14426529090290212157U, 428 }, { 10748601772107342003U, 455 },
{ 16016664761464807395U, 481 }, { 11933345169920330789U, 508 },
{ 17782069995880619868U, 534 }, { 13248674568444952270U, 561 },
{ 9871031767461413346U, 588 }, { 14708983551653345445U, 614 },
{ 10959046745042015199U, 641 }, { 16330252207878254650U, 667 },
{ 12166986024289022870U, 694 }, { 18130221999122236476U, 720 },
{ 13508068024458167312U, 747 }, { 10064294952495520794U, 774 },
{ 14996968138956309548U, 800 }, { 11173611982879273257U, 827 },
{ 16649979327439178909U, 853 }, { 12405201291620119593U, 880 },
{ 9242595204427927429U, 907 }, { 13772540099066387757U, 933 },
{ 10261342003245940623U, 960 }, { 15290591125556738113U, 986 },
{ 11392378155556871081U, 1013 }, { 16975966327722178521U, 1039 },
{ 12648080533535911531U, 1066 }
};
static Fp find_cachedpow10(int exp, int* k)
{
const double one_log_ten = 0.30102999566398114;
int approx = (int)(-(exp + npowers) * one_log_ten);
int idx = (approx - firstpower) / steppowers;
while(1) {
int current = exp + powers_ten[idx].exp + 64;
if(current < expmin) {
idx++;
continue;
}
if(current > expmax) {
idx--;
continue;
}
*k = (firstpower + idx * steppowers);
return powers_ten[idx];
}
}
#define fracmask 0x000FFFFFFFFFFFFFU
#define expmask 0x7FF0000000000000U
#define hiddenbit 0x0010000000000000U
#define signmask 0x8000000000000000U
#define expbias (1023 + 52)
#define absv(n) ((n) < 0 ? -(n) : (n))
#define minv(a, b) ((a) < (b) ? (a) : (b))
static const uint64_t tens[] = {
10000000000000000000U, 1000000000000000000U, 100000000000000000U,
10000000000000000U, 1000000000000000U, 100000000000000U,
10000000000000U, 1000000000000U, 100000000000U,
10000000000U, 1000000000U, 100000000U,
10000000U, 1000000U, 100000U,
10000U, 1000U, 100U,
10U, 1U
};
static inline uint64_t get_dbits(double d)
{
union {
double dbl;
uint64_t i;
} dbl_bits = { d };
return dbl_bits.i;
}
static Fp build_fp(double d)
{
uint64_t bits = get_dbits(d);
Fp fp;
fp.frac = bits & fracmask;
fp.exp = (bits & expmask) >> 52;
if(fp.exp) {
fp.frac += hiddenbit;
fp.exp -= expbias;
} else {
fp.exp = -expbias + 1;
}
return fp;
}
static void normalize(Fp* fp)
{
while ((fp->frac & hiddenbit) == 0) {
fp->frac <<= 1;
fp->exp--;
}
int shift = 64 - 52 - 1;
fp->frac <<= shift;
fp->exp -= shift;
}
static void get_normalized_boundaries(Fp* fp, Fp* lower, Fp* upper)
{
upper->frac = (fp->frac << 1) + 1;
upper->exp = fp->exp - 1;
while ((upper->frac & (hiddenbit << 1)) == 0) {
upper->frac <<= 1;
upper->exp--;
}
int u_shift = 64 - 52 - 2;
upper->frac <<= u_shift;
upper->exp = upper->exp - u_shift;
int l_shift = fp->frac == hiddenbit ? 2 : 1;
lower->frac = (fp->frac << l_shift) - 1;
lower->exp = fp->exp - l_shift;
lower->frac <<= lower->exp - upper->exp;
lower->exp = upper->exp;
}
static Fp multiply(Fp* a, Fp* b)
{
const uint64_t lomask = 0x00000000FFFFFFFF;
uint64_t ah_bl = (a->frac >> 32) * (b->frac & lomask);
uint64_t al_bh = (a->frac & lomask) * (b->frac >> 32);
uint64_t al_bl = (a->frac & lomask) * (b->frac & lomask);
uint64_t ah_bh = (a->frac >> 32) * (b->frac >> 32);
uint64_t tmp = (ah_bl & lomask) + (al_bh & lomask) + (al_bl >> 32);
/* round up */
tmp += 1U << 31;
Fp fp = {
ah_bh + (ah_bl >> 32) + (al_bh >> 32) + (tmp >> 32),
a->exp + b->exp + 64
};
return fp;
}
static void round_digit(char* digits, int ndigits, uint64_t delta, uint64_t rem, uint64_t kappa, uint64_t frac)
{
while (rem < frac && delta - rem >= kappa &&
(rem + kappa < frac || frac - rem > rem + kappa - frac)) {
digits[ndigits - 1]--;
rem += kappa;
}
}
static int generate_digits(Fp* fp, Fp* upper, Fp* lower, char* digits, int* K)
{
uint64_t wfrac = upper->frac - fp->frac;
uint64_t delta = upper->frac - lower->frac;
Fp one;
one.frac = 1ULL << -upper->exp;
one.exp = upper->exp;
uint64_t part1 = upper->frac >> -one.exp;
uint64_t part2 = upper->frac & (one.frac - 1);
int idx = 0, kappa = 10;
const uint64_t* divp;
/* 1000000000 */
for(divp = tens + 10; kappa > 0; divp++) {
uint64_t div = *divp;
unsigned digit = (unsigned) (part1 / div);
if (digit || idx) {
digits[idx++] = digit + '0';
}
part1 -= digit * div;
kappa--;
uint64_t tmp = (part1 <<-one.exp) + part2;
if (tmp <= delta) {
*K += kappa;
round_digit(digits, idx, delta, tmp, div << -one.exp, wfrac);
return idx;
}
}
/* 10 */
const uint64_t* unit = tens + 18;
while(true) {
part2 *= 10;
delta *= 10;
kappa--;
unsigned digit = (unsigned) (part2 >> -one.exp);
if (digit || idx) {
digits[idx++] = digit + '0';
}
part2 &= one.frac - 1;
if (part2 < delta) {
*K += kappa;
round_digit(digits, idx, delta, part2, one.frac, wfrac * *unit);
return idx;
}
unit--;
}
}
static int grisu2(double d, char* digits, int* K)
{
Fp w = build_fp(d);
Fp lower, upper;
get_normalized_boundaries(&w, &lower, &upper);
normalize(&w);
int k;
Fp cp = find_cachedpow10(upper.exp, &k);
w = multiply(&w, &cp);
upper = multiply(&upper, &cp);
lower = multiply(&lower, &cp);
lower.frac++;
upper.frac--;
*K = -k;
return generate_digits(&w, &upper, &lower, digits, K);
}
static int emit_digits(char* digits, int ndigits, char* dest, int K, bool neg)
{
int exp = absv(K + ndigits - 1);
int max_trailing_zeros = 7;
if(neg) {
max_trailing_zeros -= 1;
}
/* write plain integer */
if(K >= 0 && (exp < (ndigits + max_trailing_zeros))) {
memcpy(dest, digits, ndigits);
memset(dest + ndigits, '0', K);
/* add a .0 to mark this as a float. */
dest[ndigits + K] = '.';
dest[ndigits + K + 1] = '0';
return ndigits + K + 2;
}
/* write decimal w/o scientific notation */
if(K < 0 && (K > -7 || exp < 10)) {
int offset = ndigits - absv(K);
/* fp < 1.0 -> write leading zero */
if(offset <= 0) {
offset = -offset;
dest[0] = '0';
dest[1] = '.';
memset(dest + 2, '0', offset);
memcpy(dest + offset + 2, digits, ndigits);
return ndigits + 2 + offset;
/* fp > 1.0 */
} else {
memcpy(dest, digits, offset);
dest[offset] = '.';
memcpy(dest + offset + 1, digits + offset, ndigits - offset);
return ndigits + 1;
}
}
/* write decimal w/ scientific notation */
ndigits = minv(ndigits, 18 - neg);
int idx = 0;
dest[idx++] = digits[0];
if(ndigits > 1) {
dest[idx++] = '.';
memcpy(dest + idx, digits + 1, ndigits - 1);
idx += ndigits - 1;
}
dest[idx++] = 'e';
char sign = K + ndigits - 1 < 0 ? '-' : '+';
dest[idx++] = sign;
int cent = 0;
if(exp > 99) {
cent = exp / 100;
dest[idx++] = cent + '0';
exp -= cent * 100;
}
if(exp > 9) {
int dec = exp / 10;
dest[idx++] = dec + '0';
exp -= dec * 10;
} else if(cent) {
dest[idx++] = '0';
}
dest[idx++] = exp % 10 + '0';
return idx;
}
static int filter_special(double fp, char* dest)
{
if(fp == 0.0) {
dest[0] = '0';
dest[1] = '.';
dest[2] = '0';
return 3;
}
uint64_t bits = get_dbits(fp);
bool nan = (bits & expmask) == expmask;
if(!nan) {
return 0;
}
if(bits & fracmask) {
dest[0] = 'n'; dest[1] = 'a'; dest[2] = 'n';
} else {
dest[0] = 'i'; dest[1] = 'n'; dest[2] = 'f';
}
return 3;
}
/* Fast and accurate double to string conversion based on Florian Loitsch's
* Grisu-algorithm[1].
*
* Input:
* fp -> the double to convert, dest -> destination buffer.
* The generated string will never be longer than 28 characters.
* Make sure to pass a pointer to at least 28 bytes of memory.
* The emitted string will not be null terminated.
*
* Output:
* The number of written characters.
*
* Exemplary usage:
*
* void print(double d)
* {
* char buf[28 + 1] // plus null terminator
* int str_len = fpconv_dtoa(d, buf);
*
* buf[str_len] = '\0';
* printf("%s", buf);
* }
*
*/
static int fpconv_dtoa(double d, char dest[28])
{
char digits[18];
int str_len = 0;
bool neg = false;
if(get_dbits(d) & signmask) {
dest[0] = '-';
str_len++;
neg = true;
}
int spec = filter_special(d, dest + str_len);
if(spec) {
return str_len + spec;
}
int K = 0;
int ndigits = grisu2(d, digits, &K);
str_len += emit_digits(digits, ndigits, dest + str_len, K, neg);
return str_len;
}