Fix: https://github.com/ruby/json/issues/807 Since https://github.com/ruby/json/pull/800, `fpconv_dtoa` can actually generate up to 28 chars. https://github.com/ruby/json/commit/d73ae93d3c
480 lines
13 KiB
C
480 lines
13 KiB
C
// Boost Software License - Version 1.0 - August 17th, 2003
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person or organization
|
|
// obtaining a copy of the software and accompanying documentation covered by
|
|
// this license (the "Software") to use, reproduce, display, distribute,
|
|
// execute, and transmit the Software, and to prepare derivative works of the
|
|
// Software, and to permit third-parties to whom the Software is furnished to
|
|
// do so, all subject to the following:
|
|
//
|
|
// The copyright notices in the Software and this entire statement, including
|
|
// the above license grant, this restriction and the following disclaimer,
|
|
// must be included in all copies of the Software, in whole or in part, and
|
|
// all derivative works of the Software, unless such copies or derivative
|
|
// works are solely in the form of machine-executable object code generated by
|
|
// a source language processor.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
// The contents of this file is extracted from https://github.com/night-shift/fpconv
|
|
// It was slightly modified to append ".0" to plain floats, for use with the https://github.com/ruby/json package.
|
|
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#define npowers 87
|
|
#define steppowers 8
|
|
#define firstpower -348 /* 10 ^ -348 */
|
|
|
|
#define expmax -32
|
|
#define expmin -60
|
|
|
|
typedef struct Fp {
|
|
uint64_t frac;
|
|
int exp;
|
|
} Fp;
|
|
|
|
static const Fp powers_ten[] = {
|
|
{ 18054884314459144840U, -1220 }, { 13451937075301367670U, -1193 },
|
|
{ 10022474136428063862U, -1166 }, { 14934650266808366570U, -1140 },
|
|
{ 11127181549972568877U, -1113 }, { 16580792590934885855U, -1087 },
|
|
{ 12353653155963782858U, -1060 }, { 18408377700990114895U, -1034 },
|
|
{ 13715310171984221708U, -1007 }, { 10218702384817765436U, -980 },
|
|
{ 15227053142812498563U, -954 }, { 11345038669416679861U, -927 },
|
|
{ 16905424996341287883U, -901 }, { 12595523146049147757U, -874 },
|
|
{ 9384396036005875287U, -847 }, { 13983839803942852151U, -821 },
|
|
{ 10418772551374772303U, -794 }, { 15525180923007089351U, -768 },
|
|
{ 11567161174868858868U, -741 }, { 17236413322193710309U, -715 },
|
|
{ 12842128665889583758U, -688 }, { 9568131466127621947U, -661 },
|
|
{ 14257626930069360058U, -635 }, { 10622759856335341974U, -608 },
|
|
{ 15829145694278690180U, -582 }, { 11793632577567316726U, -555 },
|
|
{ 17573882009934360870U, -529 }, { 13093562431584567480U, -502 },
|
|
{ 9755464219737475723U, -475 }, { 14536774485912137811U, -449 },
|
|
{ 10830740992659433045U, -422 }, { 16139061738043178685U, -396 },
|
|
{ 12024538023802026127U, -369 }, { 17917957937422433684U, -343 },
|
|
{ 13349918974505688015U, -316 }, { 9946464728195732843U, -289 },
|
|
{ 14821387422376473014U, -263 }, { 11042794154864902060U, -236 },
|
|
{ 16455045573212060422U, -210 }, { 12259964326927110867U, -183 },
|
|
{ 18268770466636286478U, -157 }, { 13611294676837538539U, -130 },
|
|
{ 10141204801825835212U, -103 }, { 15111572745182864684U, -77 },
|
|
{ 11258999068426240000U, -50 }, { 16777216000000000000U, -24 },
|
|
{ 12500000000000000000U, 3 }, { 9313225746154785156U, 30 },
|
|
{ 13877787807814456755U, 56 }, { 10339757656912845936U, 83 },
|
|
{ 15407439555097886824U, 109 }, { 11479437019748901445U, 136 },
|
|
{ 17105694144590052135U, 162 }, { 12744735289059618216U, 189 },
|
|
{ 9495567745759798747U, 216 }, { 14149498560666738074U, 242 },
|
|
{ 10542197943230523224U, 269 }, { 15709099088952724970U, 295 },
|
|
{ 11704190886730495818U, 322 }, { 17440603504673385349U, 348 },
|
|
{ 12994262207056124023U, 375 }, { 9681479787123295682U, 402 },
|
|
{ 14426529090290212157U, 428 }, { 10748601772107342003U, 455 },
|
|
{ 16016664761464807395U, 481 }, { 11933345169920330789U, 508 },
|
|
{ 17782069995880619868U, 534 }, { 13248674568444952270U, 561 },
|
|
{ 9871031767461413346U, 588 }, { 14708983551653345445U, 614 },
|
|
{ 10959046745042015199U, 641 }, { 16330252207878254650U, 667 },
|
|
{ 12166986024289022870U, 694 }, { 18130221999122236476U, 720 },
|
|
{ 13508068024458167312U, 747 }, { 10064294952495520794U, 774 },
|
|
{ 14996968138956309548U, 800 }, { 11173611982879273257U, 827 },
|
|
{ 16649979327439178909U, 853 }, { 12405201291620119593U, 880 },
|
|
{ 9242595204427927429U, 907 }, { 13772540099066387757U, 933 },
|
|
{ 10261342003245940623U, 960 }, { 15290591125556738113U, 986 },
|
|
{ 11392378155556871081U, 1013 }, { 16975966327722178521U, 1039 },
|
|
{ 12648080533535911531U, 1066 }
|
|
};
|
|
|
|
static Fp find_cachedpow10(int exp, int* k)
|
|
{
|
|
const double one_log_ten = 0.30102999566398114;
|
|
|
|
int approx = (int)(-(exp + npowers) * one_log_ten);
|
|
int idx = (approx - firstpower) / steppowers;
|
|
|
|
while(1) {
|
|
int current = exp + powers_ten[idx].exp + 64;
|
|
|
|
if(current < expmin) {
|
|
idx++;
|
|
continue;
|
|
}
|
|
|
|
if(current > expmax) {
|
|
idx--;
|
|
continue;
|
|
}
|
|
|
|
*k = (firstpower + idx * steppowers);
|
|
|
|
return powers_ten[idx];
|
|
}
|
|
}
|
|
|
|
#define fracmask 0x000FFFFFFFFFFFFFU
|
|
#define expmask 0x7FF0000000000000U
|
|
#define hiddenbit 0x0010000000000000U
|
|
#define signmask 0x8000000000000000U
|
|
#define expbias (1023 + 52)
|
|
|
|
#define absv(n) ((n) < 0 ? -(n) : (n))
|
|
#define minv(a, b) ((a) < (b) ? (a) : (b))
|
|
|
|
static const uint64_t tens[] = {
|
|
10000000000000000000U, 1000000000000000000U, 100000000000000000U,
|
|
10000000000000000U, 1000000000000000U, 100000000000000U,
|
|
10000000000000U, 1000000000000U, 100000000000U,
|
|
10000000000U, 1000000000U, 100000000U,
|
|
10000000U, 1000000U, 100000U,
|
|
10000U, 1000U, 100U,
|
|
10U, 1U
|
|
};
|
|
|
|
static inline uint64_t get_dbits(double d)
|
|
{
|
|
union {
|
|
double dbl;
|
|
uint64_t i;
|
|
} dbl_bits = { d };
|
|
|
|
return dbl_bits.i;
|
|
}
|
|
|
|
static Fp build_fp(double d)
|
|
{
|
|
uint64_t bits = get_dbits(d);
|
|
|
|
Fp fp;
|
|
fp.frac = bits & fracmask;
|
|
fp.exp = (bits & expmask) >> 52;
|
|
|
|
if(fp.exp) {
|
|
fp.frac += hiddenbit;
|
|
fp.exp -= expbias;
|
|
|
|
} else {
|
|
fp.exp = -expbias + 1;
|
|
}
|
|
|
|
return fp;
|
|
}
|
|
|
|
static void normalize(Fp* fp)
|
|
{
|
|
while ((fp->frac & hiddenbit) == 0) {
|
|
fp->frac <<= 1;
|
|
fp->exp--;
|
|
}
|
|
|
|
int shift = 64 - 52 - 1;
|
|
fp->frac <<= shift;
|
|
fp->exp -= shift;
|
|
}
|
|
|
|
static void get_normalized_boundaries(Fp* fp, Fp* lower, Fp* upper)
|
|
{
|
|
upper->frac = (fp->frac << 1) + 1;
|
|
upper->exp = fp->exp - 1;
|
|
|
|
while ((upper->frac & (hiddenbit << 1)) == 0) {
|
|
upper->frac <<= 1;
|
|
upper->exp--;
|
|
}
|
|
|
|
int u_shift = 64 - 52 - 2;
|
|
|
|
upper->frac <<= u_shift;
|
|
upper->exp = upper->exp - u_shift;
|
|
|
|
|
|
int l_shift = fp->frac == hiddenbit ? 2 : 1;
|
|
|
|
lower->frac = (fp->frac << l_shift) - 1;
|
|
lower->exp = fp->exp - l_shift;
|
|
|
|
|
|
lower->frac <<= lower->exp - upper->exp;
|
|
lower->exp = upper->exp;
|
|
}
|
|
|
|
static Fp multiply(Fp* a, Fp* b)
|
|
{
|
|
const uint64_t lomask = 0x00000000FFFFFFFF;
|
|
|
|
uint64_t ah_bl = (a->frac >> 32) * (b->frac & lomask);
|
|
uint64_t al_bh = (a->frac & lomask) * (b->frac >> 32);
|
|
uint64_t al_bl = (a->frac & lomask) * (b->frac & lomask);
|
|
uint64_t ah_bh = (a->frac >> 32) * (b->frac >> 32);
|
|
|
|
uint64_t tmp = (ah_bl & lomask) + (al_bh & lomask) + (al_bl >> 32);
|
|
/* round up */
|
|
tmp += 1U << 31;
|
|
|
|
Fp fp = {
|
|
ah_bh + (ah_bl >> 32) + (al_bh >> 32) + (tmp >> 32),
|
|
a->exp + b->exp + 64
|
|
};
|
|
|
|
return fp;
|
|
}
|
|
|
|
static void round_digit(char* digits, int ndigits, uint64_t delta, uint64_t rem, uint64_t kappa, uint64_t frac)
|
|
{
|
|
while (rem < frac && delta - rem >= kappa &&
|
|
(rem + kappa < frac || frac - rem > rem + kappa - frac)) {
|
|
|
|
digits[ndigits - 1]--;
|
|
rem += kappa;
|
|
}
|
|
}
|
|
|
|
static int generate_digits(Fp* fp, Fp* upper, Fp* lower, char* digits, int* K)
|
|
{
|
|
uint64_t wfrac = upper->frac - fp->frac;
|
|
uint64_t delta = upper->frac - lower->frac;
|
|
|
|
Fp one;
|
|
one.frac = 1ULL << -upper->exp;
|
|
one.exp = upper->exp;
|
|
|
|
uint64_t part1 = upper->frac >> -one.exp;
|
|
uint64_t part2 = upper->frac & (one.frac - 1);
|
|
|
|
int idx = 0, kappa = 10;
|
|
const uint64_t* divp;
|
|
/* 1000000000 */
|
|
for(divp = tens + 10; kappa > 0; divp++) {
|
|
|
|
uint64_t div = *divp;
|
|
unsigned digit = (unsigned) (part1 / div);
|
|
|
|
if (digit || idx) {
|
|
digits[idx++] = digit + '0';
|
|
}
|
|
|
|
part1 -= digit * div;
|
|
kappa--;
|
|
|
|
uint64_t tmp = (part1 <<-one.exp) + part2;
|
|
if (tmp <= delta) {
|
|
*K += kappa;
|
|
round_digit(digits, idx, delta, tmp, div << -one.exp, wfrac);
|
|
|
|
return idx;
|
|
}
|
|
}
|
|
|
|
/* 10 */
|
|
const uint64_t* unit = tens + 18;
|
|
|
|
while(true) {
|
|
part2 *= 10;
|
|
delta *= 10;
|
|
kappa--;
|
|
|
|
unsigned digit = (unsigned) (part2 >> -one.exp);
|
|
if (digit || idx) {
|
|
digits[idx++] = digit + '0';
|
|
}
|
|
|
|
part2 &= one.frac - 1;
|
|
if (part2 < delta) {
|
|
*K += kappa;
|
|
round_digit(digits, idx, delta, part2, one.frac, wfrac * *unit);
|
|
|
|
return idx;
|
|
}
|
|
|
|
unit--;
|
|
}
|
|
}
|
|
|
|
static int grisu2(double d, char* digits, int* K)
|
|
{
|
|
Fp w = build_fp(d);
|
|
|
|
Fp lower, upper;
|
|
get_normalized_boundaries(&w, &lower, &upper);
|
|
|
|
normalize(&w);
|
|
|
|
int k;
|
|
Fp cp = find_cachedpow10(upper.exp, &k);
|
|
|
|
w = multiply(&w, &cp);
|
|
upper = multiply(&upper, &cp);
|
|
lower = multiply(&lower, &cp);
|
|
|
|
lower.frac++;
|
|
upper.frac--;
|
|
|
|
*K = -k;
|
|
|
|
return generate_digits(&w, &upper, &lower, digits, K);
|
|
}
|
|
|
|
static int emit_digits(char* digits, int ndigits, char* dest, int K, bool neg)
|
|
{
|
|
int exp = absv(K + ndigits - 1);
|
|
|
|
int max_trailing_zeros = 7;
|
|
|
|
if(neg) {
|
|
max_trailing_zeros -= 1;
|
|
}
|
|
|
|
/* write plain integer */
|
|
if(K >= 0 && (exp < (ndigits + max_trailing_zeros))) {
|
|
|
|
memcpy(dest, digits, ndigits);
|
|
memset(dest + ndigits, '0', K);
|
|
|
|
/* add a .0 to mark this as a float. */
|
|
dest[ndigits + K] = '.';
|
|
dest[ndigits + K + 1] = '0';
|
|
|
|
return ndigits + K + 2;
|
|
}
|
|
|
|
/* write decimal w/o scientific notation */
|
|
if(K < 0 && (K > -7 || exp < 10)) {
|
|
int offset = ndigits - absv(K);
|
|
/* fp < 1.0 -> write leading zero */
|
|
if(offset <= 0) {
|
|
offset = -offset;
|
|
dest[0] = '0';
|
|
dest[1] = '.';
|
|
memset(dest + 2, '0', offset);
|
|
memcpy(dest + offset + 2, digits, ndigits);
|
|
|
|
return ndigits + 2 + offset;
|
|
|
|
/* fp > 1.0 */
|
|
} else {
|
|
memcpy(dest, digits, offset);
|
|
dest[offset] = '.';
|
|
memcpy(dest + offset + 1, digits + offset, ndigits - offset);
|
|
|
|
return ndigits + 1;
|
|
}
|
|
}
|
|
|
|
/* write decimal w/ scientific notation */
|
|
ndigits = minv(ndigits, 18 - neg);
|
|
|
|
int idx = 0;
|
|
dest[idx++] = digits[0];
|
|
|
|
if(ndigits > 1) {
|
|
dest[idx++] = '.';
|
|
memcpy(dest + idx, digits + 1, ndigits - 1);
|
|
idx += ndigits - 1;
|
|
}
|
|
|
|
dest[idx++] = 'e';
|
|
|
|
char sign = K + ndigits - 1 < 0 ? '-' : '+';
|
|
dest[idx++] = sign;
|
|
|
|
int cent = 0;
|
|
|
|
if(exp > 99) {
|
|
cent = exp / 100;
|
|
dest[idx++] = cent + '0';
|
|
exp -= cent * 100;
|
|
}
|
|
if(exp > 9) {
|
|
int dec = exp / 10;
|
|
dest[idx++] = dec + '0';
|
|
exp -= dec * 10;
|
|
|
|
} else if(cent) {
|
|
dest[idx++] = '0';
|
|
}
|
|
|
|
dest[idx++] = exp % 10 + '0';
|
|
|
|
return idx;
|
|
}
|
|
|
|
static int filter_special(double fp, char* dest)
|
|
{
|
|
if(fp == 0.0) {
|
|
dest[0] = '0';
|
|
dest[1] = '.';
|
|
dest[2] = '0';
|
|
return 3;
|
|
}
|
|
|
|
uint64_t bits = get_dbits(fp);
|
|
|
|
bool nan = (bits & expmask) == expmask;
|
|
|
|
if(!nan) {
|
|
return 0;
|
|
}
|
|
|
|
if(bits & fracmask) {
|
|
dest[0] = 'n'; dest[1] = 'a'; dest[2] = 'n';
|
|
|
|
} else {
|
|
dest[0] = 'i'; dest[1] = 'n'; dest[2] = 'f';
|
|
}
|
|
|
|
return 3;
|
|
}
|
|
|
|
/* Fast and accurate double to string conversion based on Florian Loitsch's
|
|
* Grisu-algorithm[1].
|
|
*
|
|
* Input:
|
|
* fp -> the double to convert, dest -> destination buffer.
|
|
* The generated string will never be longer than 28 characters.
|
|
* Make sure to pass a pointer to at least 28 bytes of memory.
|
|
* The emitted string will not be null terminated.
|
|
*
|
|
* Output:
|
|
* The number of written characters.
|
|
*
|
|
* Exemplary usage:
|
|
*
|
|
* void print(double d)
|
|
* {
|
|
* char buf[28 + 1] // plus null terminator
|
|
* int str_len = fpconv_dtoa(d, buf);
|
|
*
|
|
* buf[str_len] = '\0';
|
|
* printf("%s", buf);
|
|
* }
|
|
*
|
|
*/
|
|
static int fpconv_dtoa(double d, char dest[28])
|
|
{
|
|
char digits[18];
|
|
|
|
int str_len = 0;
|
|
bool neg = false;
|
|
|
|
if(get_dbits(d) & signmask) {
|
|
dest[0] = '-';
|
|
str_len++;
|
|
neg = true;
|
|
}
|
|
|
|
int spec = filter_special(d, dest + str_len);
|
|
|
|
if(spec) {
|
|
return str_len + spec;
|
|
}
|
|
|
|
int K = 0;
|
|
int ndigits = grisu2(d, digits, &K);
|
|
|
|
str_len += emit_digits(digits, ndigits, dest + str_len, K, neg);
|
|
|
|
return str_len;
|
|
}
|