ruby/zjit.c
Jean Boussier 675f33508c Get rid of TOO_COMPLEX shape type
Instead it's now a `shape_id` flag.

This allows to check if an object is complex without having
to chase the `rb_shape_t` pointer.
2025-06-04 13:13:50 +02:00

341 lines
10 KiB
C

#include "internal.h"
#include "internal/sanitizers.h"
#include "internal/string.h"
#include "internal/hash.h"
#include "internal/variable.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "internal/fixnum.h"
#include "internal/numeric.h"
#include "internal/gc.h"
#include "internal/vm.h"
#include "yjit.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "insns.inc"
#include "insns_info.inc"
#include "vm_sync.h"
#include "vm_insnhelper.h"
#include "probes.h"
#include "probes_helper.h"
#include "iseq.h"
#include "ruby/debug.h"
#include "internal/cont.h"
#include "zjit.h"
// For mmapp(), sysconf()
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
#include <errno.h>
uint32_t
rb_zjit_get_page_size(void)
{
#if defined(_SC_PAGESIZE)
long page_size = sysconf(_SC_PAGESIZE);
if (page_size <= 0) rb_bug("zjit: failed to get page size");
// 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected.
// Though our design sort of assume we have fine grained control over memory protection
// which require small page sizes.
if (page_size > 0x40000000l) rb_bug("zjit page size too large");
return (uint32_t)page_size;
#else
#error "ZJIT supports POSIX only for now"
#endif
}
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
// Align the current write position to a multiple of bytes
static uint8_t *
align_ptr(uint8_t *ptr, uint32_t multiple)
{
// Compute the pointer modulo the given alignment boundary
uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;
// If the pointer is already aligned, stop
if (rem == 0)
return ptr;
// Pad the pointer by the necessary amount to align it
uint32_t pad = multiple - rem;
return ptr + pad;
}
#endif
// Address space reservation. Memory pages are mapped on an as needed basis.
// See the Rust mm module for details.
uint8_t *
rb_zjit_reserve_addr_space(uint32_t mem_size)
{
#ifndef _WIN32
uint8_t *mem_block;
// On Linux
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE);
uint8_t *const cfunc_sample_addr = (void *)(uintptr_t)&rb_zjit_reserve_addr_space;
uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX;
// Align the requested address to page size
uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size);
// Probe for addresses close to this function using MAP_FIXED_NOREPLACE
// to improve odds of being in range for 32-bit relative call instructions.
do {
mem_block = mmap(
req_addr,
mem_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
-1,
0
);
// If we succeeded, stop
if (mem_block != MAP_FAILED) {
ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space");
break;
}
// -4MiB. Downwards to probe away from the heap. (On x86/A64 Linux
// main_code_addr < heap_addr, and in case we are in a shared
// library mapped higher than the heap, downwards is still better
// since it's towards the end of the heap rather than the stack.)
req_addr -= 4 * 1024 * 1024;
} while (req_addr < probe_region_end);
// On MacOS and other platforms
#else
// Try to map a chunk of memory as executable
mem_block = mmap(
(void *)rb_zjit_reserve_addr_space,
mem_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0
);
#endif
// Fallback
if (mem_block == MAP_FAILED) {
// Try again without the address hint (e.g., valgrind)
mem_block = mmap(
NULL,
mem_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0
);
if (mem_block != MAP_FAILED) {
ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space:fallback");
}
}
// Check that the memory mapping was successful
if (mem_block == MAP_FAILED) {
perror("ruby: zjit: mmap:");
if(errno == ENOMEM) {
// No crash report if it's only insufficient memory
exit(EXIT_FAILURE);
}
rb_bug("mmap failed");
}
return mem_block;
#else
// Windows not supported for now
return NULL;
#endif
}
void rb_zjit_profile_disable(const rb_iseq_t *iseq);
void
rb_zjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec, bool jit_exception)
{
RB_VM_LOCKING() { rb_vm_barrier();
// Convert ZJIT instructions back to bare instructions
rb_zjit_profile_disable(iseq);
// Compile a block version starting at the current instruction
uint8_t *rb_zjit_iseq_gen_entry_point(const rb_iseq_t *iseq, rb_execution_context_t *ec); // defined in Rust
uintptr_t code_ptr = (uintptr_t)rb_zjit_iseq_gen_entry_point(iseq, ec);
// TODO: support jit_exception
iseq->body->jit_entry = (rb_jit_func_t)code_ptr;
}
}
extern VALUE *rb_vm_base_ptr(struct rb_control_frame_struct *cfp);
bool
rb_zjit_multi_ractor_p(void)
{
return rb_multi_ractor_p();
}
bool
rb_zjit_constcache_shareable(const struct iseq_inline_constant_cache_entry *ice)
{
return (ice->flags & IMEMO_CONST_CACHE_SHAREABLE) != 0;
}
// Release the VM lock. The lock level must point to the same integer used to
// acquire the lock.
void
rb_zjit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line)
{
rb_vm_lock_leave(recursive_lock_level, file, line);
}
bool
rb_zjit_mark_writable(void *mem_block, uint32_t mem_size)
{
return mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE) == 0;
}
void
rb_zjit_mark_executable(void *mem_block, uint32_t mem_size)
{
// Do not call mprotect when mem_size is zero. Some platforms may return
// an error for it. https://github.com/Shopify/ruby/issues/450
if (mem_size == 0) {
return;
}
if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) {
rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s",
mem_block, (unsigned long)mem_size, strerror(errno));
}
}
// Free the specified memory block.
bool
rb_zjit_mark_unused(void *mem_block, uint32_t mem_size)
{
// On Linux, you need to use madvise MADV_DONTNEED to free memory.
// We might not need to call this on macOS, but it's not really documented.
// We generally prefer to do the same thing on both to ease testing too.
madvise(mem_block, mem_size, MADV_DONTNEED);
// On macOS, mprotect PROT_NONE seems to reduce RSS.
// We also call this on Linux to avoid executing unused pages.
return mprotect(mem_block, mem_size, PROT_NONE) == 0;
}
// Invalidate icache for arm64.
// `start` is inclusive and `end` is exclusive.
void
rb_zjit_icache_invalidate(void *start, void *end)
{
// Clear/invalidate the instruction cache. Compiles to nothing on x86_64
// but required on ARM before running freshly written code.
// On Darwin it's the same as calling sys_icache_invalidate().
#ifdef __GNUC__
__builtin___clear_cache(start, end);
#elif defined(__aarch64__)
#error No instruction cache clear available with this compiler on Aarch64!
#endif
}
// Acquire the VM lock and then signal all other Ruby threads (ractors) to
// contend for the VM lock, putting them to sleep. ZJIT uses this to evict
// threads running inside generated code so among other things, it can
// safely change memory protection of regions housing generated code.
void
rb_zjit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line)
{
rb_vm_lock_enter(recursive_lock_level, file, line);
rb_vm_barrier();
}
// Convert a given ISEQ's instructions to zjit_* instructions
void
rb_zjit_profile_enable(const rb_iseq_t *iseq)
{
// This table encodes an opcode into the instruction's address
const void *const *insn_table = rb_vm_get_insns_address_table();
unsigned int insn_idx = 0;
while (insn_idx < iseq->body->iseq_size) {
int insn = rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[insn_idx]);
int zjit_insn = vm_bare_insn_to_zjit_insn(insn);
if (insn != zjit_insn) {
iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[zjit_insn];
}
insn_idx += insn_len(insn);
}
}
// Convert a given ISEQ's ZJIT instructions to bare instructions
void
rb_zjit_profile_disable(const rb_iseq_t *iseq)
{
// This table encodes an opcode into the instruction's address
const void *const *insn_table = rb_vm_get_insns_address_table();
unsigned int insn_idx = 0;
while (insn_idx < iseq->body->iseq_size) {
int insn = rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[insn_idx]);
int bare_insn = vm_zjit_insn_to_bare_insn(insn);
if (insn != bare_insn) {
iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[bare_insn];
}
insn_idx += insn_len(insn);
}
}
// Get profiling information for ISEQ
void *
rb_iseq_get_zjit_payload(const rb_iseq_t *iseq)
{
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
if (iseq->body) {
return iseq->body->zjit_payload;
}
else {
// Body is NULL when constructing the iseq.
return NULL;
}
}
// Set profiling information for ISEQ
void
rb_iseq_set_zjit_payload(const rb_iseq_t *iseq, void *payload)
{
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
RUBY_ASSERT_ALWAYS(iseq->body);
RUBY_ASSERT_ALWAYS(NULL == iseq->body->zjit_payload);
iseq->body->zjit_payload = payload;
}
// Primitives used by zjit.rb
VALUE rb_zjit_assert_compiles(rb_execution_context_t *ec, VALUE self);
void
rb_zjit_print_exception(void)
{
VALUE exception = rb_errinfo();
rb_set_errinfo(Qnil);
assert(RTEST(exception));
rb_warn("Ruby error: %"PRIsVALUE"", rb_funcall(exception, rb_intern("full_message"), 0));
}
bool
rb_zjit_shape_obj_too_complex_p(VALUE obj)
{
return rb_shape_obj_too_complex_p(obj);
}
// Preprocessed zjit.rb generated during build
#include "zjit.rbinc"