ruby/shape.c
Jean Boussier 3abdd4241f Turn rb_classext_t.fields into a T_IMEMO/class_fields
This behave almost exactly as a T_OBJECT, the layout is entirely
compatible.

This aims to solve two problems.

First, it solves the problem of namspaced classes having
a single `shape_id`. Now each namespaced classext
has an object that can hold the namespace specific
shape.

Second, it open the door to later make class instance variable
writes atomics, hence be able to read class variables
without locking the VM.
In the future, in multi-ractor mode, we can do the write
on a copy of the `fields_obj` and then atomically swap it.

Considerations:

  - Right now the `RClass` shape_id is always synchronized,
    but with namespace we should likely mark classes that have
    multiple namespace with a specific shape flag.
2025-06-12 07:58:16 +02:00

1600 lines
48 KiB
C

#include "vm_core.h"
#include "vm_sync.h"
#include "shape.h"
#include "symbol.h"
#include "id_table.h"
#include "internal/class.h"
#include "internal/error.h"
#include "internal/gc.h"
#include "internal/object.h"
#include "internal/symbol.h"
#include "internal/variable.h"
#include "variable.h"
#include <stdbool.h>
#ifndef _WIN32
#include <sys/mman.h>
#endif
#ifndef SHAPE_DEBUG
#define SHAPE_DEBUG (VM_CHECK_MODE > 0)
#endif
#define REDBLACK_CACHE_SIZE (SHAPE_BUFFER_SIZE * 32)
/* This depends on that the allocated memory by Ruby's allocator or
* mmap is not located at an odd address. */
#define SINGLE_CHILD_TAG 0x1
#define TAG_SINGLE_CHILD(x) (VALUE)((uintptr_t)(x) | SINGLE_CHILD_TAG)
#define SINGLE_CHILD_MASK (~((uintptr_t)SINGLE_CHILD_TAG))
#define SINGLE_CHILD_P(x) ((uintptr_t)(x) & SINGLE_CHILD_TAG)
#define SINGLE_CHILD(x) (rb_shape_t *)((uintptr_t)(x) & SINGLE_CHILD_MASK)
#define ANCESTOR_CACHE_THRESHOLD 10
#define MAX_SHAPE_ID (SHAPE_BUFFER_SIZE - 1)
#define ANCESTOR_SEARCH_MAX_DEPTH 2
static ID id_frozen;
static ID id_t_object;
ID ruby_internal_object_id; // extern
#define LEAF 0
#define BLACK 0x0
#define RED 0x1
static redblack_node_t *
redblack_left(redblack_node_t *node)
{
if (node->l == LEAF) {
return LEAF;
}
else {
RUBY_ASSERT(node->l < GET_SHAPE_TREE()->cache_size);
redblack_node_t *left = &GET_SHAPE_TREE()->shape_cache[node->l - 1];
return left;
}
}
static redblack_node_t *
redblack_right(redblack_node_t *node)
{
if (node->r == LEAF) {
return LEAF;
}
else {
RUBY_ASSERT(node->r < GET_SHAPE_TREE()->cache_size);
redblack_node_t *right = &GET_SHAPE_TREE()->shape_cache[node->r - 1];
return right;
}
}
static redblack_node_t *
redblack_find(redblack_node_t *tree, ID key)
{
if (tree == LEAF) {
return LEAF;
}
else {
RUBY_ASSERT(redblack_left(tree) == LEAF || redblack_left(tree)->key < tree->key);
RUBY_ASSERT(redblack_right(tree) == LEAF || redblack_right(tree)->key > tree->key);
if (tree->key == key) {
return tree;
}
else {
if (key < tree->key) {
return redblack_find(redblack_left(tree), key);
}
else {
return redblack_find(redblack_right(tree), key);
}
}
}
}
static inline rb_shape_t *
redblack_value(redblack_node_t *node)
{
// Color is stored in the bottom bit of the shape pointer
// Mask away the bit so we get the actual pointer back
return (rb_shape_t *)((uintptr_t)node->value & ~(uintptr_t)1);
}
#ifdef HAVE_MMAP
static inline char
redblack_color(redblack_node_t *node)
{
return node && ((uintptr_t)node->value & RED);
}
static inline bool
redblack_red_p(redblack_node_t *node)
{
return redblack_color(node) == RED;
}
static redblack_id_t
redblack_id_for(redblack_node_t *node)
{
RUBY_ASSERT(node || node == LEAF);
if (node == LEAF) {
return 0;
}
else {
redblack_node_t *redblack_nodes = GET_SHAPE_TREE()->shape_cache;
redblack_id_t id = (redblack_id_t)(node - redblack_nodes);
return id + 1;
}
}
static redblack_node_t *
redblack_new(char color, ID key, rb_shape_t *value, redblack_node_t *left, redblack_node_t *right)
{
if (GET_SHAPE_TREE()->cache_size + 1 >= REDBLACK_CACHE_SIZE) {
// We're out of cache, just quit
return LEAF;
}
RUBY_ASSERT(left == LEAF || left->key < key);
RUBY_ASSERT(right == LEAF || right->key > key);
redblack_node_t *redblack_nodes = GET_SHAPE_TREE()->shape_cache;
redblack_node_t *node = &redblack_nodes[(GET_SHAPE_TREE()->cache_size)++];
node->key = key;
node->value = (rb_shape_t *)((uintptr_t)value | color);
node->l = redblack_id_for(left);
node->r = redblack_id_for(right);
return node;
}
static redblack_node_t *
redblack_balance(char color, ID key, rb_shape_t *value, redblack_node_t *left, redblack_node_t *right)
{
if (color == BLACK) {
ID new_key, new_left_key, new_right_key;
rb_shape_t *new_value, *new_left_value, *new_right_value;
redblack_node_t *new_left_left, *new_left_right, *new_right_left, *new_right_right;
if (redblack_red_p(left) && redblack_red_p(redblack_left(left))) {
new_right_key = key;
new_right_value = value;
new_right_right = right;
new_key = left->key;
new_value = redblack_value(left);
new_right_left = redblack_right(left);
new_left_key = redblack_left(left)->key;
new_left_value = redblack_value(redblack_left(left));
new_left_left = redblack_left(redblack_left(left));
new_left_right = redblack_right(redblack_left(left));
}
else if (redblack_red_p(left) && redblack_red_p(redblack_right(left))) {
new_right_key = key;
new_right_value = value;
new_right_right = right;
new_left_key = left->key;
new_left_value = redblack_value(left);
new_left_left = redblack_left(left);
new_key = redblack_right(left)->key;
new_value = redblack_value(redblack_right(left));
new_left_right = redblack_left(redblack_right(left));
new_right_left = redblack_right(redblack_right(left));
}
else if (redblack_red_p(right) && redblack_red_p(redblack_left(right))) {
new_left_key = key;
new_left_value = value;
new_left_left = left;
new_right_key = right->key;
new_right_value = redblack_value(right);
new_right_right = redblack_right(right);
new_key = redblack_left(right)->key;
new_value = redblack_value(redblack_left(right));
new_left_right = redblack_left(redblack_left(right));
new_right_left = redblack_right(redblack_left(right));
}
else if (redblack_red_p(right) && redblack_red_p(redblack_right(right))) {
new_left_key = key;
new_left_value = value;
new_left_left = left;
new_key = right->key;
new_value = redblack_value(right);
new_left_right = redblack_left(right);
new_right_key = redblack_right(right)->key;
new_right_value = redblack_value(redblack_right(right));
new_right_left = redblack_left(redblack_right(right));
new_right_right = redblack_right(redblack_right(right));
}
else {
return redblack_new(color, key, value, left, right);
}
RUBY_ASSERT(new_left_key < new_key);
RUBY_ASSERT(new_right_key > new_key);
RUBY_ASSERT(new_left_left == LEAF || new_left_left->key < new_left_key);
RUBY_ASSERT(new_left_right == LEAF || new_left_right->key > new_left_key);
RUBY_ASSERT(new_left_right == LEAF || new_left_right->key < new_key);
RUBY_ASSERT(new_right_left == LEAF || new_right_left->key < new_right_key);
RUBY_ASSERT(new_right_left == LEAF || new_right_left->key > new_key);
RUBY_ASSERT(new_right_right == LEAF || new_right_right->key > new_right_key);
return redblack_new(
RED, new_key, new_value,
redblack_new(BLACK, new_left_key, new_left_value, new_left_left, new_left_right),
redblack_new(BLACK, new_right_key, new_right_value, new_right_left, new_right_right));
}
return redblack_new(color, key, value, left, right);
}
static redblack_node_t *
redblack_insert_aux(redblack_node_t *tree, ID key, rb_shape_t *value)
{
if (tree == LEAF) {
return redblack_new(RED, key, value, LEAF, LEAF);
}
else {
redblack_node_t *left, *right;
if (key < tree->key) {
left = redblack_insert_aux(redblack_left(tree), key, value);
RUBY_ASSERT(left != LEAF);
right = redblack_right(tree);
RUBY_ASSERT(right == LEAF || right->key > tree->key);
}
else if (key > tree->key) {
left = redblack_left(tree);
RUBY_ASSERT(left == LEAF || left->key < tree->key);
right = redblack_insert_aux(redblack_right(tree), key, value);
RUBY_ASSERT(right != LEAF);
}
else {
return tree;
}
return redblack_balance(
redblack_color(tree),
tree->key,
redblack_value(tree),
left,
right
);
}
}
static redblack_node_t *
redblack_force_black(redblack_node_t *node)
{
node->value = redblack_value(node);
return node;
}
static redblack_node_t *
redblack_insert(redblack_node_t *tree, ID key, rb_shape_t *value)
{
redblack_node_t *root = redblack_insert_aux(tree, key, value);
if (redblack_red_p(root)) {
return redblack_force_black(root);
}
else {
return root;
}
}
#endif
rb_shape_tree_t *rb_shape_tree_ptr = NULL;
static VALUE shape_tree_obj = Qfalse;
rb_shape_t *
rb_shape_get_root_shape(void)
{
return GET_SHAPE_TREE()->root_shape;
}
static void
shape_tree_mark(void *data)
{
rb_shape_t *cursor = rb_shape_get_root_shape();
rb_shape_t *end = RSHAPE(GET_SHAPE_TREE()->next_shape_id - 1);
while (cursor < end) {
if (cursor->edges && !SINGLE_CHILD_P(cursor->edges)) {
rb_gc_mark_movable(cursor->edges);
}
cursor++;
}
}
static void
shape_tree_compact(void *data)
{
rb_shape_t *cursor = rb_shape_get_root_shape();
rb_shape_t *end = RSHAPE(GET_SHAPE_TREE()->next_shape_id - 1);
while (cursor < end) {
if (cursor->edges && !SINGLE_CHILD_P(cursor->edges)) {
cursor->edges = rb_gc_location(cursor->edges);
}
cursor++;
}
}
static size_t
shape_tree_memsize(const void *data)
{
return GET_SHAPE_TREE()->cache_size * sizeof(redblack_node_t);
}
static const rb_data_type_t shape_tree_type = {
.wrap_struct_name = "VM/shape_tree",
.function = {
.dmark = shape_tree_mark,
.dfree = NULL, // Nothing to free, done at VM exit in rb_shape_free_all,
.dsize = shape_tree_memsize,
.dcompact = shape_tree_compact,
},
.flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED,
};
/*
* Shape getters
*/
static inline shape_id_t
raw_shape_id(rb_shape_t *shape)
{
RUBY_ASSERT(shape);
return (shape_id_t)(shape - GET_SHAPE_TREE()->shape_list);
}
static inline shape_id_t
shape_id(rb_shape_t *shape, shape_id_t previous_shape_id)
{
RUBY_ASSERT(shape);
shape_id_t raw_id = (shape_id_t)(shape - GET_SHAPE_TREE()->shape_list);
return raw_id | (previous_shape_id & SHAPE_ID_FLAGS_MASK);
}
#if RUBY_DEBUG
static inline bool
shape_frozen_p(shape_id_t shape_id)
{
return shape_id & SHAPE_ID_FL_FROZEN;
}
#endif
void
rb_shape_each_shape_id(each_shape_callback callback, void *data)
{
rb_shape_t *start = rb_shape_get_root_shape();
rb_shape_t *cursor = start;
rb_shape_t *end = RSHAPE(GET_SHAPE_TREE()->next_shape_id);
while (cursor < end) {
callback((shape_id_t)(cursor - start), data);
cursor += 1;
}
}
RUBY_FUNC_EXPORTED rb_shape_t *
rb_shape_lookup(shape_id_t shape_id)
{
uint32_t offset = (shape_id & SHAPE_ID_OFFSET_MASK);
RUBY_ASSERT(offset != INVALID_SHAPE_ID);
return &GET_SHAPE_TREE()->shape_list[offset];
}
RUBY_FUNC_EXPORTED shape_id_t
rb_obj_shape_id(VALUE obj)
{
if (RB_SPECIAL_CONST_P(obj)) {
return SPECIAL_CONST_SHAPE_ID;
}
if (BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE) {
VALUE fields_obj = RCLASS_FIELDS_OBJ(obj);
if (fields_obj) {
return RBASIC_SHAPE_ID(fields_obj);
}
return ROOT_SHAPE_ID;
}
return RBASIC_SHAPE_ID(obj);
}
size_t
rb_shape_depth(shape_id_t shape_id)
{
size_t depth = 1;
rb_shape_t *shape = RSHAPE(shape_id);
while (shape->parent_id != INVALID_SHAPE_ID) {
depth++;
shape = RSHAPE(shape->parent_id);
}
return depth;
}
static rb_shape_t *
shape_alloc(void)
{
shape_id_t shape_id = (shape_id_t)RUBY_ATOMIC_FETCH_ADD(GET_SHAPE_TREE()->next_shape_id, 1);
if (shape_id == (MAX_SHAPE_ID + 1)) {
// TODO: Make an OutOfShapesError ??
rb_bug("Out of shapes");
}
return &GET_SHAPE_TREE()->shape_list[shape_id];
}
static rb_shape_t *
rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id)
{
rb_shape_t *shape = shape_alloc();
shape->edge_name = edge_name;
shape->next_field_index = 0;
shape->parent_id = parent_id;
shape->edges = 0;
return shape;
}
static rb_shape_t *
rb_shape_alloc(ID edge_name, rb_shape_t *parent, enum shape_type type)
{
rb_shape_t *shape = rb_shape_alloc_with_parent_id(edge_name, raw_shape_id(parent));
shape->type = (uint8_t)type;
shape->capacity = parent->capacity;
shape->edges = 0;
return shape;
}
#ifdef HAVE_MMAP
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t *shape)
{
if (!(shape->ancestor_index || shape->parent_id == INVALID_SHAPE_ID)) {
redblack_node_t *parent_index;
parent_index = redblack_cache_ancestors(RSHAPE(shape->parent_id));
if (shape->type == SHAPE_IVAR) {
shape->ancestor_index = redblack_insert(parent_index, shape->edge_name, shape);
#if RUBY_DEBUG
if (shape->ancestor_index) {
redblack_node_t *inserted_node = redblack_find(shape->ancestor_index, shape->edge_name);
RUBY_ASSERT(inserted_node);
RUBY_ASSERT(redblack_value(inserted_node) == shape);
}
#endif
}
else {
shape->ancestor_index = parent_index;
}
}
return shape->ancestor_index;
}
#else
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t *shape)
{
return LEAF;
}
#endif
static attr_index_t
shape_grow_capa(attr_index_t current_capa)
{
const attr_index_t *capacities = GET_SHAPE_TREE()->capacities;
// First try to use the next size that will be embeddable in a larger object slot.
attr_index_t capa;
while ((capa = *capacities)) {
if (capa > current_capa) {
return capa;
}
capacities++;
}
return (attr_index_t)rb_malloc_grow_capa(current_capa, sizeof(VALUE));
}
static rb_shape_t *
rb_shape_alloc_new_child(ID id, rb_shape_t *shape, enum shape_type shape_type)
{
rb_shape_t *new_shape = rb_shape_alloc(id, shape, shape_type);
switch (shape_type) {
case SHAPE_OBJ_ID:
case SHAPE_IVAR:
if (UNLIKELY(shape->next_field_index >= shape->capacity)) {
RUBY_ASSERT(shape->next_field_index == shape->capacity);
new_shape->capacity = shape_grow_capa(shape->capacity);
}
RUBY_ASSERT(new_shape->capacity > shape->next_field_index);
new_shape->next_field_index = shape->next_field_index + 1;
if (new_shape->next_field_index > ANCESTOR_CACHE_THRESHOLD) {
RB_VM_LOCKING() {
redblack_cache_ancestors(new_shape);
}
}
break;
case SHAPE_ROOT:
rb_bug("Unreachable");
break;
}
return new_shape;
}
#define RUBY_ATOMIC_VALUE_LOAD(x) (VALUE)(RUBY_ATOMIC_PTR_LOAD(x))
static rb_shape_t *
get_next_shape_internal_atomic(rb_shape_t *shape, ID id, enum shape_type shape_type, bool *variation_created, bool new_variations_allowed)
{
rb_shape_t *res = NULL;
*variation_created = false;
VALUE edges_table;
retry:
edges_table = RUBY_ATOMIC_VALUE_LOAD(shape->edges);
// If the current shape has children
if (edges_table) {
// Check if it only has one child
if (SINGLE_CHILD_P(edges_table)) {
rb_shape_t *child = SINGLE_CHILD(edges_table);
// If the one child has a matching edge name, then great,
// we found what we want.
if (child->edge_name == id) {
res = child;
}
}
else {
// If it has more than one child, do a hash lookup to find it.
VALUE lookup_result;
if (rb_managed_id_table_lookup(edges_table, id, &lookup_result)) {
res = (rb_shape_t *)lookup_result;
}
}
}
// If we didn't find the shape we're looking for we create it.
if (!res) {
// If we're not allowed to create a new variation, of if we're out of shapes
// we return TOO_COMPLEX_SHAPE.
if (!new_variations_allowed || GET_SHAPE_TREE()->next_shape_id > MAX_SHAPE_ID) {
res = NULL;
}
else {
VALUE new_edges = 0;
rb_shape_t *new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
if (!edges_table) {
// If the shape had no edge yet, we can directly set the new child
new_edges = TAG_SINGLE_CHILD(new_shape);
}
else {
// If the edge was single child we need to allocate a table.
if (SINGLE_CHILD_P(edges_table)) {
rb_shape_t *old_child = SINGLE_CHILD(edges_table);
new_edges = rb_managed_id_table_new(2);
rb_managed_id_table_insert(new_edges, old_child->edge_name, (VALUE)old_child);
}
else {
new_edges = rb_managed_id_table_dup(edges_table);
}
rb_managed_id_table_insert(new_edges, new_shape->edge_name, (VALUE)new_shape);
*variation_created = true;
}
if (edges_table != RUBY_ATOMIC_VALUE_CAS(shape->edges, edges_table, new_edges)) {
// Another thread updated the table;
goto retry;
}
RB_OBJ_WRITTEN(shape_tree_obj, Qundef, new_edges);
res = new_shape;
RB_GC_GUARD(new_edges);
}
}
return res;
}
static rb_shape_t *
get_next_shape_internal(rb_shape_t *shape, ID id, enum shape_type shape_type, bool *variation_created, bool new_variations_allowed)
{
if (rb_multi_ractor_p()) {
return get_next_shape_internal_atomic(shape, id, shape_type, variation_created, new_variations_allowed);
}
rb_shape_t *res = NULL;
*variation_created = false;
VALUE edges_table = shape->edges;
// If the current shape has children
if (edges_table) {
// Check if it only has one child
if (SINGLE_CHILD_P(edges_table)) {
rb_shape_t *child = SINGLE_CHILD(edges_table);
// If the one child has a matching edge name, then great,
// we found what we want.
if (child->edge_name == id) {
res = child;
}
}
else {
// If it has more than one child, do a hash lookup to find it.
VALUE lookup_result;
if (rb_managed_id_table_lookup(edges_table, id, &lookup_result)) {
res = (rb_shape_t *)lookup_result;
}
}
}
// If we didn't find the shape we're looking for we create it.
if (!res) {
// If we're not allowed to create a new variation, of if we're out of shapes
// we return TOO_COMPLEX_SHAPE.
if (!new_variations_allowed || GET_SHAPE_TREE()->next_shape_id > MAX_SHAPE_ID) {
res = NULL;
}
else {
rb_shape_t *new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
if (!edges_table) {
// If the shape had no edge yet, we can directly set the new child
shape->edges = TAG_SINGLE_CHILD(new_shape);
}
else {
// If the edge was single child we need to allocate a table.
if (SINGLE_CHILD_P(edges_table)) {
rb_shape_t *old_child = SINGLE_CHILD(edges_table);
VALUE new_edges = rb_managed_id_table_new(2);
rb_managed_id_table_insert(new_edges, old_child->edge_name, (VALUE)old_child);
RB_OBJ_WRITE(shape_tree_obj, &shape->edges, new_edges);
}
rb_managed_id_table_insert(shape->edges, new_shape->edge_name, (VALUE)new_shape);
*variation_created = true;
}
res = new_shape;
}
}
return res;
}
static rb_shape_t *
remove_shape_recursive(rb_shape_t *shape, ID id, rb_shape_t **removed_shape)
{
if (shape->parent_id == INVALID_SHAPE_ID) {
// We've hit the top of the shape tree and couldn't find the
// IV we wanted to remove, so return NULL
*removed_shape = NULL;
return NULL;
}
else {
if (shape->type == SHAPE_IVAR && shape->edge_name == id) {
*removed_shape = shape;
return RSHAPE(shape->parent_id);
}
else {
// This isn't the IV we want to remove, keep walking up.
rb_shape_t *new_parent = remove_shape_recursive(RSHAPE(shape->parent_id), id, removed_shape);
// We found a new parent. Create a child of the new parent that
// has the same attributes as this shape.
if (new_parent) {
bool dont_care;
rb_shape_t *new_child = get_next_shape_internal(new_parent, shape->edge_name, shape->type, &dont_care, true);
RUBY_ASSERT(!new_child || new_child->capacity <= shape->capacity);
return new_child;
}
else {
// We went all the way to the top of the shape tree and couldn't
// find an IV to remove so return NULL.
return NULL;
}
}
}
}
static inline shape_id_t transition_complex(shape_id_t shape_id);
static shape_id_t
shape_transition_object_id(shape_id_t original_shape_id)
{
RUBY_ASSERT(!rb_shape_has_object_id(original_shape_id));
bool dont_care;
rb_shape_t *shape = get_next_shape_internal(RSHAPE(original_shape_id), ruby_internal_object_id, SHAPE_OBJ_ID, &dont_care, true);
if (!shape) {
shape = RSHAPE(ROOT_SHAPE_WITH_OBJ_ID);
}
RUBY_ASSERT(shape);
return shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID;
}
shape_id_t
rb_shape_transition_object_id(VALUE obj)
{
return shape_transition_object_id(RBASIC_SHAPE_ID(obj));
}
shape_id_t
rb_shape_object_id(shape_id_t original_shape_id)
{
RUBY_ASSERT(rb_shape_has_object_id(original_shape_id));
rb_shape_t *shape = RSHAPE(original_shape_id);
while (shape->type != SHAPE_OBJ_ID) {
if (UNLIKELY(shape->parent_id == INVALID_SHAPE_ID)) {
rb_bug("Missing object_id in shape tree");
}
shape = RSHAPE(shape->parent_id);
}
return shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID;
}
static inline shape_id_t
transition_complex(shape_id_t shape_id)
{
uint8_t heap_index = rb_shape_heap_index(shape_id);
shape_id_t next_shape_id;
if (heap_index) {
next_shape_id = rb_shape_root(heap_index - 1) | SHAPE_ID_FL_TOO_COMPLEX;
if (rb_shape_has_object_id(shape_id)) {
next_shape_id = shape_transition_object_id(next_shape_id);
}
}
else {
if (rb_shape_has_object_id(shape_id)) {
next_shape_id = ROOT_TOO_COMPLEX_WITH_OBJ_ID | (shape_id & SHAPE_ID_FLAGS_MASK);
}
else {
next_shape_id = ROOT_TOO_COMPLEX_SHAPE_ID | (shape_id & SHAPE_ID_FLAGS_MASK);
}
}
RUBY_ASSERT(rb_shape_has_object_id(shape_id) == rb_shape_has_object_id(next_shape_id));
return next_shape_id;
}
shape_id_t
rb_shape_transition_remove_ivar(VALUE obj, ID id, shape_id_t *removed_shape_id)
{
shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
RUBY_ASSERT(!rb_shape_too_complex_p(original_shape_id));
RUBY_ASSERT(!shape_frozen_p(original_shape_id));
rb_shape_t *removed_shape = NULL;
rb_shape_t *new_shape = remove_shape_recursive(RSHAPE(original_shape_id), id, &removed_shape);
if (removed_shape) {
*removed_shape_id = raw_shape_id(removed_shape);
}
if (new_shape) {
return shape_id(new_shape, original_shape_id);
}
else if (removed_shape) {
// We found the shape to remove, but couldn't create a new variation.
// We must transition to TOO_COMPLEX.
shape_id_t next_shape_id = transition_complex(original_shape_id);
RUBY_ASSERT(rb_shape_has_object_id(next_shape_id) == rb_shape_has_object_id(original_shape_id));
return next_shape_id;
}
return original_shape_id;
}
shape_id_t
rb_shape_transition_frozen(VALUE obj)
{
RUBY_ASSERT(RB_OBJ_FROZEN(obj));
shape_id_t shape_id = rb_obj_shape_id(obj);
return shape_id | SHAPE_ID_FL_FROZEN;
}
shape_id_t
rb_shape_transition_complex(VALUE obj)
{
return transition_complex(RBASIC_SHAPE_ID(obj));
}
shape_id_t
rb_shape_transition_heap(VALUE obj, size_t heap_index)
{
return (RBASIC_SHAPE_ID(obj) & (~SHAPE_ID_HEAP_INDEX_MASK)) | rb_shape_root(heap_index);
}
/*
* This function is used for assertions where we don't want to increment
* max_iv_count
*/
static inline rb_shape_t *
shape_get_next_iv_shape(rb_shape_t *shape, ID id)
{
RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
bool dont_care;
return get_next_shape_internal(shape, id, SHAPE_IVAR, &dont_care, true);
}
shape_id_t
rb_shape_get_next_iv_shape(shape_id_t shape_id, ID id)
{
rb_shape_t *shape = RSHAPE(shape_id);
rb_shape_t *next_shape = shape_get_next_iv_shape(shape, id);
return raw_shape_id(next_shape);
}
static bool
shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
while (shape->parent_id != INVALID_SHAPE_ID) {
if (shape->edge_name == id) {
enum shape_type shape_type;
shape_type = (enum shape_type)shape->type;
switch (shape_type) {
case SHAPE_IVAR:
RUBY_ASSERT(shape->next_field_index > 0);
*value = shape->next_field_index - 1;
return true;
case SHAPE_ROOT:
return false;
case SHAPE_OBJ_ID:
rb_bug("Ivar should not exist on transition");
}
}
shape = RSHAPE(shape->parent_id);
}
return false;
}
static inline rb_shape_t *
shape_get_next(rb_shape_t *shape, VALUE obj, ID id, bool emit_warnings)
{
RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
#if RUBY_DEBUG
attr_index_t index;
if (shape_get_iv_index(shape, id, &index)) {
rb_bug("rb_shape_get_next: trying to create ivar that already exists at index %u", index);
}
#endif
VALUE klass;
if (IMEMO_TYPE_P(obj, imemo_class_fields)) { // HACK
klass = CLASS_OF(obj);
}
else {
klass = rb_obj_class(obj);
}
bool allow_new_shape = RCLASS_VARIATION_COUNT(klass) < SHAPE_MAX_VARIATIONS;
bool variation_created = false;
rb_shape_t *new_shape = get_next_shape_internal(shape, id, SHAPE_IVAR, &variation_created, allow_new_shape);
if (!new_shape) {
// We could create a new variation, transitioning to TOO_COMPLEX.
return NULL;
}
// Check if we should update max_iv_count on the object's class
if (obj != klass && new_shape->next_field_index > RCLASS_MAX_IV_COUNT(klass)) {
RCLASS_SET_MAX_IV_COUNT(klass, new_shape->next_field_index);
}
if (variation_created) {
RCLASS_VARIATION_COUNT(klass)++;
if (emit_warnings && rb_warning_category_enabled_p(RB_WARN_CATEGORY_PERFORMANCE)) {
if (RCLASS_VARIATION_COUNT(klass) >= SHAPE_MAX_VARIATIONS) {
rb_category_warn(
RB_WARN_CATEGORY_PERFORMANCE,
"The class %"PRIsVALUE" reached %d shape variations, instance variables accesses will be slower and memory usage increased.\n"
"It is recommended to define instance variables in a consistent order, for instance by eagerly defining them all in the #initialize method.",
rb_class_path(klass),
SHAPE_MAX_VARIATIONS
);
}
}
}
return new_shape;
}
shape_id_t
rb_shape_transition_add_ivar(VALUE obj, ID id)
{
shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
RUBY_ASSERT(!shape_frozen_p(original_shape_id));
rb_shape_t *next_shape = shape_get_next(RSHAPE(original_shape_id), obj, id, true);
if (next_shape) {
return shape_id(next_shape, original_shape_id);
}
else {
return transition_complex(original_shape_id);
}
}
shape_id_t
rb_shape_transition_add_ivar_no_warnings(VALUE obj, ID id)
{
shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
RUBY_ASSERT(!shape_frozen_p(original_shape_id));
rb_shape_t *next_shape = shape_get_next(RSHAPE(original_shape_id), obj, id, false);
if (next_shape) {
return shape_id(next_shape, original_shape_id);
}
else {
return transition_complex(original_shape_id);
}
}
// Same as rb_shape_get_iv_index, but uses a provided valid shape id and index
// to return a result faster if branches of the shape tree are closely related.
bool
rb_shape_get_iv_index_with_hint(shape_id_t shape_id, ID id, attr_index_t *value, shape_id_t *shape_id_hint)
{
attr_index_t index_hint = *value;
if (*shape_id_hint == INVALID_SHAPE_ID) {
*shape_id_hint = shape_id;
return rb_shape_get_iv_index(shape_id, id, value);
}
rb_shape_t *shape = RSHAPE(shape_id);
rb_shape_t *initial_shape = shape;
rb_shape_t *shape_hint = RSHAPE(*shape_id_hint);
// We assume it's likely shape_id_hint and shape_id have a close common
// ancestor, so we check up to ANCESTOR_SEARCH_MAX_DEPTH ancestors before
// eventually using the index, as in case of a match it will be faster.
// However if the shape doesn't have an index, we walk the entire tree.
int depth = INT_MAX;
if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
depth = ANCESTOR_SEARCH_MAX_DEPTH;
}
while (depth > 0 && shape->next_field_index > index_hint) {
while (shape_hint->next_field_index > shape->next_field_index) {
shape_hint = RSHAPE(shape_hint->parent_id);
}
if (shape_hint == shape) {
// We've found a common ancestor so use the index hint
*value = index_hint;
*shape_id_hint = raw_shape_id(shape);
return true;
}
if (shape->edge_name == id) {
// We found the matching id before a common ancestor
*value = shape->next_field_index - 1;
*shape_id_hint = raw_shape_id(shape);
return true;
}
shape = RSHAPE(shape->parent_id);
depth--;
}
// If the original shape had an index but its ancestor doesn't
// we switch back to the original one as it will be faster.
if (!shape->ancestor_index && initial_shape->ancestor_index) {
shape = initial_shape;
}
*shape_id_hint = shape_id;
return shape_get_iv_index(shape, id, value);
}
static bool
shape_cache_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
redblack_node_t *node = redblack_find(shape->ancestor_index, id);
if (node) {
rb_shape_t *shape = redblack_value(node);
*value = shape->next_field_index - 1;
#if RUBY_DEBUG
attr_index_t shape_tree_index;
RUBY_ASSERT(shape_get_iv_index(shape, id, &shape_tree_index));
RUBY_ASSERT(shape_tree_index == *value);
#endif
return true;
}
/* Verify the cache is correct by checking that this instance variable
* does not exist in the shape tree either. */
RUBY_ASSERT(!shape_get_iv_index(shape, id, value));
}
return false;
}
bool
rb_shape_get_iv_index(shape_id_t shape_id, ID id, attr_index_t *value)
{
// It doesn't make sense to ask for the index of an IV that's stored
// on an object that is "too complex" as it uses a hash for storing IVs
RUBY_ASSERT(!rb_shape_too_complex_p(shape_id));
rb_shape_t *shape = RSHAPE(shape_id);
if (!shape_cache_get_iv_index(shape, id, value)) {
// If it wasn't in the ancestor cache, then don't do a linear search
if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
return false;
}
else {
return shape_get_iv_index(shape, id, value);
}
}
return true;
}
int32_t
rb_shape_id_offset(void)
{
return sizeof(uintptr_t) - SHAPE_ID_NUM_BITS / sizeof(uintptr_t);
}
// Rebuild a similar shape with the same ivars but starting from
// a different SHAPE_T_OBJECT, and don't cary over non-canonical transitions
// such as SHAPE_OBJ_ID.
static rb_shape_t *
shape_rebuild(rb_shape_t *initial_shape, rb_shape_t *dest_shape)
{
rb_shape_t *midway_shape;
RUBY_ASSERT(initial_shape->type == SHAPE_ROOT);
if (dest_shape->type != initial_shape->type) {
midway_shape = shape_rebuild(initial_shape, RSHAPE(dest_shape->parent_id));
if (UNLIKELY(!midway_shape)) {
return NULL;
}
}
else {
midway_shape = initial_shape;
}
switch ((enum shape_type)dest_shape->type) {
case SHAPE_IVAR:
midway_shape = shape_get_next_iv_shape(midway_shape, dest_shape->edge_name);
break;
case SHAPE_OBJ_ID:
case SHAPE_ROOT:
break;
}
return midway_shape;
}
// Rebuild `dest_shape_id` starting from `initial_shape_id`, and keep only SHAPE_IVAR transitions.
// SHAPE_OBJ_ID and frozen status are lost.
shape_id_t
rb_shape_rebuild(shape_id_t initial_shape_id, shape_id_t dest_shape_id)
{
RUBY_ASSERT(!rb_shape_too_complex_p(initial_shape_id));
RUBY_ASSERT(!rb_shape_too_complex_p(dest_shape_id));
rb_shape_t *next_shape = shape_rebuild(RSHAPE(initial_shape_id), RSHAPE(dest_shape_id));
if (next_shape) {
return shape_id(next_shape, initial_shape_id);
}
else {
return transition_complex(initial_shape_id | (dest_shape_id & SHAPE_ID_FL_HAS_OBJECT_ID));
}
}
void
rb_shape_copy_fields(VALUE dest, VALUE *dest_buf, shape_id_t dest_shape_id, VALUE src, VALUE *src_buf, shape_id_t src_shape_id)
{
rb_shape_t *dest_shape = RSHAPE(dest_shape_id);
rb_shape_t *src_shape = RSHAPE(src_shape_id);
if (src_shape->next_field_index == dest_shape->next_field_index) {
// Happy path, we can just memcpy the ivptr content
MEMCPY(dest_buf, src_buf, VALUE, dest_shape->next_field_index);
// Fire write barriers
for (uint32_t i = 0; i < dest_shape->next_field_index; i++) {
RB_OBJ_WRITTEN(dest, Qundef, dest_buf[i]);
}
}
else {
while (src_shape->parent_id != INVALID_SHAPE_ID) {
if (src_shape->type == SHAPE_IVAR) {
while (dest_shape->edge_name != src_shape->edge_name) {
if (UNLIKELY(dest_shape->parent_id == INVALID_SHAPE_ID)) {
rb_bug("Lost field %s", rb_id2name(src_shape->edge_name));
}
dest_shape = RSHAPE(dest_shape->parent_id);
}
RB_OBJ_WRITE(dest, &dest_buf[dest_shape->next_field_index - 1], src_buf[src_shape->next_field_index - 1]);
}
src_shape = RSHAPE(src_shape->parent_id);
}
}
}
void
rb_shape_copy_complex_ivars(VALUE dest, VALUE obj, shape_id_t src_shape_id, st_table *fields_table)
{
// obj is TOO_COMPLEX so we can copy its iv_hash
st_table *table = st_copy(fields_table);
if (rb_shape_has_object_id(src_shape_id)) {
st_data_t id = (st_data_t)ruby_internal_object_id;
st_delete(table, &id, NULL);
}
rb_obj_init_too_complex(dest, table);
}
size_t
rb_shape_edges_count(shape_id_t shape_id)
{
rb_shape_t *shape = RSHAPE(shape_id);
if (shape->edges) {
if (SINGLE_CHILD_P(shape->edges)) {
return 1;
}
else {
return rb_managed_id_table_size(shape->edges);
}
}
return 0;
}
size_t
rb_shape_memsize(shape_id_t shape_id)
{
rb_shape_t *shape = RSHAPE(shape_id);
size_t memsize = sizeof(rb_shape_t);
if (shape->edges && !SINGLE_CHILD_P(shape->edges)) {
memsize += rb_managed_id_table_size(shape->edges);
}
return memsize;
}
bool
rb_shape_foreach_field(shape_id_t initial_shape_id, rb_shape_foreach_transition_callback func, void *data)
{
RUBY_ASSERT(!rb_shape_too_complex_p(initial_shape_id));
rb_shape_t *shape = RSHAPE(initial_shape_id);
if (shape->type == SHAPE_ROOT) {
return true;
}
shape_id_t parent_id = shape_id(RSHAPE(shape->parent_id), initial_shape_id);
if (rb_shape_foreach_field(parent_id, func, data)) {
switch (func(shape_id(shape, initial_shape_id), data)) {
case ST_STOP:
return false;
case ST_CHECK:
case ST_CONTINUE:
break;
default:
rb_bug("unreachable");
}
}
return true;
}
#if RUBY_DEBUG
bool
rb_shape_verify_consistency(VALUE obj, shape_id_t shape_id)
{
if (shape_id == INVALID_SHAPE_ID) {
rb_bug("Can't set INVALID_SHAPE_ID on an object");
}
rb_shape_t *shape = RSHAPE(shape_id);
bool has_object_id = false;
while (shape->parent_id != INVALID_SHAPE_ID) {
if (shape->type == SHAPE_OBJ_ID) {
has_object_id = true;
break;
}
shape = RSHAPE(shape->parent_id);
}
if (rb_shape_has_object_id(shape_id)) {
if (!has_object_id) {
rb_p(obj);
rb_bug("shape_id claim having obj_id but doesn't shape_id=%u, obj=%s", shape_id, rb_obj_info(obj));
}
}
else {
if (has_object_id) {
rb_p(obj);
rb_bug("shape_id claim not having obj_id but it does shape_id=%u, obj=%s", shape_id, rb_obj_info(obj));
}
}
uint8_t flags_heap_index = rb_shape_heap_index(shape_id);
if (RB_TYPE_P(obj, T_OBJECT)) {
size_t shape_id_slot_size = GET_SHAPE_TREE()->capacities[flags_heap_index - 1] * sizeof(VALUE) + sizeof(struct RBasic);
size_t actual_slot_size = rb_gc_obj_slot_size(obj);
if (shape_id_slot_size != actual_slot_size) {
rb_bug("shape_id heap_index flags mismatch: shape_id_slot_size=%zu, gc_slot_size=%zu\n", shape_id_slot_size, actual_slot_size);
}
}
else {
if (flags_heap_index) {
rb_bug("shape_id indicate heap_index > 0 but objet is not T_OBJECT: %s", rb_obj_info(obj));
}
}
return true;
}
#endif
#if SHAPE_DEBUG
/*
* Exposing Shape to Ruby via RubyVM::Shape.of(object)
*/
static VALUE
shape_too_complex(VALUE self)
{
shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
return RBOOL(rb_shape_too_complex_p(shape_id));
}
static VALUE
shape_frozen(VALUE self)
{
shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
return RBOOL(shape_id & SHAPE_ID_FL_FROZEN);
}
static VALUE
shape_has_object_id_p(VALUE self)
{
shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
return RBOOL(rb_shape_has_object_id(shape_id));
}
static VALUE
parse_key(ID key)
{
if (is_instance_id(key)) {
return ID2SYM(key);
}
return LONG2NUM(key);
}
static VALUE rb_shape_edge_name(rb_shape_t *shape);
static VALUE
shape_id_t_to_rb_cShape(shape_id_t shape_id)
{
VALUE rb_cShape = rb_const_get(rb_cRubyVM, rb_intern("Shape"));
rb_shape_t *shape = RSHAPE(shape_id);
VALUE obj = rb_struct_new(rb_cShape,
INT2NUM(shape_id),
INT2NUM(shape_id & SHAPE_ID_OFFSET_MASK),
INT2NUM(shape->parent_id),
rb_shape_edge_name(shape),
INT2NUM(shape->next_field_index),
INT2NUM(rb_shape_heap_index(shape_id)),
INT2NUM(shape->type),
INT2NUM(RSHAPE_CAPACITY(shape_id)));
rb_obj_freeze(obj);
return obj;
}
static enum rb_id_table_iterator_result
rb_edges_to_hash(ID key, VALUE value, void *ref)
{
rb_hash_aset(*(VALUE *)ref, parse_key(key), shape_id_t_to_rb_cShape(raw_shape_id((rb_shape_t *)value)));
return ID_TABLE_CONTINUE;
}
static VALUE
rb_shape_edges(VALUE self)
{
rb_shape_t *shape = RSHAPE(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
VALUE hash = rb_hash_new();
if (shape->edges) {
if (SINGLE_CHILD_P(shape->edges)) {
rb_shape_t *child = SINGLE_CHILD(shape->edges);
rb_edges_to_hash(child->edge_name, (VALUE)child, &hash);
}
else {
VALUE edges = shape->edges;
rb_managed_id_table_foreach(edges, rb_edges_to_hash, &hash);
RB_GC_GUARD(edges);
}
}
return hash;
}
static VALUE
rb_shape_edge_name(rb_shape_t *shape)
{
if (shape->edge_name) {
if (is_instance_id(shape->edge_name)) {
return ID2SYM(shape->edge_name);
}
return INT2NUM(shape->capacity);
}
return Qnil;
}
static VALUE
rb_shape_export_depth(VALUE self)
{
shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
return SIZET2NUM(rb_shape_depth(shape_id));
}
static VALUE
rb_shape_parent(VALUE self)
{
rb_shape_t *shape;
shape = RSHAPE(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
if (shape->parent_id != INVALID_SHAPE_ID) {
return shape_id_t_to_rb_cShape(shape->parent_id);
}
else {
return Qnil;
}
}
static VALUE
rb_shape_debug_shape(VALUE self, VALUE obj)
{
return shape_id_t_to_rb_cShape(rb_obj_shape_id(obj));
}
static VALUE
rb_shape_root_shape(VALUE self)
{
return shape_id_t_to_rb_cShape(ROOT_SHAPE_ID);
}
static VALUE
rb_shape_shapes_available(VALUE self)
{
return INT2NUM(MAX_SHAPE_ID - (GET_SHAPE_TREE()->next_shape_id - 1));
}
static VALUE
rb_shape_exhaust(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 1);
int offset = argc == 1 ? NUM2INT(argv[0]) : 0;
GET_SHAPE_TREE()->next_shape_id = MAX_SHAPE_ID - offset + 1;
return Qnil;
}
static VALUE shape_to_h(rb_shape_t *shape);
static enum rb_id_table_iterator_result collect_keys_and_values(ID key, VALUE value, void *ref)
{
rb_hash_aset(*(VALUE *)ref, parse_key(key), shape_to_h((rb_shape_t *)value));
return ID_TABLE_CONTINUE;
}
static VALUE edges(VALUE edges)
{
VALUE hash = rb_hash_new();
if (edges) {
if (SINGLE_CHILD_P(edges)) {
rb_shape_t *child = SINGLE_CHILD(edges);
collect_keys_and_values(child->edge_name, (VALUE)child, &hash);
}
else {
rb_managed_id_table_foreach(edges, collect_keys_and_values, &hash);
}
}
return hash;
}
static VALUE
shape_to_h(rb_shape_t *shape)
{
VALUE rb_shape = rb_hash_new();
rb_hash_aset(rb_shape, ID2SYM(rb_intern("id")), INT2NUM(raw_shape_id(shape)));
rb_hash_aset(rb_shape, ID2SYM(rb_intern("edges")), edges(shape->edges));
if (shape == rb_shape_get_root_shape()) {
rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(ROOT_SHAPE_ID));
}
else {
rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(shape->parent_id));
}
rb_hash_aset(rb_shape, ID2SYM(rb_intern("edge_name")), rb_id2str(shape->edge_name));
return rb_shape;
}
static VALUE
shape_transition_tree(VALUE self)
{
return shape_to_h(rb_shape_get_root_shape());
}
static VALUE
rb_shape_find_by_id(VALUE mod, VALUE id)
{
shape_id_t shape_id = NUM2UINT(id);
if (shape_id >= GET_SHAPE_TREE()->next_shape_id) {
rb_raise(rb_eArgError, "Shape ID %d is out of bounds\n", shape_id);
}
return shape_id_t_to_rb_cShape(shape_id);
}
#endif
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
void
Init_default_shapes(void)
{
rb_shape_tree_ptr = xcalloc(1, sizeof(rb_shape_tree_t));
size_t *heap_sizes = rb_gc_heap_sizes();
size_t heaps_count = 0;
while (heap_sizes[heaps_count]) {
heaps_count++;
}
attr_index_t *capacities = ALLOC_N(attr_index_t, heaps_count + 1);
capacities[heaps_count] = 0;
size_t index;
for (index = 0; index < heaps_count; index++) {
capacities[index] = (heap_sizes[index] - sizeof(struct RBasic)) / sizeof(VALUE);
}
GET_SHAPE_TREE()->capacities = capacities;
#ifdef HAVE_MMAP
size_t shape_list_mmap_size = rb_size_mul_or_raise(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t), rb_eRuntimeError);
rb_shape_tree_ptr->shape_list = (rb_shape_t *)mmap(NULL, shape_list_mmap_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (GET_SHAPE_TREE()->shape_list == MAP_FAILED) {
GET_SHAPE_TREE()->shape_list = 0;
}
else {
ruby_annotate_mmap(rb_shape_tree_ptr->shape_list, shape_list_mmap_size, "Ruby:Init_default_shapes:shape_list");
}
#else
GET_SHAPE_TREE()->shape_list = xcalloc(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t));
#endif
if (!GET_SHAPE_TREE()->shape_list) {
rb_memerror();
}
id_frozen = rb_make_internal_id();
id_t_object = rb_make_internal_id();
ruby_internal_object_id = rb_make_internal_id();
#ifdef HAVE_MMAP
size_t shape_cache_mmap_size = rb_size_mul_or_raise(REDBLACK_CACHE_SIZE, sizeof(redblack_node_t), rb_eRuntimeError);
rb_shape_tree_ptr->shape_cache = (redblack_node_t *)mmap(NULL, shape_cache_mmap_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
rb_shape_tree_ptr->cache_size = 0;
// If mmap fails, then give up on the redblack tree cache.
// We set the cache size such that the redblack node allocators think
// the cache is full.
if (GET_SHAPE_TREE()->shape_cache == MAP_FAILED) {
GET_SHAPE_TREE()->shape_cache = 0;
GET_SHAPE_TREE()->cache_size = REDBLACK_CACHE_SIZE;
}
else {
ruby_annotate_mmap(rb_shape_tree_ptr->shape_cache, shape_cache_mmap_size, "Ruby:Init_default_shapes:shape_cache");
}
#endif
rb_gc_register_address(&shape_tree_obj);
shape_tree_obj = TypedData_Wrap_Struct(0, &shape_tree_type, (void *)1);
// Root shape
rb_shape_t *root = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
root->capacity = 0;
root->type = SHAPE_ROOT;
GET_SHAPE_TREE()->root_shape = root;
RUBY_ASSERT(raw_shape_id(GET_SHAPE_TREE()->root_shape) == ROOT_SHAPE_ID);
rb_shape_t *root_with_obj_id = rb_shape_alloc_with_parent_id(0, ROOT_SHAPE_ID);
root_with_obj_id->type = SHAPE_OBJ_ID;
root_with_obj_id->edge_name = ruby_internal_object_id;
root_with_obj_id->next_field_index++;
RUBY_ASSERT(raw_shape_id(root_with_obj_id) == ROOT_SHAPE_WITH_OBJ_ID);
}
void
rb_shape_free_all(void)
{
xfree((void *)GET_SHAPE_TREE()->capacities);
xfree(GET_SHAPE_TREE());
}
void
Init_shape(void)
{
#if SHAPE_DEBUG
/* Document-class: RubyVM::Shape
* :nodoc: */
VALUE rb_cShape = rb_struct_define_under(rb_cRubyVM, "Shape",
"id",
"raw_id",
"parent_id",
"edge_name",
"next_field_index",
"heap_index",
"type",
"capacity",
NULL);
rb_define_method(rb_cShape, "parent", rb_shape_parent, 0);
rb_define_method(rb_cShape, "edges", rb_shape_edges, 0);
rb_define_method(rb_cShape, "depth", rb_shape_export_depth, 0);
rb_define_method(rb_cShape, "too_complex?", shape_too_complex, 0);
rb_define_method(rb_cShape, "shape_frozen?", shape_frozen, 0);
rb_define_method(rb_cShape, "has_object_id?", shape_has_object_id_p, 0);
rb_define_const(rb_cShape, "SHAPE_ROOT", INT2NUM(SHAPE_ROOT));
rb_define_const(rb_cShape, "SHAPE_IVAR", INT2NUM(SHAPE_IVAR));
rb_define_const(rb_cShape, "SHAPE_ID_NUM_BITS", INT2NUM(SHAPE_ID_NUM_BITS));
rb_define_const(rb_cShape, "SHAPE_FLAG_SHIFT", INT2NUM(SHAPE_FLAG_SHIFT));
rb_define_const(rb_cShape, "SPECIAL_CONST_SHAPE_ID", INT2NUM(SPECIAL_CONST_SHAPE_ID));
rb_define_const(rb_cShape, "SHAPE_MAX_VARIATIONS", INT2NUM(SHAPE_MAX_VARIATIONS));
rb_define_const(rb_cShape, "SIZEOF_RB_SHAPE_T", INT2NUM(sizeof(rb_shape_t)));
rb_define_const(rb_cShape, "SIZEOF_REDBLACK_NODE_T", INT2NUM(sizeof(redblack_node_t)));
rb_define_const(rb_cShape, "SHAPE_BUFFER_SIZE", INT2NUM(sizeof(rb_shape_t) * SHAPE_BUFFER_SIZE));
rb_define_const(rb_cShape, "REDBLACK_CACHE_SIZE", INT2NUM(sizeof(redblack_node_t) * REDBLACK_CACHE_SIZE));
rb_define_singleton_method(rb_cShape, "transition_tree", shape_transition_tree, 0);
rb_define_singleton_method(rb_cShape, "find_by_id", rb_shape_find_by_id, 1);
rb_define_singleton_method(rb_cShape, "of", rb_shape_debug_shape, 1);
rb_define_singleton_method(rb_cShape, "root_shape", rb_shape_root_shape, 0);
rb_define_singleton_method(rb_cShape, "shapes_available", rb_shape_shapes_available, 0);
rb_define_singleton_method(rb_cShape, "exhaust_shapes", rb_shape_exhaust, -1);
#endif
}