From 06770746d92893a05538ab02a6ba9a18d9f03279 Mon Sep 17 00:00:00 2001 From: wataru Date: Wed, 29 Mar 2023 23:11:03 +0900 Subject: [PATCH] WIP: DDSP_SVC support --- .gitignore | 2 ++ server/voice_changer/DDSP_SVC/DDSP_SVC.py | 23 +++++++++++++++++++---- 2 files changed, 21 insertions(+), 4 deletions(-) diff --git a/.gitignore b/.gitignore index 394a93b0..1f701b16 100644 --- a/.gitignore +++ b/.gitignore @@ -23,6 +23,8 @@ server/model_hubert server/model_so-vits-svc-40v2_tsukuyomi/ server/model_so-vits-svc-40v2_amitaro/ server/model_so-vits-svc-40/ +server/model_so-vits-svc-40_mahiro/ +server/model_so-vits-svc-40_amitaro/ model_DDSP-SVC/ server/model_sovits server/test diff --git a/server/voice_changer/DDSP_SVC/DDSP_SVC.py b/server/voice_changer/DDSP_SVC/DDSP_SVC.py index 54d78318..93a5471f 100644 --- a/server/voice_changer/DDSP_SVC/DDSP_SVC.py +++ b/server/voice_changer/DDSP_SVC/DDSP_SVC.py @@ -86,6 +86,20 @@ class DDSP_SVC: args.data.encoder_sample_rate, args.data.encoder_hop_size, device="cpu") + + # ort_options = onnxruntime.SessionOptions() + # ort_options.intra_op_num_threads = 8 + # self.onnx_session = onnxruntime.InferenceSession( + # "model_DDSP-SVC/hubert4.0.onnx", + # providers=providers + # ) + # inputs = self.onnx_session.get_inputs() + # outputs = self.onnx_session.get_outputs() + # for input in inputs: + # print("input::::", input) + # for output in outputs: + # print("output::::", output) + # f0dec self.f0_detector = vo.F0_Extractor( # "crepe", @@ -228,10 +242,11 @@ class DDSP_SVC: mask = data[3] convertSize = data[4] - vol = data[4] + vol = data[5] - if vol < self.settings.silentThreshold: - return np.zeros(convertSize).astype(np.int16) + # if vol < self.settings.silentThreshold: + # print("threshold") + # return np.zeros(convertSize).astype(np.int16) with torch.no_grad(): spk_id = torch.LongTensor(np.array([[int(1)]])) @@ -243,7 +258,7 @@ class DDSP_SVC: self.args.data.sampling_rate, f0, self.args.data.block_size, - adaptive_key=float(0)) + adaptive_key=float(3)) result = seg_output.squeeze().cpu().numpy() * 32768.0 return np.array(result).astype(np.int16)