From 1143ad88fdeb5fbb966f147e771345c3bd96f2e0 Mon Sep 17 00:00:00 2001 From: wataru Date: Fri, 24 Mar 2023 09:47:14 +0900 Subject: [PATCH] 5. mv volume --- server/voice_changer/DDSP_SVC/DDSP_SVC.py | 30 +++++++++++------------ 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/server/voice_changer/DDSP_SVC/DDSP_SVC.py b/server/voice_changer/DDSP_SVC/DDSP_SVC.py index 0a31faf6..398f4b52 100644 --- a/server/voice_changer/DDSP_SVC/DDSP_SVC.py +++ b/server/voice_changer/DDSP_SVC/DDSP_SVC.py @@ -72,11 +72,11 @@ class DDSP_SVC: self.settings.configFile = config # model model, args = vo.load_model(pyTorch_model_file) - - # hubert self.model = model self.args = args + self.hop_size = int(self.args.data.block_size * 44100 / self.args.data.sampling_rate) + # hubert vec_path = self.params["hubert"] self.encoder = vo.Units_Encoder( args.data.encoder, @@ -92,6 +92,8 @@ class DDSP_SVC: float(50), float(1100)) + self.volume_extractor = vo.Volume_Extractor(self.hop_size) + return self.get_info() def update_setteings(self, key: str, val: any): @@ -157,7 +159,6 @@ class DDSP_SVC: def generate_input(self, newData: any, inputSize: int, crossfadeSize: int): newData = newData.astype(np.float32) / 32768.0 # newData = newData.astype(np.float32) / self.hps.data.max_wav_value - hop_size = int(self.args.data.block_size * 44100 / self.args.data.sampling_rate) if hasattr(self, "audio_buffer"): self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結 @@ -165,9 +166,9 @@ class DDSP_SVC: self.audio_buffer = newData convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize - print("hopsize", hop_size) - if convertSize % hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 - convertSize = convertSize + (hop_size - (convertSize % hop_size)) + print("hopsize", self.hop_size) + if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 + convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size)) print("convsize", convertSize) self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出 @@ -176,8 +177,10 @@ class DDSP_SVC: f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0) f0 = f0 * 2 ** (float(10) / 12) + volume = self.volume_extractor.extract(self.audio_buffer) + audio = torch.from_numpy(self.audio_buffer).float().unsqueeze(0) - seg_units = self.encoder.encode(audio, 44100, hop_size) + seg_units = self.encoder.encode(audio, 44100, self.hop_size) print("audio1", audio) # crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)] @@ -188,7 +191,7 @@ class DDSP_SVC: # c, f0 = self.get_unit_f0(self.audio_buffer, self.settings.tran) # return (c, f0, convertSize, vol) wavfile.write("tmp2.wav", 44100, (self.audio_buffer * 32768.0).astype(np.int16)) - return (seg_units, f0) + return (seg_units, f0, volume) def _onnx_inference(self, data): if hasattr(self, "onnx_session") == False or self.onnx_session == None: @@ -259,8 +262,9 @@ class DDSP_SVC: audio, sample_rate = librosa.load("tmp2.wav", sr=None) print("SR:", sample_rate) - seg_units = data[0] + c = data[0] f0 = data[1] + volume = data[2] if len(audio.shape) > 1: audio = librosa.to_mono(audio) @@ -268,8 +272,6 @@ class DDSP_SVC: print("hop_size", hop_size) - volume_extractor = vo.Volume_Extractor(hop_size) - volume = volume_extractor.extract(audio) mask = (volume > 10 ** (float(-60) / 20)).astype('float') mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1])) mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)]) @@ -283,12 +285,10 @@ class DDSP_SVC: with torch.no_grad(): start_frame = 0 - - seg_f0 = f0 seg_volume = volume - seg_output, _, (s_h, s_n) = self.model(seg_units, seg_f0, seg_volume, spk_id=spk_id, spk_mix_dict=None) - seg_output *= mask[:, start_frame * self.args.data.block_size: (start_frame + seg_units.size(1)) * self.args.data.block_size] + seg_output, _, (s_h, s_n) = self.model(c, f0, seg_volume, spk_id=spk_id, spk_mix_dict=None) + seg_output *= mask[:, start_frame * self.args.data.block_size: (start_frame + c.size(1)) * self.args.data.block_size] output_sample_rate = self.args.data.sampling_rate