WIP: support rvc-webui, pitch-less is not support yet
This commit is contained in:
parent
acfb7b601a
commit
11a536b03f
@ -1,6 +1,7 @@
|
||||
import onnxruntime
|
||||
import torch
|
||||
import numpy as np
|
||||
import json
|
||||
# providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
providers = ["CPUExecutionProvider"]
|
||||
|
||||
@ -21,6 +22,23 @@ class ModelWrapper:
|
||||
self.is_half = False
|
||||
else:
|
||||
self.is_half = True
|
||||
modelmeta = self.onnx_session.get_modelmeta()
|
||||
try:
|
||||
metadata = json.loads(modelmeta.custom_metadata_map["metadata"])
|
||||
self.samplingRate = metadata["samplingRate"]
|
||||
self.f0 = metadata["f0"]
|
||||
print(f"[Voice Changer] Onnx metadata: sr:{self.samplingRate}, f0:{self.f0}")
|
||||
except:
|
||||
self.samplingRate = -1
|
||||
self.f0 = True
|
||||
print(f"[Voice Changer] Onnx version is old. Please regenerate onnxfile. Fallback to default")
|
||||
print(f"[Voice Changer] Onnx metadata: sr:{self.samplingRate}, f0:{self.f0}")
|
||||
|
||||
def getSamplingRate(self):
|
||||
return self.samplingRate
|
||||
|
||||
def getF0(self):
|
||||
return self.f0
|
||||
|
||||
def set_providers(self, providers, provider_options=[{}]):
|
||||
self.onnx_session.set_providers(providers=providers, provider_options=provider_options)
|
||||
@ -28,14 +46,27 @@ class ModelWrapper:
|
||||
def get_providers(self):
|
||||
return self.onnx_session.get_providers()
|
||||
|
||||
def infer_pitchless(self, feats, p_len, sid):
|
||||
if self.is_half:
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"feats": feats.cpu().numpy().astype(np.float16),
|
||||
"p_len": p_len.cpu().numpy().astype(np.int64),
|
||||
"sid": sid.cpu().numpy().astype(np.int64),
|
||||
})
|
||||
else:
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"feats": feats.cpu().numpy().astype(np.float32),
|
||||
"p_len": p_len.cpu().numpy().astype(np.int64),
|
||||
"sid": sid.cpu().numpy().astype(np.int64),
|
||||
})
|
||||
return torch.tensor(np.array(audio1))
|
||||
|
||||
def infer(self, feats, p_len, pitch, pitchf, sid):
|
||||
if self.is_half:
|
||||
# print("feats", feats.cpu().numpy().dtype)
|
||||
# print("p_len", p_len.cpu().numpy().dtype)
|
||||
# print("pitch", pitch.cpu().numpy().dtype)
|
||||
# print("pitchf", pitchf.cpu().numpy().dtype)
|
||||
# print("sid", sid.cpu().numpy().dtype)
|
||||
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
|
@ -32,7 +32,8 @@ import pyworld as pw
|
||||
from voice_changer.RVC.custom_vc_infer_pipeline import VC
|
||||
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
||||
from .models import SynthesizerTrnMsNSFsid as SynthesizerTrnMs768NSFsid
|
||||
from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCHLESS, RVC_MODEL_TYPE_WEBUI_256_NORMAL, RVC_MODEL_TYPE_WEBUI_768_NORMAL, RVC_MODEL_TYPE_WEBUI_256_PITCHLESS, RVC_MODEL_TYPE_WEBUI_768_PITCHLESS, RVC_MODEL_TYPE_UNKNOWN
|
||||
# from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCHLESS, RVC_MODEL_TYPE_WEBUI_256_NORMAL, RVC_MODEL_TYPE_WEBUI_768_NORMAL, RVC_MODEL_TYPE_WEBUI_256_PITCHLESS, RVC_MODEL_TYPE_WEBUI_768_PITCHLESS, RVC_MODEL_TYPE_UNKNOWN
|
||||
from .const import RVC_MODEL_TYPE_RVC, RVC_MODEL_TYPE_WEBUI
|
||||
from fairseq import checkpoint_utils
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
@ -44,7 +45,12 @@ class ModelSlot():
|
||||
featureFile: str = ""
|
||||
indexFile: str = ""
|
||||
defaultTrans: int = ""
|
||||
modelType: int = RVC_MODEL_TYPE_UNKNOWN
|
||||
modelType: int = RVC_MODEL_TYPE_RVC
|
||||
samplingRate: int = -1
|
||||
f0: bool = True
|
||||
embChannels: int = 256
|
||||
samplingRateOnnx: int = -1
|
||||
f0Onnx: bool = True
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -119,8 +125,7 @@ class RVC:
|
||||
onnxModelFile=props["files"]["onnxModelFilename"],
|
||||
featureFile=props["files"]["featureFilename"],
|
||||
indexFile=props["files"]["indexFilename"],
|
||||
defaultTrans=params["trans"],
|
||||
modelType=RVC_MODEL_TYPE_UNKNOWN
|
||||
defaultTrans=params["trans"]
|
||||
)
|
||||
|
||||
print("[Voice Changer] RVC loading... slot:", self.tmp_slot)
|
||||
@ -172,40 +177,53 @@ class RVC:
|
||||
# print("config shape:2::::", (cpt).keys)
|
||||
config_len = len(cpt["config"])
|
||||
upsamplingRateDims = len(cpt["config"][12])
|
||||
if config_len == 18 and cpt["f0"] == 0:
|
||||
print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_PITCHLESS")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_PITCHLESS
|
||||
elif config_len == 18 and cpt["f0"] == 1:
|
||||
print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_NORMAL")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_NORMAL
|
||||
elif config_len == 19:
|
||||
print("PARAMS:::::::::", cpt["params"])
|
||||
embedding = cpt["config"][17]
|
||||
if embedding == 256 and cpt["f0"] == 0:
|
||||
print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_256_PITCHLESS")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_256_PITCHLESS
|
||||
elif embedding == 256 and cpt["f0"] == 1:
|
||||
print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_256_NORMAL")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_256_NORMAL
|
||||
elif embedding == 768 and cpt["f0"] == 0:
|
||||
print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_768_PITCHLESS")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_768_PITCHLESS
|
||||
else:
|
||||
print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_768_NORMAL")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_768_NORMAL
|
||||
if config_len == 18:
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_RVC
|
||||
self.settings.modelSlots[slot].embChannels = 256
|
||||
else:
|
||||
print("[Voice Changer] RVC Model Type: UNKNOWN")
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_UNKNOWN
|
||||
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI
|
||||
self.settings.modelSlots[slot].embChannels = cpt["config"][17]
|
||||
self.settings.modelSlots[slot].f0 = True if cpt["f0"] == 1 else False
|
||||
self.settings.modelSlots[slot].samplingRate = cpt["config"][-1]
|
||||
|
||||
self.settings.modelSamplingRate = cpt["config"][-1]
|
||||
|
||||
if self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_NORMAL:
|
||||
# if config_len == 18 and cpt["f0"] == 0:
|
||||
# print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_PITCHLESS")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_PITCHLESS
|
||||
# elif config_len == 18 and cpt["f0"] == 1:
|
||||
# print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_NORMAL")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_NORMAL
|
||||
# elif config_len == 19:
|
||||
# print("PARAMS:::::::::", cpt["params"])
|
||||
# embedding = cpt["config"][17]
|
||||
# if embedding == 256 and cpt["f0"] == 0:
|
||||
# print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_256_PITCHLESS")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_256_PITCHLESS
|
||||
# elif embedding == 256 and cpt["f0"] == 1:
|
||||
# print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_256_NORMAL")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_256_NORMAL
|
||||
# elif embedding == 768 and cpt["f0"] == 0:
|
||||
# print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_768_PITCHLESS")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_768_PITCHLESS
|
||||
# else:
|
||||
# print("[Voice Changer] RVC Model Type: RVC_MODEL_TYPE_WEBUI_768_NORMAL")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_WEBUI_768_NORMAL
|
||||
# else:
|
||||
# print("[Voice Changer] RVC Model Type: UNKNOWN")
|
||||
# self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_UNKNOWN
|
||||
|
||||
if self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_RVC and self.settings.modelSlots[slot].f0 == True:
|
||||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=self.is_half)
|
||||
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_PITCHLESS:
|
||||
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_RVC and self.settings.modelSlots[slot].f0 == False:
|
||||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_WEBUI_256_NORMAL or self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_WEBUI_768_NORMAL:
|
||||
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_WEBUI and self.settings.modelSlots[slot].f0 == True:
|
||||
net_g = SynthesizerTrnMs768NSFsid(**cpt["params"], is_half=self.is_half)
|
||||
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_WEBUI_256_PITCHLESS or self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_WEBUI_768_PITCHLESS:
|
||||
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_WEBUI and self.settings.modelSlots[slot].f0 == False:
|
||||
######################
|
||||
# TBD
|
||||
######################
|
||||
print("webui non-f0 is not supported yet")
|
||||
net_g = SynthesizerTrnMs768NSFsid(**cpt["params"], is_half=self.is_half)
|
||||
else:
|
||||
print("unknwon")
|
||||
@ -221,6 +239,15 @@ class RVC:
|
||||
# ONNXモデル生成
|
||||
if onnxModelFile != None and onnxModelFile != "":
|
||||
self.next_onnx_session = ModelWrapper(onnxModelFile)
|
||||
self.settings.modelSlots[slot].samplingRateOnnx = self.next_onnx_session.getSamplingRate()
|
||||
self.settings.modelSlots[slot].f0Onnx = self.next_onnx_session.getF0()
|
||||
if self.settings.modelSlots[slot].samplingRate == -1: # ONNXにsampling rateが入っていない
|
||||
self.settings.modelSlots[slot].samplingRate = self.settings.modelSamplingRate
|
||||
|
||||
# ONNXがある場合は、ONNXの設定を優先
|
||||
self.settings.modelSlots[slot].samplingRate = self.settings.modelSlots[slot].samplingRateOnnx
|
||||
self.settings.modelSlots[slot].f0 = self.settings.modelSlots[slot].f0Onnx
|
||||
|
||||
else:
|
||||
self.next_onnx_session = None
|
||||
|
||||
@ -352,8 +379,10 @@ class RVC:
|
||||
if_f0 = 1
|
||||
f0_file = None
|
||||
|
||||
f0 = self.settings.modelSlots[self.currentSlot].f0
|
||||
embChannels = self.settings.modelSlots[self.currentSlot].embChannels
|
||||
audio_out = vc.pipeline(self.hubert_model, self.onnx_session, sid, audio, times, f0_up_key, f0_method,
|
||||
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file)
|
||||
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file, silence_front=self.settings.extraConvertSize / self.settings.modelSamplingRate, f0=f0, embChannels=embChannels)
|
||||
result = audio_out * np.sqrt(vol)
|
||||
|
||||
return result
|
||||
@ -397,9 +426,11 @@ class RVC:
|
||||
if_f0 = 1
|
||||
f0_file = None
|
||||
|
||||
modelType = self.settings.modelSlots[self.currentSlot].modelType
|
||||
f0 = self.settings.modelSlots[self.currentSlot].f0
|
||||
|
||||
embChannels = self.settings.modelSlots[self.currentSlot].embChannels
|
||||
audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method,
|
||||
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file, silence_front=self.settings.extraConvertSize / self.settings.modelSamplingRate, modelType=modelType)
|
||||
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file, silence_front=self.settings.extraConvertSize / self.settings.modelSamplingRate, f0=f0, embChannels=embChannels)
|
||||
|
||||
result = audio_out * np.sqrt(vol)
|
||||
|
||||
@ -454,11 +485,19 @@ class RVC:
|
||||
output_file_simple = os.path.splitext(os.path.basename(pyTorchModelFile))[0] + "_simple.onnx"
|
||||
output_path = os.path.join(TMP_DIR, output_file)
|
||||
output_path_simple = os.path.join(TMP_DIR, output_file_simple)
|
||||
metadata = {
|
||||
"application": "VC_CLIENT",
|
||||
"version": "1",
|
||||
"ModelType": self.settings.modelSlots[self.slot].modelType,
|
||||
"samplingRate": self.settings.modelSlots[self.slot].samplingRate,
|
||||
"f0": self.settings.modelSlots[self.slot].f0,
|
||||
"embChannels": self.settings.modelSlots[self.slot].embChannels,
|
||||
}
|
||||
|
||||
if torch.cuda.device_count() > 0:
|
||||
onnxExporter.export2onnx(pyTorchModelFile, output_path, output_path_simple, True)
|
||||
onnxExporter.export2onnx(pyTorchModelFile, output_path, output_path_simple, True, metadata)
|
||||
else:
|
||||
print("[Voice Changer] Warning!!! onnx export with float32. maybe size is doubled.")
|
||||
onnxExporter.export2onnx(pyTorchModelFile, output_path, output_path_simple, False)
|
||||
onnxExporter.export2onnx(pyTorchModelFile, output_path, output_path_simple, False, metadata)
|
||||
|
||||
return {"status": "ok", "path": f"/tmp/{output_file_simple}", "filename": output_file_simple}
|
||||
|
@ -1,7 +1,10 @@
|
||||
RVC_MODEL_TYPE_NORMAL = 0
|
||||
RVC_MODEL_TYPE_PITCHLESS = 1
|
||||
RVC_MODEL_TYPE_WEBUI_256_NORMAL = 2
|
||||
RVC_MODEL_TYPE_WEBUI_256_PITCHLESS = 3
|
||||
RVC_MODEL_TYPE_WEBUI_768_NORMAL = 4
|
||||
RVC_MODEL_TYPE_WEBUI_768_PITCHLESS = 5
|
||||
RVC_MODEL_TYPE_UNKNOWN = 99
|
||||
# RVC_MODEL_TYPE_NORMAL = 0
|
||||
# RVC_MODEL_TYPE_PITCHLESS = 1
|
||||
# RVC_MODEL_TYPE_WEBUI_256_NORMAL = 2
|
||||
# RVC_MODEL_TYPE_WEBUI_256_PITCHLESS = 3
|
||||
# RVC_MODEL_TYPE_WEBUI_768_NORMAL = 4
|
||||
# RVC_MODEL_TYPE_WEBUI_768_PITCHLESS = 5
|
||||
# RVC_MODEL_TYPE_UNKNOWN = 99
|
||||
|
||||
RVC_MODEL_TYPE_RVC = 0
|
||||
RVC_MODEL_TYPE_WEBUI = 1
|
||||
|
@ -10,7 +10,8 @@ import pyworld
|
||||
import os
|
||||
import traceback
|
||||
import faiss
|
||||
from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCHLESS, RVC_MODEL_TYPE_WEBUI_256_NORMAL, RVC_MODEL_TYPE_WEBUI_768_NORMAL, RVC_MODEL_TYPE_WEBUI_256_PITCHLESS, RVC_MODEL_TYPE_WEBUI_768_PITCHLESS
|
||||
# from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCHLESS, RVC_MODEL_TYPE_WEBUI_256_NORMAL, RVC_MODEL_TYPE_WEBUI_768_NORMAL, RVC_MODEL_TYPE_WEBUI_256_PITCHLESS, RVC_MODEL_TYPE_WEBUI_768_PITCHLESS
|
||||
from .const import RVC_MODEL_TYPE_RVC, RVC_MODEL_TYPE_WEBUI
|
||||
|
||||
|
||||
class VC(object):
|
||||
@ -83,7 +84,7 @@ class VC(object):
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse, f0bak # 1-0
|
||||
|
||||
def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate, modelType): # ,file_index,file_big_npy
|
||||
def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate, f0=True, embChannels=256): # ,file_index,file_big_npy
|
||||
feats = torch.from_numpy(audio0)
|
||||
if (self.is_half == True):
|
||||
feats = feats.half()
|
||||
@ -94,7 +95,7 @@ class VC(object):
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
feats = feats.view(1, -1)
|
||||
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||
if modelType == RVC_MODEL_TYPE_NORMAL or modelType == RVC_MODEL_TYPE_PITCHLESS or modelType == RVC_MODEL_TYPE_WEBUI_256_NORMAL or modelType == RVC_MODEL_TYPE_WEBUI_256_PITCHLESS:
|
||||
if embChannels == 256:
|
||||
inputs = {
|
||||
"source": feats.to(self.device),
|
||||
"padding_mask": padding_mask,
|
||||
@ -109,11 +110,9 @@ class VC(object):
|
||||
t0 = ttime()
|
||||
with torch.no_grad():
|
||||
logits = model.extract_features(**inputs)
|
||||
if modelType == RVC_MODEL_TYPE_NORMAL or modelType == RVC_MODEL_TYPE_PITCHLESS or modelType == RVC_MODEL_TYPE_WEBUI_256_NORMAL or modelType == RVC_MODEL_TYPE_WEBUI_256_PITCHLESS:
|
||||
print("-------------------------256")
|
||||
if embChannels == 256:
|
||||
feats = model.final_proj(logits[0])
|
||||
else:
|
||||
print("-------------------------768")
|
||||
feats = logits[0]
|
||||
|
||||
if (isinstance(index, type(None)) == False and isinstance(big_npy, type(None)) == False and index_rate != 0):
|
||||
@ -138,10 +137,14 @@ class VC(object):
|
||||
p_len = torch.tensor([p_len], device=self.device).long()
|
||||
|
||||
with torch.no_grad():
|
||||
if modelType == RVC_MODEL_TYPE_NORMAL or modelType == RVC_MODEL_TYPE_WEBUI_256_NORMAL or modelType == RVC_MODEL_TYPE_WEBUI_768_NORMAL or modelType == RVC_MODEL_TYPE_WEBUI_256_PITCHLESS or modelType == RVC_MODEL_TYPE_WEBUI_768_PITCHLESS:
|
||||
if f0 == True:
|
||||
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
else:
|
||||
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
if hasattr(net_g, "infer_pitchless"):
|
||||
audio1 = (net_g.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
else:
|
||||
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
|
||||
# audio1 = (net_g.infer(feats, p_len, None, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
|
||||
del feats, p_len, padding_mask
|
||||
@ -151,7 +154,7 @@ class VC(object):
|
||||
times[2] += (t2 - t1)
|
||||
return audio1
|
||||
|
||||
def pipeline(self, model, net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=None, silence_front=0, modelType: int = RVC_MODEL_TYPE_NORMAL):
|
||||
def pipeline(self, model, net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=None, silence_front=0, f0=True, embChannels=256):
|
||||
if (file_big_npy != "" and file_index != "" and os.path.exists(file_big_npy) == True and os.path.exists(file_index) == True and index_rate != 0):
|
||||
try:
|
||||
index = faiss.read_index(file_index)
|
||||
@ -182,10 +185,10 @@ class VC(object):
|
||||
times[1] += (t2 - t1)
|
||||
if self.t_pad_tgt == 0:
|
||||
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch,
|
||||
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, modelType))
|
||||
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, f0, embChannels))
|
||||
else:
|
||||
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch,
|
||||
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, modelType)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, f0, embChannels)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
|
||||
audio_opt = np.concatenate(audio_opt)
|
||||
del pitch, pitchf, sid
|
||||
|
@ -1,13 +1,11 @@
|
||||
import sys
|
||||
import os
|
||||
import argparse
|
||||
from distutils.util import strtobool
|
||||
import json
|
||||
import torch
|
||||
from torch import nn
|
||||
from onnxsim import simplify
|
||||
import onnx
|
||||
|
||||
from infer_pack.models import TextEncoder256, GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock
|
||||
from infer_pack.models import TextEncoder256, GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock, Generator
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
|
||||
@ -98,14 +96,105 @@ class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
def export2onnx(input_model, output_model, output_model_simple, is_half):
|
||||
class SynthesizerTrnMs256NSFsid_nono_ONNX(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
sr=None,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout, f0=False
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
5,
|
||||
1,
|
||||
16,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def forward(self, phone, phone_lengths, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
def export2onnx(input_model, output_model, output_model_simple, is_half, metadata):
|
||||
|
||||
cpt = torch.load(input_model, map_location="cpu")
|
||||
if is_half:
|
||||
dev = torch.device("cuda", index=0)
|
||||
else:
|
||||
dev = torch.device("cpu")
|
||||
|
||||
net_g_onnx = SynthesizerTrnMs256NSFsid_ONNX(*cpt["config"], is_half=is_half)
|
||||
if metadata["f0"] == True:
|
||||
net_g_onnx = SynthesizerTrnMs256NSFsid_ONNX(*cpt["config"], is_half=is_half)
|
||||
elif metadata["f0"] == False:
|
||||
net_g_onnx = SynthesizerTrnMs256NSFsid_nono_ONNX(*cpt["config"])
|
||||
|
||||
net_g_onnx.eval().to(dev)
|
||||
net_g_onnx.load_state_dict(cpt["weight"], strict=False)
|
||||
if is_half:
|
||||
@ -116,22 +205,22 @@ def export2onnx(input_model, output_model, output_model_simple, is_half):
|
||||
else:
|
||||
feats = torch.FloatTensor(1, 2192, 256).to(dev)
|
||||
p_len = torch.LongTensor([2192]).to(dev)
|
||||
pitch = torch.zeros(1, 2192, dtype=torch.int64).to(dev)
|
||||
|
||||
pitchf = torch.FloatTensor(1, 2192).to(dev)
|
||||
sid = torch.LongTensor([0]).to(dev)
|
||||
|
||||
input_names = ["feats", "p_len", "pitch", "pitchf", "sid"]
|
||||
if metadata["f0"] == True:
|
||||
pitch = torch.zeros(1, 2192, dtype=torch.int64).to(dev)
|
||||
pitchf = torch.FloatTensor(1, 2192).to(dev)
|
||||
input_names = ["feats", "p_len", "pitch", "pitchf", "sid"]
|
||||
inputs = (feats, p_len, pitch, pitchf, sid,)
|
||||
|
||||
else:
|
||||
input_names = ["feats", "p_len", "sid"]
|
||||
inputs = (feats, p_len, sid,)
|
||||
|
||||
output_names = ["audio", ]
|
||||
|
||||
torch.onnx.export(net_g_onnx,
|
||||
(
|
||||
feats,
|
||||
p_len,
|
||||
pitch,
|
||||
pitchf,
|
||||
sid,
|
||||
),
|
||||
inputs,
|
||||
output_model,
|
||||
dynamic_axes={
|
||||
"feats": [1],
|
||||
@ -146,4 +235,7 @@ def export2onnx(input_model, output_model, output_model_simple, is_half):
|
||||
|
||||
model_onnx2 = onnx.load(output_model)
|
||||
model_simp, check = simplify(model_onnx2)
|
||||
meta = model_simp.metadata_props.add()
|
||||
meta.key = "metadata"
|
||||
meta.value = json.dumps(metadata)
|
||||
onnx.save(model_simp, output_model_simple)
|
||||
|
@ -169,108 +169,3 @@ class SynthesizerTrnMsNSFsid(nn.Module):
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFSidNono(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
emb_channels,
|
||||
sr=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
self.emb_channels = emb_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
emb_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=False,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
5,
|
||||
1,
|
||||
16,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
z_p = self.flow(z, y_mask, g=g)
|
||||
z_slice, ids_slice = commons.rand_slice_segments(
|
||||
z, y_lengths, self.segment_size
|
||||
)
|
||||
o = self.dec(z_slice, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
def infer(self, phone, phone_lengths, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
Loading…
x
Reference in New Issue
Block a user