WIP: refactoring
This commit is contained in:
parent
c96609640d
commit
4ac4a225a7
@ -1,6 +1,10 @@
|
||||
import sys
|
||||
import os
|
||||
if sys.platform.startswith('darwin'):
|
||||
|
||||
from voice_changer.utils.LoadModelParams import LoadModelParams
|
||||
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
||||
|
||||
if sys.platform.startswith("darwin"):
|
||||
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
||||
if len(baseDir) != 1:
|
||||
print("baseDir should be only one ", baseDir)
|
||||
@ -17,16 +21,26 @@ import torch
|
||||
import onnxruntime
|
||||
import pyworld as pw
|
||||
|
||||
from models import SynthesizerTrn
|
||||
from voice_changer.MMVCv15.client_modules import convert_continuos_f0, spectrogram_torch, get_hparams_from_file, load_checkpoint
|
||||
from models import SynthesizerTrn # type:ignore
|
||||
from voice_changer.MMVCv15.client_modules import (
|
||||
convert_continuos_f0,
|
||||
spectrogram_torch,
|
||||
get_hparams_from_file,
|
||||
load_checkpoint,
|
||||
)
|
||||
|
||||
from Exceptions import NoModeLoadedException, ONNXInputArgumentException
|
||||
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
providers = [
|
||||
"OpenVINOExecutionProvider",
|
||||
"CUDAExecutionProvider",
|
||||
"DmlExecutionProvider",
|
||||
"CPUExecutionProvider",
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class MMVCv15Settings():
|
||||
class MMVCv15Settings:
|
||||
gpu: int = 0
|
||||
srcId: int = 0
|
||||
dstId: int = 101
|
||||
@ -46,6 +60,8 @@ class MMVCv15Settings():
|
||||
|
||||
|
||||
class MMVCv15:
|
||||
audio_buffer: AudioInOut | None = None
|
||||
|
||||
def __init__(self):
|
||||
self.settings = MMVCv15Settings()
|
||||
self.net_g = None
|
||||
@ -53,13 +69,12 @@ class MMVCv15:
|
||||
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
|
||||
def loadModel(self, props):
|
||||
|
||||
self.settings.configFile = props["files"]["configFilename"]
|
||||
def loadModel(self, props: LoadModelParams):
|
||||
self.settings.configFile = props.files.configFilename
|
||||
self.hps = get_hparams_from_file(self.settings.configFile)
|
||||
|
||||
self.settings.pyTorchModelFile = props["files"]["pyTorchModelFilename"]
|
||||
self.settings.onnxModelFile = props["files"]["onnxModelFilename"]
|
||||
self.settings.pyTorchModelFile = props.files.pyTorchModelFilename
|
||||
self.settings.onnxModelFile = props.files.onnxModelFilename
|
||||
|
||||
# PyTorchモデル生成
|
||||
self.net_g = SynthesizerTrn(
|
||||
@ -78,20 +93,19 @@ class MMVCv15:
|
||||
requires_grad_pe=self.hps.requires_grad.pe,
|
||||
requires_grad_flow=self.hps.requires_grad.flow,
|
||||
requires_grad_text_enc=self.hps.requires_grad.text_enc,
|
||||
requires_grad_dec=self.hps.requires_grad.dec
|
||||
requires_grad_dec=self.hps.requires_grad.dec,
|
||||
)
|
||||
if self.settings.pyTorchModelFile != None:
|
||||
if self.settings.pyTorchModelFile is not None:
|
||||
self.net_g.eval()
|
||||
load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
self.onxx_input_length = 8192
|
||||
if self.settings.onnxModelFile != None:
|
||||
if self.settings.onnxModelFile is not None:
|
||||
ort_options = onnxruntime.SessionOptions()
|
||||
ort_options.intra_op_num_threads = 8
|
||||
self.onnx_session = onnxruntime.InferenceSession(
|
||||
self.settings.onnxModelFile,
|
||||
providers=providers
|
||||
self.settings.onnxModelFile, providers=providers
|
||||
)
|
||||
inputs_info = self.onnx_session.get_inputs()
|
||||
for i in inputs_info:
|
||||
@ -100,23 +114,39 @@ class MMVCv15:
|
||||
self.onxx_input_length = i.shape[2]
|
||||
return self.get_info()
|
||||
|
||||
def update_settings(self, key: str, val: any):
|
||||
if key == "onnxExecutionProvider" and self.settings.onnxModelFile != "" and self.settings.onnxModelFile != None:
|
||||
def update_settings(self, key: str, val: int | float | str):
|
||||
if (
|
||||
key == "onnxExecutionProvider"
|
||||
and self.settings.onnxModelFile != ""
|
||||
and self.settings.onnxModelFile is not None
|
||||
):
|
||||
if val == "CUDAExecutionProvider":
|
||||
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
||||
self.settings.gpu = 0
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
||||
provider_options = [{"device_id": self.settings.gpu}]
|
||||
self.onnx_session.set_providers(
|
||||
providers=[val], provider_options=provider_options
|
||||
)
|
||||
else:
|
||||
self.onnx_session.set_providers(providers=[val])
|
||||
elif key in self.settings.intData:
|
||||
setattr(self.settings, key, int(val))
|
||||
if key == "gpu" and val >= 0 and val < self.gpu_num and self.settings.onnxModelFile != "" and self.settings.onnxModelFile != None:
|
||||
val = int(val)
|
||||
setattr(self.settings, key, val)
|
||||
if (
|
||||
key == "gpu"
|
||||
and val >= 0
|
||||
and val < self.gpu_num
|
||||
and self.settings.onnxModelFile != ""
|
||||
and self.settings.onnxModelFile is not None
|
||||
):
|
||||
providers = self.onnx_session.get_providers()
|
||||
print("Providers:", providers)
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
||||
provider_options = [{"device_id": self.settings.gpu}]
|
||||
self.onnx_session.set_providers(
|
||||
providers=["CUDAExecutionProvider"],
|
||||
provider_options=provider_options,
|
||||
)
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
elif key in self.settings.strData:
|
||||
@ -129,11 +159,15 @@ class MMVCv15:
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers(
|
||||
) if self.settings.onnxModelFile != "" and self.settings.onnxModelFile != None else []
|
||||
data["onnxExecutionProviders"] = (
|
||||
self.onnx_session.get_providers()
|
||||
if self.settings.onnxModelFile != ""
|
||||
and self.settings.onnxModelFile is not None
|
||||
else []
|
||||
)
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
if data[f] is not None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
@ -141,36 +175,58 @@ class MMVCv15:
|
||||
return data
|
||||
|
||||
def get_processing_sampling_rate(self):
|
||||
if hasattr(self, "hps") == False:
|
||||
if hasattr(self, "hps") is False:
|
||||
raise NoModeLoadedException("config")
|
||||
return self.hps.data.sampling_rate
|
||||
|
||||
def _get_f0(self, detector: str, newData: any):
|
||||
|
||||
def _get_f0(self, detector: str, newData: AudioInOut):
|
||||
audio_norm_np = newData.astype(np.float64)
|
||||
if detector == "dio":
|
||||
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
|
||||
_f0, _time = pw.dio(
|
||||
audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5
|
||||
)
|
||||
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
|
||||
else:
|
||||
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
||||
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
|
||||
f0, t = pw.harvest(
|
||||
audio_norm_np,
|
||||
self.hps.data.sampling_rate,
|
||||
frame_period=5.5,
|
||||
f0_floor=71.0,
|
||||
f0_ceil=1000.0,
|
||||
)
|
||||
f0 = convert_continuos_f0(
|
||||
f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length)
|
||||
)
|
||||
f0 = torch.from_numpy(f0.astype(np.float32))
|
||||
return f0
|
||||
|
||||
def _get_spec(self, newData: any):
|
||||
def _get_spec(self, newData: AudioInOut):
|
||||
audio = torch.FloatTensor(newData)
|
||||
audio_norm = audio.unsqueeze(0) # unsqueeze
|
||||
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||||
center=False)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate,
|
||||
self.hps.data.hop_length,
|
||||
self.hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec
|
||||
|
||||
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0):
|
||||
def generate_input(
|
||||
self,
|
||||
newData: AudioInOut,
|
||||
inputSize: int,
|
||||
crossfadeSize: int,
|
||||
solaSearchFrame: int = 0,
|
||||
):
|
||||
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||
if self.audio_buffer is not None:
|
||||
self.audio_buffer = np.concatenate(
|
||||
[self.audio_buffer, newData], 0
|
||||
) # 過去のデータに連結
|
||||
else:
|
||||
self.audio_buffer = newData
|
||||
|
||||
@ -179,13 +235,16 @@ class MMVCv15:
|
||||
if convertSize < 8192:
|
||||
convertSize = 8192
|
||||
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
|
||||
convertSize = convertSize + (
|
||||
self.hps.data.hop_length - (convertSize % self.hps.data.hop_length)
|
||||
)
|
||||
|
||||
# ONNX は固定長
|
||||
if self.settings.framework == "ONNX":
|
||||
convertSize = self.onxx_input_length
|
||||
|
||||
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
||||
convertOffset = -1 * convertSize
|
||||
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
||||
|
||||
f0 = self._get_f0(self.settings.f0Detector, self.audio_buffer) # torch
|
||||
f0 = (f0 * self.settings.f0Factor).unsqueeze(0).unsqueeze(0)
|
||||
@ -194,7 +253,7 @@ class MMVCv15:
|
||||
return [spec, f0, sid]
|
||||
|
||||
def _onnx_inference(self, data):
|
||||
if self.settings.onnxModelFile == "" and self.settings.onnxModelFile == None:
|
||||
if self.settings.onnxModelFile == "" and self.settings.onnxModelFile is None:
|
||||
print("[Voice Changer] No ONNX session.")
|
||||
raise NoModeLoadedException("ONNX")
|
||||
|
||||
@ -204,23 +263,30 @@ class MMVCv15:
|
||||
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
||||
sin, d = self.net_g.make_sin_d(f0)
|
||||
(d0, d1, d2, d3) = d
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"specs": spec.numpy(),
|
||||
"lengths": spec_lengths.numpy(),
|
||||
"sin": sin.numpy(),
|
||||
"d0": d0.numpy(),
|
||||
"d1": d1.numpy(),
|
||||
"d2": d2.numpy(),
|
||||
"d3": d3.numpy(),
|
||||
"sid_src": sid_src.numpy(),
|
||||
"sid_tgt": sid_tgt1.numpy()
|
||||
})[0][0, 0] * self.hps.data.max_wav_value
|
||||
audio1 = (
|
||||
self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"specs": spec.numpy(),
|
||||
"lengths": spec_lengths.numpy(),
|
||||
"sin": sin.numpy(),
|
||||
"d0": d0.numpy(),
|
||||
"d1": d1.numpy(),
|
||||
"d2": d2.numpy(),
|
||||
"d3": d3.numpy(),
|
||||
"sid_src": sid_src.numpy(),
|
||||
"sid_tgt": sid_tgt1.numpy(),
|
||||
},
|
||||
)[0][0, 0]
|
||||
* self.hps.data.max_wav_value
|
||||
)
|
||||
return audio1
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
if self.settings.pyTorchModelFile == "" or self.settings.pyTorchModelFile == None:
|
||||
if (
|
||||
self.settings.pyTorchModelFile == ""
|
||||
or self.settings.pyTorchModelFile is None
|
||||
):
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
raise NoModeLoadedException("pytorch")
|
||||
|
||||
@ -237,7 +303,12 @@ class MMVCv15:
|
||||
sid_src = sid_src.to(dev)
|
||||
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
||||
|
||||
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, f0, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
||||
audio1 = (
|
||||
self.net_g.to(dev)
|
||||
.voice_conversion(spec, spec_lengths, f0, sid_src, sid_target)[0, 0]
|
||||
.data
|
||||
* self.hps.data.max_wav_value
|
||||
)
|
||||
result = audio1.float().cpu().numpy()
|
||||
return result
|
||||
|
||||
@ -257,7 +328,7 @@ class MMVCv15:
|
||||
del self.onnx_session
|
||||
|
||||
remove_path = os.path.join("MMVC_Client_v15", "python")
|
||||
sys.path = [x for x in sys.path if x.endswith(remove_path) == False]
|
||||
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
||||
|
||||
for key in list(sys.modules):
|
||||
val = sys.modules.get(key)
|
||||
@ -266,5 +337,5 @@ class MMVCv15:
|
||||
if file_path.find(remove_path + os.path.sep) >= 0:
|
||||
print("remove", key, file_path)
|
||||
sys.modules.pop(key)
|
||||
except Exception as e:
|
||||
except: # type:ignore
|
||||
pass
|
||||
|
Loading…
x
Reference in New Issue
Block a user