WIP: Japanese Hubert
This commit is contained in:
parent
72fb482dc7
commit
6a01467ac8
@ -82,6 +82,11 @@ class EnumInferenceTypes(Enum):
|
|||||||
onnxRVCNono = "onnxRVCNono"
|
onnxRVCNono = "onnxRVCNono"
|
||||||
|
|
||||||
|
|
||||||
|
class EnumPitchExtractorTypes(Enum):
|
||||||
|
harvest = "harvest"
|
||||||
|
dio = "dio"
|
||||||
|
|
||||||
|
|
||||||
class EnumFrameworkTypes(Enum):
|
class EnumFrameworkTypes(Enum):
|
||||||
pyTorch = "pyTorch"
|
pyTorch = "pyTorch"
|
||||||
onnx = "onnx"
|
onnx = "onnx"
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
import sys
|
import sys
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||||
|
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
|
||||||
|
|
||||||
# avoiding parse arg error in RVC
|
# avoiding parse arg error in RVC
|
||||||
sys.argv = ["MMVCServerSIO.py"]
|
sys.argv = ["MMVCServerSIO.py"]
|
||||||
|
|
||||||
@ -55,10 +58,14 @@ class RVC:
|
|||||||
audio_buffer: AudioInOut | None = None
|
audio_buffer: AudioInOut | None = None
|
||||||
embedder: Embedder | None = None
|
embedder: Embedder | None = None
|
||||||
inferencer: Inferencer | None = None
|
inferencer: Inferencer | None = None
|
||||||
|
pitchExtractor: PitchExtractor | None = None
|
||||||
|
|
||||||
def __init__(self, params: VoiceChangerParams):
|
def __init__(self, params: VoiceChangerParams):
|
||||||
self.initialLoad = True
|
self.initialLoad = True
|
||||||
self.settings = RVCSettings()
|
self.settings = RVCSettings()
|
||||||
|
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(
|
||||||
|
self.settings.f0Detector
|
||||||
|
)
|
||||||
|
|
||||||
self.feature_file = None
|
self.feature_file = None
|
||||||
self.index_file = None
|
self.index_file = None
|
||||||
@ -102,6 +109,15 @@ class RVC:
|
|||||||
|
|
||||||
return self.get_info()
|
return self.get_info()
|
||||||
|
|
||||||
|
def _getDevice(self):
|
||||||
|
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
|
||||||
|
dev = torch.device("cpu")
|
||||||
|
elif self.mps_enabled:
|
||||||
|
dev = torch.device("mps")
|
||||||
|
else:
|
||||||
|
dev = torch.device("cuda", index=self.settings.gpu)
|
||||||
|
return dev
|
||||||
|
|
||||||
def prepareModel(self, slot: int):
|
def prepareModel(self, slot: int):
|
||||||
if slot < 0:
|
if slot < 0:
|
||||||
return self.get_info()
|
return self.get_info()
|
||||||
@ -110,20 +126,14 @@ class RVC:
|
|||||||
filename = (
|
filename = (
|
||||||
modelSlot.onnxModelFile if modelSlot.isONNX else modelSlot.pyTorchModelFile
|
modelSlot.onnxModelFile if modelSlot.isONNX else modelSlot.pyTorchModelFile
|
||||||
)
|
)
|
||||||
|
dev = self._getDevice()
|
||||||
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
|
|
||||||
dev = torch.device("cpu")
|
|
||||||
elif self.mps_enabled:
|
|
||||||
dev = torch.device("mps")
|
|
||||||
else:
|
|
||||||
dev = torch.device("cuda", index=self.settings.gpu)
|
|
||||||
|
|
||||||
# Inferencerのロード
|
# Inferencerのロード
|
||||||
inferencer = InferencerManager.getInferencer(
|
inferencer = InferencerManager.getInferencer(
|
||||||
modelSlot.modelType,
|
modelSlot.modelType,
|
||||||
filename,
|
filename,
|
||||||
self.settings.isHalf,
|
self.settings.isHalf,
|
||||||
torch.device("cuda:0"),
|
dev,
|
||||||
)
|
)
|
||||||
self.next_inferencer = inferencer
|
self.next_inferencer = inferencer
|
||||||
|
|
||||||
@ -156,8 +166,14 @@ class RVC:
|
|||||||
|
|
||||||
def switchModel(self):
|
def switchModel(self):
|
||||||
print("[Voice Changer] Switching model..")
|
print("[Voice Changer] Switching model..")
|
||||||
# del self.net_g
|
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
|
||||||
# del self.onnx_session
|
dev = torch.device("cpu")
|
||||||
|
elif self.mps_enabled:
|
||||||
|
dev = torch.device("mps")
|
||||||
|
else:
|
||||||
|
dev = torch.device("cuda", index=self.settings.gpu)
|
||||||
|
|
||||||
|
# embedderはモデルによらず再利用できる可能性が高いので、Switchのタイミングでこちらで取得
|
||||||
try:
|
try:
|
||||||
self.embedder = EmbedderManager.getEmbedder(
|
self.embedder = EmbedderManager.getEmbedder(
|
||||||
self.next_embedder,
|
self.next_embedder,
|
||||||
@ -330,6 +346,7 @@ class RVC:
|
|||||||
# self.hubert_model,
|
# self.hubert_model,
|
||||||
self.embedder,
|
self.embedder,
|
||||||
self.onnx_session,
|
self.onnx_session,
|
||||||
|
self.pitchExtractor,
|
||||||
sid,
|
sid,
|
||||||
audio,
|
audio,
|
||||||
f0_up_key,
|
f0_up_key,
|
||||||
@ -391,6 +408,7 @@ class RVC:
|
|||||||
audio_out = vc.pipeline(
|
audio_out = vc.pipeline(
|
||||||
self.embedder,
|
self.embedder,
|
||||||
self.inferencer,
|
self.inferencer,
|
||||||
|
self.pitchExtractor,
|
||||||
sid,
|
sid,
|
||||||
audio,
|
audio,
|
||||||
f0_up_key,
|
f0_up_key,
|
||||||
|
@ -3,10 +3,10 @@ import numpy as np
|
|||||||
# import parselmouth
|
# import parselmouth
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import scipy.signal as signal
|
|
||||||
import pyworld
|
|
||||||
|
|
||||||
from voice_changer.RVC.embedder.Embedder import Embedder
|
from voice_changer.RVC.embedder.Embedder import Embedder
|
||||||
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||||
|
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||||
|
|
||||||
|
|
||||||
class VC(object):
|
class VC(object):
|
||||||
@ -18,62 +18,11 @@ class VC(object):
|
|||||||
self.device = device
|
self.device = device
|
||||||
self.is_half = is_half
|
self.is_half = is_half
|
||||||
|
|
||||||
def get_f0(self, audio, p_len, f0_up_key, f0_method, silence_front=0):
|
|
||||||
n_frames = int(len(audio) // self.window) + 1
|
|
||||||
start_frame = int(silence_front * self.sr / self.window)
|
|
||||||
real_silence_front = start_frame * self.window / self.sr
|
|
||||||
|
|
||||||
silence_front_offset = int(np.round(real_silence_front * self.sr))
|
|
||||||
audio = audio[silence_front_offset:]
|
|
||||||
|
|
||||||
# time_step = self.window / self.sr * 1000
|
|
||||||
f0_min = 50
|
|
||||||
f0_max = 1100
|
|
||||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
||||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
||||||
if f0_method == "dio":
|
|
||||||
_f0, t = pyworld.dio(
|
|
||||||
audio.astype(np.double),
|
|
||||||
self.sr,
|
|
||||||
f0_floor=f0_min,
|
|
||||||
f0_ceil=f0_max,
|
|
||||||
channels_in_octave=2,
|
|
||||||
frame_period=10,
|
|
||||||
)
|
|
||||||
f0 = pyworld.stonemask(audio.astype(np.double), _f0, t, self.sr)
|
|
||||||
f0 = np.pad(
|
|
||||||
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
f0, t = pyworld.harvest(
|
|
||||||
audio.astype(np.double),
|
|
||||||
fs=self.sr,
|
|
||||||
f0_ceil=f0_max,
|
|
||||||
frame_period=10,
|
|
||||||
)
|
|
||||||
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, self.sr)
|
|
||||||
f0 = signal.medfilt(f0, 3)
|
|
||||||
|
|
||||||
f0 = np.pad(
|
|
||||||
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
|
||||||
)
|
|
||||||
|
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
|
||||||
f0bak = f0.copy()
|
|
||||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
|
||||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
||||||
f0_mel_max - f0_mel_min
|
|
||||||
) + 1
|
|
||||||
f0_mel[f0_mel <= 1] = 1
|
|
||||||
f0_mel[f0_mel > 255] = 255
|
|
||||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
|
||||||
|
|
||||||
return f0_coarse, f0bak
|
|
||||||
|
|
||||||
def pipeline(
|
def pipeline(
|
||||||
self,
|
self,
|
||||||
embedder: Embedder,
|
embedder: Embedder,
|
||||||
model,
|
inferencer: Inferencer,
|
||||||
|
pitchExtractor: PitchExtractor,
|
||||||
sid,
|
sid,
|
||||||
audio,
|
audio,
|
||||||
f0_up_key,
|
f0_up_key,
|
||||||
@ -92,11 +41,11 @@ class VC(object):
|
|||||||
# ピッチ検出
|
# ピッチ検出
|
||||||
pitch, pitchf = None, None
|
pitch, pitchf = None, None
|
||||||
if if_f0 == 1:
|
if if_f0 == 1:
|
||||||
pitch, pitchf = self.get_f0(
|
pitch, pitchf = pitchExtractor.extract(
|
||||||
audio_pad,
|
audio_pad,
|
||||||
p_len,
|
|
||||||
f0_up_key,
|
f0_up_key,
|
||||||
f0_method,
|
self.sr,
|
||||||
|
self.window,
|
||||||
silence_front=silence_front,
|
silence_front=silence_front,
|
||||||
)
|
)
|
||||||
pitch = pitch[:p_len]
|
pitch = pitch[:p_len]
|
||||||
@ -156,16 +105,19 @@ class VC(object):
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
if pitch is not None:
|
if pitch is not None:
|
||||||
audio1 = (
|
audio1 = (
|
||||||
(model.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
(
|
||||||
|
inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
||||||
|
* 32768
|
||||||
|
)
|
||||||
.data.cpu()
|
.data.cpu()
|
||||||
.float()
|
.float()
|
||||||
.numpy()
|
.numpy()
|
||||||
.astype(np.int16)
|
.astype(np.int16)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if hasattr(model, "infer_pitchless"):
|
if hasattr(inferencer, "infer_pitchless"):
|
||||||
audio1 = (
|
audio1 = (
|
||||||
(model.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
(inferencer.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
||||||
.data.cpu()
|
.data.cpu()
|
||||||
.float()
|
.float()
|
||||||
.numpy()
|
.numpy()
|
||||||
@ -173,7 +125,7 @@ class VC(object):
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
audio1 = (
|
audio1 = (
|
||||||
(model.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
(inferencer.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||||
.data.cpu()
|
.data.cpu()
|
||||||
.float()
|
.float()
|
||||||
.numpy()
|
.numpy()
|
||||||
|
@ -29,12 +29,20 @@ class EmbedderManager:
|
|||||||
def loadEmbedder(
|
def loadEmbedder(
|
||||||
cls, embederType: EnumEmbedderTypes, file: str, isHalf: bool, dev: device
|
cls, embederType: EnumEmbedderTypes, file: str, isHalf: bool, dev: device
|
||||||
) -> Embedder:
|
) -> Embedder:
|
||||||
if embederType == EnumEmbedderTypes.hubert:
|
if (
|
||||||
|
embederType == EnumEmbedderTypes.hubert
|
||||||
|
or embederType == EnumEmbedderTypes.hubert.value
|
||||||
|
):
|
||||||
return FairseqHubert().loadModel(file, dev, isHalf)
|
return FairseqHubert().loadModel(file, dev, isHalf)
|
||||||
elif embederType == EnumEmbedderTypes.hubert_jp: # same as hubert
|
elif (
|
||||||
|
embederType == EnumEmbedderTypes.hubert_jp
|
||||||
|
or embederType == EnumEmbedderTypes.hubert_jp.value
|
||||||
|
):
|
||||||
return FairseqHubertJp().loadModel(file, dev, isHalf)
|
return FairseqHubertJp().loadModel(file, dev, isHalf)
|
||||||
elif embederType == EnumEmbedderTypes.contentvec: # same as hubert
|
elif (
|
||||||
|
embederType == EnumEmbedderTypes.contentvec
|
||||||
|
or embederType == EnumEmbedderTypes.contentvec.value
|
||||||
|
):
|
||||||
return FairseqContentvec().loadModel(file, dev, isHalf)
|
return FairseqContentvec().loadModel(file, dev, isHalf)
|
||||||
else:
|
else:
|
||||||
# return hubert as default
|
|
||||||
return FairseqHubert().loadModel(file, dev, isHalf)
|
return FairseqHubert().loadModel(file, dev, isHalf)
|
||||||
|
@ -37,8 +37,6 @@ class FairseqHubert(Embedder):
|
|||||||
"padding_mask": padding_mask,
|
"padding_mask": padding_mask,
|
||||||
}
|
}
|
||||||
|
|
||||||
print("feat dev", self.dev)
|
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = self.model.extract_features(**inputs)
|
logits = self.model.extract_features(**inputs)
|
||||||
if embChannels == 256:
|
if embChannels == 256:
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
from torch import device
|
from torch import device
|
||||||
|
|
||||||
from const import EnumInferenceTypes
|
from const import EnumInferenceTypes
|
||||||
from voice_changer.RVC.embedder.Embedder import Embedder
|
|
||||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||||
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInference
|
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInference
|
||||||
from voice_changer.RVC.inferencer.OnnxRVCInferencerNono import OnnxRVCInferenceNono
|
from voice_changer.RVC.inferencer.OnnxRVCInferencerNono import OnnxRVCInferenceNono
|
||||||
@ -24,19 +23,36 @@ class InferencerManager:
|
|||||||
@classmethod
|
@classmethod
|
||||||
def loadInferencer(
|
def loadInferencer(
|
||||||
cls, inferencerType: EnumInferenceTypes, file: str, isHalf: bool, dev: device
|
cls, inferencerType: EnumInferenceTypes, file: str, isHalf: bool, dev: device
|
||||||
) -> Embedder:
|
) -> Inferencer:
|
||||||
if inferencerType == EnumInferenceTypes.pyTorchRVC:
|
if (
|
||||||
|
inferencerType == EnumInferenceTypes.pyTorchRVC
|
||||||
|
or inferencerType == EnumInferenceTypes.pyTorchRVC.value
|
||||||
|
):
|
||||||
return RVCInferencer().loadModel(file, dev, isHalf)
|
return RVCInferencer().loadModel(file, dev, isHalf)
|
||||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCNono:
|
elif (
|
||||||
|
inferencerType == EnumInferenceTypes.pyTorchRVCNono
|
||||||
|
or inferencerType == EnumInferenceTypes.pyTorchRVCNono.value
|
||||||
|
):
|
||||||
return RVCInferencerNono().loadModel(file, dev, isHalf)
|
return RVCInferencerNono().loadModel(file, dev, isHalf)
|
||||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUI:
|
elif (
|
||||||
|
inferencerType == EnumInferenceTypes.pyTorchWebUI
|
||||||
|
or inferencerType == EnumInferenceTypes.pyTorchWebUI.value
|
||||||
|
):
|
||||||
return WebUIInferencer().loadModel(file, dev, isHalf)
|
return WebUIInferencer().loadModel(file, dev, isHalf)
|
||||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUINono:
|
elif (
|
||||||
|
inferencerType == EnumInferenceTypes.pyTorchWebUINono
|
||||||
|
or inferencerType == EnumInferenceTypes.pyTorchWebUINono.value
|
||||||
|
):
|
||||||
return WebUIInferencerNono().loadModel(file, dev, isHalf)
|
return WebUIInferencerNono().loadModel(file, dev, isHalf)
|
||||||
elif inferencerType == EnumInferenceTypes.onnxRVC:
|
elif (
|
||||||
|
inferencerType == EnumInferenceTypes.onnxRVC
|
||||||
|
or inferencerType == EnumInferenceTypes.onnxRVC.value
|
||||||
|
):
|
||||||
return OnnxRVCInference().loadModel(file, dev, isHalf)
|
return OnnxRVCInference().loadModel(file, dev, isHalf)
|
||||||
elif inferencerType == EnumInferenceTypes.onnxRVCNono:
|
elif (
|
||||||
|
inferencerType == EnumInferenceTypes.onnxRVCNono
|
||||||
|
or inferencerType == EnumInferenceTypes.onnxRVCNono.value
|
||||||
|
):
|
||||||
return OnnxRVCInferenceNono().loadModel(file, dev, isHalf)
|
return OnnxRVCInferenceNono().loadModel(file, dev, isHalf)
|
||||||
else:
|
else:
|
||||||
# return hubert as default
|
|
||||||
raise RuntimeError("[Voice Changer] Inferencer not found", inferencerType)
|
raise RuntimeError("[Voice Changer] Inferencer not found", inferencerType)
|
||||||
|
42
server/voice_changer/RVC/pitchExtractor/DioPitchExtractor.py
Normal file
42
server/voice_changer/RVC/pitchExtractor/DioPitchExtractor.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
import pyworld
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||||
|
|
||||||
|
|
||||||
|
class DioPitchExtractor(PitchExtractor):
|
||||||
|
def extract(self, audio, f0_up_key, sr, window, silence_front=0):
|
||||||
|
n_frames = int(len(audio) // window) + 1
|
||||||
|
start_frame = int(silence_front * sr / window)
|
||||||
|
real_silence_front = start_frame * window / sr
|
||||||
|
|
||||||
|
silence_front_offset = int(np.round(real_silence_front * sr))
|
||||||
|
audio = audio[silence_front_offset:]
|
||||||
|
|
||||||
|
f0_min = 50
|
||||||
|
f0_max = 1100
|
||||||
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
|
|
||||||
|
_f0, t = pyworld.dio(
|
||||||
|
audio.astype(np.double),
|
||||||
|
sr,
|
||||||
|
f0_floor=f0_min,
|
||||||
|
f0_ceil=f0_max,
|
||||||
|
channels_in_octave=2,
|
||||||
|
frame_period=10,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(audio.astype(np.double), _f0, t, sr)
|
||||||
|
f0 = np.pad(f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame))
|
||||||
|
|
||||||
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
|
f0bak = f0.copy()
|
||||||
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||||
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||||
|
f0_mel_max - f0_mel_min
|
||||||
|
) + 1
|
||||||
|
f0_mel[f0_mel <= 1] = 1
|
||||||
|
f0_mel[f0_mel > 255] = 255
|
||||||
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||||
|
|
||||||
|
return f0_coarse, f0bak
|
@ -0,0 +1,43 @@
|
|||||||
|
import pyworld
|
||||||
|
import numpy as np
|
||||||
|
import scipy.signal as signal
|
||||||
|
|
||||||
|
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||||
|
|
||||||
|
|
||||||
|
class HarvestPitchExtractor(PitchExtractor):
|
||||||
|
def extract(self, audio, f0_up_key, sr, window, silence_front=0):
|
||||||
|
n_frames = int(len(audio) // window) + 1
|
||||||
|
start_frame = int(silence_front * sr / window)
|
||||||
|
real_silence_front = start_frame * window / sr
|
||||||
|
|
||||||
|
silence_front_offset = int(np.round(real_silence_front * sr))
|
||||||
|
audio = audio[silence_front_offset:]
|
||||||
|
|
||||||
|
f0_min = 50
|
||||||
|
f0_max = 1100
|
||||||
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
|
|
||||||
|
f0, t = pyworld.harvest(
|
||||||
|
audio.astype(np.double),
|
||||||
|
fs=sr,
|
||||||
|
f0_ceil=f0_max,
|
||||||
|
frame_period=10,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, sr)
|
||||||
|
f0 = signal.medfilt(f0, 3)
|
||||||
|
|
||||||
|
f0 = np.pad(f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame))
|
||||||
|
|
||||||
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
|
f0bak = f0.copy()
|
||||||
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||||
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||||
|
f0_mel_max - f0_mel_min
|
||||||
|
) + 1
|
||||||
|
f0_mel[f0_mel <= 1] = 1
|
||||||
|
f0_mel[f0_mel > 255] = 255
|
||||||
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||||
|
|
||||||
|
return f0_coarse, f0bak
|
@ -0,0 +1,9 @@
|
|||||||
|
from typing import Protocol
|
||||||
|
from const import EnumPitchExtractorTypes
|
||||||
|
|
||||||
|
|
||||||
|
class PitchExtractor(Protocol):
|
||||||
|
pitchExtractorType: EnumPitchExtractorTypes = EnumPitchExtractorTypes.harvest
|
||||||
|
|
||||||
|
def extract(self, audio, f0_up_key, sr, window, silence_front=0):
|
||||||
|
...
|
@ -0,0 +1,36 @@
|
|||||||
|
from typing import Protocol
|
||||||
|
from const import EnumPitchExtractorTypes
|
||||||
|
from voice_changer.RVC.pitchExtractor.DioPitchExtractor import DioPitchExtractor
|
||||||
|
from voice_changer.RVC.pitchExtractor.HarvestPitchExtractor import HarvestPitchExtractor
|
||||||
|
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||||
|
|
||||||
|
|
||||||
|
class PitchExtractorManager(Protocol):
|
||||||
|
currentPitchExtractor: PitchExtractor | None = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def getPitchExtractor(
|
||||||
|
cls, pitchExtractorType: EnumPitchExtractorTypes
|
||||||
|
) -> PitchExtractor:
|
||||||
|
cls.currentPitchExtractor = cls.loadPitchExtractor(pitchExtractorType)
|
||||||
|
return cls.currentPitchExtractor
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def loadPitchExtractor(
|
||||||
|
cls, pitchExtractorType: EnumPitchExtractorTypes
|
||||||
|
) -> PitchExtractor:
|
||||||
|
if (
|
||||||
|
pitchExtractorType == EnumPitchExtractorTypes.harvest
|
||||||
|
or pitchExtractorType == EnumPitchExtractorTypes.harvest.value
|
||||||
|
):
|
||||||
|
return HarvestPitchExtractor()
|
||||||
|
elif (
|
||||||
|
pitchExtractorType == EnumPitchExtractorTypes.dio
|
||||||
|
or pitchExtractorType == EnumPitchExtractorTypes.dio.value
|
||||||
|
):
|
||||||
|
return DioPitchExtractor()
|
||||||
|
else:
|
||||||
|
# return hubert as default
|
||||||
|
raise RuntimeError(
|
||||||
|
"[Voice Changer] PitchExctractor not found", pitchExtractorType
|
||||||
|
)
|
Loading…
x
Reference in New Issue
Block a user