WIP: support DDSP_SVC
This commit is contained in:
parent
807120201f
commit
8a4e76795a
@ -24,7 +24,7 @@ from slicer import Slicer
|
|||||||
import librosa
|
import librosa
|
||||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||||
|
|
||||||
|
import resampy
|
||||||
from scipy.io import wavfile
|
from scipy.io import wavfile
|
||||||
SAMPLING_RATE = 44100
|
SAMPLING_RATE = 44100
|
||||||
|
|
||||||
@ -234,7 +234,7 @@ class DDSP_SVC:
|
|||||||
return np.zeros(convertSize).astype(np.int16)
|
return np.zeros(convertSize).astype(np.int16)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
spk_id = torch.LongTensor(np.array([[int(2)]]))
|
spk_id = torch.LongTensor(np.array([[int(1)]]))
|
||||||
seg_output, _, (s_h, s_n) = self.model(c, f0, volume, spk_id=spk_id, spk_mix_dict=None)
|
seg_output, _, (s_h, s_n) = self.model(c, f0, volume, spk_id=spk_id, spk_mix_dict=None)
|
||||||
seg_output *= mask
|
seg_output *= mask
|
||||||
|
|
||||||
@ -245,7 +245,6 @@ class DDSP_SVC:
|
|||||||
self.args.data.block_size,
|
self.args.data.block_size,
|
||||||
adaptive_key=float(0))
|
adaptive_key=float(0))
|
||||||
result = seg_output.squeeze().cpu().numpy() * 32768.0
|
result = seg_output.squeeze().cpu().numpy() * 32768.0
|
||||||
|
|
||||||
return np.array(result).astype(np.int16)
|
return np.array(result).astype(np.int16)
|
||||||
|
|
||||||
def inference(self, data):
|
def inference(self, data):
|
||||||
|
@ -244,12 +244,10 @@ class VoiceChanger():
|
|||||||
self.ioRecorder.writeOutput(outputData.tobytes())
|
self.ioRecorder.writeOutput(outputData.tobytes())
|
||||||
|
|
||||||
# if receivedData.shape[0] != outputData.shape[0]:
|
# if receivedData.shape[0] != outputData.shape[0]:
|
||||||
|
# print(f"Padding, in:{receivedData.shape[0]} out:{outputData.shape[0]}")
|
||||||
# outputData = pad_array(outputData, receivedData.shape[0])
|
# outputData = pad_array(outputData, receivedData.shape[0])
|
||||||
# # print_convert_processing(
|
# # print_convert_processing(
|
||||||
# # f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
# # f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
||||||
# print(
|
|
||||||
# f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
|
||||||
|
|
||||||
postprocess_time = t.secs
|
postprocess_time = t.secs
|
||||||
|
|
||||||
print_convert_processing(f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}")
|
print_convert_processing(f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user