7. mv mask

This commit is contained in:
wataru 2023-03-24 10:27:45 +09:00
parent 67a104af8b
commit f3374ba21a
2 changed files with 33 additions and 95 deletions

View File

@ -25,6 +25,7 @@ providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecution
from scipy.io import wavfile from scipy.io import wavfile
SAMPLING_RATE = 44100
@dataclass @dataclass
@ -74,7 +75,7 @@ class DDSP_SVC:
model, args = vo.load_model(pyTorch_model_file) model, args = vo.load_model(pyTorch_model_file)
self.model = model self.model = model
self.args = args self.args = args
self.hop_size = int(self.args.data.block_size * 44100 / self.args.data.sampling_rate) self.hop_size = int(self.args.data.block_size * SAMPLING_RATE / self.args.data.sampling_rate)
# hubert # hubert
vec_path = self.params["hubert"] vec_path = self.params["hubert"]
@ -86,9 +87,10 @@ class DDSP_SVC:
device="cpu") device="cpu")
# f0dec # f0dec
self.f0_detector = vo.F0_Extractor( self.f0_detector = vo.F0_Extractor(
# "crepe",
self.settings.f0Detector, self.settings.f0Detector,
44100, SAMPLING_RATE,
512, self.hop_size,
float(50), float(50),
float(1100)) float(1100))
@ -136,29 +138,10 @@ class DDSP_SVC:
return data return data
def get_processing_sampling_rate(self): def get_processing_sampling_rate(self):
return 44100 return SAMPLING_RATE
# def get_unit_f0(self, audio_buffer, tran):
# if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX":
# dev = torch.device("cpu")
# else:
# dev = torch.device("cpu")
# # dev = torch.device("cuda", index=self.settings.gpu)
# wav_44k = audio_buffer
# f0 = self.f0_detector.extract(wav_44k, uv_interp=True, device=dev)
# f0 = torch.from_numpy(f0).float().to(dev).unsqueeze(-1).unsqueeze(0)
# f0 = f0 * 2 ** (float(10) / 12)
# # print("f0:", f0)
# print("wav_44k:::", wav_44k)
# c = self.encoder.encode(torch.from_numpy(audio_buffer).float().unsqueeze(0).to(dev), 44100, 512)
# # print("c:", c)
# return c, f0
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int): def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
newData = newData.astype(np.float32) / 32768.0 newData = newData.astype(np.float32) / 32768.0
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
if hasattr(self, "audio_buffer"): if hasattr(self, "audio_buffer"):
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結 self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
@ -166,32 +149,36 @@ class DDSP_SVC:
self.audio_buffer = newData self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
print("hopsize", self.hop_size)
if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size)) convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
print("convsize", convertSize)
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出 self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
# f0
f0 = self.f0_detector.extract(self.audio_buffer, uv_interp=True) f0 = self.f0_detector.extract(self.audio_buffer, uv_interp=True)
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0) f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
f0 = f0 * 2 ** (float(20) / 12) f0 = f0 * 2 ** (float(self.settings.tran) / 12)
# volume, mask
volume = self.volume_extractor.extract(self.audio_buffer) volume = self.volume_extractor.extract(self.audio_buffer)
mask = (volume > 10 ** (float(-60) / 20)).astype('float')
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
# embed
audio = torch.from_numpy(self.audio_buffer).float().unsqueeze(0) audio = torch.from_numpy(self.audio_buffer).float().unsqueeze(0)
seg_units = self.encoder.encode(audio, 44100, self.hop_size) seg_units = self.encoder.encode(audio, SAMPLING_RATE, self.hop_size)
print("audio1", audio)
# crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
# rms = np.sqrt(np.square(crop).mean(axis=0)) crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
# vol = max(rms, self.prevVol * 0.0)
# self.prevVol = vol
# c, f0 = self.get_unit_f0(self.audio_buffer, self.settings.tran) rms = np.sqrt(np.square(crop).mean(axis=0))
# return (c, f0, convertSize, vol) vol = max(rms, self.prevVol * 0.0)
wavfile.write("tmp2.wav", 44100, (self.audio_buffer * 32768.0).astype(np.int16)) self.prevVol = vol
return (seg_units, f0, volume)
return (seg_units, f0, volume, mask, convertSize, vol)
def _onnx_inference(self, data): def _onnx_inference(self, data):
if hasattr(self, "onnx_session") == False or self.onnx_session == None: if hasattr(self, "onnx_session") == False or self.onnx_session == None:
@ -234,71 +221,23 @@ class DDSP_SVC:
print("[Voice Changer] No pyTorch session.") print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16) return np.zeros(1).astype(np.int16)
# if self.settings.gpu < 0 or self.gpu_num == 0:
# dev = torch.device("cpu")
# else:
# dev = torch.device("cpu")
# # dev = torch.device("cuda", index=self.settings.gpu)
# c = data[0]
# f0 = data[1]
# convertSize = data[2]
# vol = data[3]
# if vol < self.settings.silentThreshold:
# return np.zeros(convertSize).astype(np.int16)
# with torch.no_grad():
# c.to(dev)
# f0.to(dev)
# vol = torch.from_numpy(np.array([vol] * c.shape[1])).float().to(dev).unsqueeze(-1).unsqueeze(0)
# spk_id = torch.LongTensor(np.array([[1]])).to(dev)
# # print("vol", vol)
# print("input", c.shape, f0.shape)
# seg_output, _, (s_h, s_n) = self.model(c, f0, vol, spk_id=spk_id)
# seg_output = seg_output.squeeze().cpu().numpy()
# print("SEG:", seg_output)
c = data[0] c = data[0]
f0 = data[1] f0 = data[1]
volume = data[2] volume = data[2]
mask = data[3]
mask = (volume > 10 ** (float(-60) / 20)).astype('float') convertSize = data[4]
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1])) vol = data[4]
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
spk_id = torch.LongTensor(np.array([[int(1)]])) if vol < self.settings.silentThreshold:
result = np.zeros(0) return np.zeros(convertSize).astype(np.int16)
current_length = 0
with torch.no_grad(): with torch.no_grad():
start_frame = 0 spk_id = torch.LongTensor(np.array([[int(1)]]))
seg_volume = volume seg_output, _, (s_h, s_n) = self.model(c, f0, volume, spk_id=spk_id, spk_mix_dict=None)
seg_output *= mask
seg_output, _, (s_h, s_n) = self.model(c, f0, seg_volume, spk_id=spk_id, spk_mix_dict=None) result = seg_output.squeeze().cpu().numpy() * 32768.0
seg_output *= mask[:, start_frame * self.args.data.block_size: (start_frame + c.size(1)) * self.args.data.block_size] return np.array(result).astype(np.int16)
output_sample_rate = self.args.data.sampling_rate
seg_output = seg_output.squeeze().cpu().numpy()
result = seg_output
# silent_length = round(start_frame * self.args.data.block_size * output_sample_rate / self.args.data.sampling_rate) - current_length
# if silent_length >= 0:
# result = np.append(result, np.zeros(silent_length))
# result = np.append(result, seg_output)
# else:
# result = cross_fade(result, seg_output, current_length + silent_length)
# current_length = current_length + silent_length + len(seg_output)
# sf.write("out.wav", result, output_sample_rate)
wavfile.write("out.wav", 44100, result)
print("result:::", result)
return np.array(result * 32768.0).astype(np.int16)
def inference(self, data): def inference(self, data):
if self.settings.framework == "ONNX": if self.settings.framework == "ONNX":

View File

@ -191,7 +191,6 @@ class VoiceChanger():
try: try:
# Inference # Inference
audio = self.voiceChanger.inference(data) audio = self.voiceChanger.inference(data)
print("audio", audio)
if hasattr(self, 'np_prev_audio1') == True: if hasattr(self, 'np_prev_audio1') == True:
np.set_printoptions(threshold=10000) np.set_printoptions(threshold=10000)