7. mv mask
This commit is contained in:
parent
67a104af8b
commit
f3374ba21a
@ -25,6 +25,7 @@ providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecution
|
|||||||
|
|
||||||
|
|
||||||
from scipy.io import wavfile
|
from scipy.io import wavfile
|
||||||
|
SAMPLING_RATE = 44100
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -74,7 +75,7 @@ class DDSP_SVC:
|
|||||||
model, args = vo.load_model(pyTorch_model_file)
|
model, args = vo.load_model(pyTorch_model_file)
|
||||||
self.model = model
|
self.model = model
|
||||||
self.args = args
|
self.args = args
|
||||||
self.hop_size = int(self.args.data.block_size * 44100 / self.args.data.sampling_rate)
|
self.hop_size = int(self.args.data.block_size * SAMPLING_RATE / self.args.data.sampling_rate)
|
||||||
|
|
||||||
# hubert
|
# hubert
|
||||||
vec_path = self.params["hubert"]
|
vec_path = self.params["hubert"]
|
||||||
@ -86,9 +87,10 @@ class DDSP_SVC:
|
|||||||
device="cpu")
|
device="cpu")
|
||||||
# f0dec
|
# f0dec
|
||||||
self.f0_detector = vo.F0_Extractor(
|
self.f0_detector = vo.F0_Extractor(
|
||||||
|
# "crepe",
|
||||||
self.settings.f0Detector,
|
self.settings.f0Detector,
|
||||||
44100,
|
SAMPLING_RATE,
|
||||||
512,
|
self.hop_size,
|
||||||
float(50),
|
float(50),
|
||||||
float(1100))
|
float(1100))
|
||||||
|
|
||||||
@ -136,29 +138,10 @@ class DDSP_SVC:
|
|||||||
return data
|
return data
|
||||||
|
|
||||||
def get_processing_sampling_rate(self):
|
def get_processing_sampling_rate(self):
|
||||||
return 44100
|
return SAMPLING_RATE
|
||||||
|
|
||||||
# def get_unit_f0(self, audio_buffer, tran):
|
|
||||||
# if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX":
|
|
||||||
# dev = torch.device("cpu")
|
|
||||||
# else:
|
|
||||||
# dev = torch.device("cpu")
|
|
||||||
# # dev = torch.device("cuda", index=self.settings.gpu)
|
|
||||||
|
|
||||||
# wav_44k = audio_buffer
|
|
||||||
# f0 = self.f0_detector.extract(wav_44k, uv_interp=True, device=dev)
|
|
||||||
# f0 = torch.from_numpy(f0).float().to(dev).unsqueeze(-1).unsqueeze(0)
|
|
||||||
# f0 = f0 * 2 ** (float(10) / 12)
|
|
||||||
# # print("f0:", f0)
|
|
||||||
|
|
||||||
# print("wav_44k:::", wav_44k)
|
|
||||||
# c = self.encoder.encode(torch.from_numpy(audio_buffer).float().unsqueeze(0).to(dev), 44100, 512)
|
|
||||||
# # print("c:", c)
|
|
||||||
# return c, f0
|
|
||||||
|
|
||||||
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
||||||
newData = newData.astype(np.float32) / 32768.0
|
newData = newData.astype(np.float32) / 32768.0
|
||||||
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
|
||||||
|
|
||||||
if hasattr(self, "audio_buffer"):
|
if hasattr(self, "audio_buffer"):
|
||||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||||
@ -166,32 +149,36 @@ class DDSP_SVC:
|
|||||||
self.audio_buffer = newData
|
self.audio_buffer = newData
|
||||||
|
|
||||||
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
|
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
|
||||||
print("hopsize", self.hop_size)
|
|
||||||
if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||||
convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
|
convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
|
||||||
|
|
||||||
print("convsize", convertSize)
|
|
||||||
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
||||||
|
|
||||||
|
# f0
|
||||||
f0 = self.f0_detector.extract(self.audio_buffer, uv_interp=True)
|
f0 = self.f0_detector.extract(self.audio_buffer, uv_interp=True)
|
||||||
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
|
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
|
||||||
f0 = f0 * 2 ** (float(20) / 12)
|
f0 = f0 * 2 ** (float(self.settings.tran) / 12)
|
||||||
|
|
||||||
|
# volume, mask
|
||||||
volume = self.volume_extractor.extract(self.audio_buffer)
|
volume = self.volume_extractor.extract(self.audio_buffer)
|
||||||
|
mask = (volume > 10 ** (float(-60) / 20)).astype('float')
|
||||||
|
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
|
||||||
|
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
|
||||||
|
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
|
||||||
|
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
|
||||||
|
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
|
||||||
|
|
||||||
|
# embed
|
||||||
audio = torch.from_numpy(self.audio_buffer).float().unsqueeze(0)
|
audio = torch.from_numpy(self.audio_buffer).float().unsqueeze(0)
|
||||||
seg_units = self.encoder.encode(audio, 44100, self.hop_size)
|
seg_units = self.encoder.encode(audio, SAMPLING_RATE, self.hop_size)
|
||||||
print("audio1", audio)
|
|
||||||
# crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
|
|
||||||
|
|
||||||
# rms = np.sqrt(np.square(crop).mean(axis=0))
|
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
|
||||||
# vol = max(rms, self.prevVol * 0.0)
|
|
||||||
# self.prevVol = vol
|
|
||||||
|
|
||||||
# c, f0 = self.get_unit_f0(self.audio_buffer, self.settings.tran)
|
rms = np.sqrt(np.square(crop).mean(axis=0))
|
||||||
# return (c, f0, convertSize, vol)
|
vol = max(rms, self.prevVol * 0.0)
|
||||||
wavfile.write("tmp2.wav", 44100, (self.audio_buffer * 32768.0).astype(np.int16))
|
self.prevVol = vol
|
||||||
return (seg_units, f0, volume)
|
|
||||||
|
return (seg_units, f0, volume, mask, convertSize, vol)
|
||||||
|
|
||||||
def _onnx_inference(self, data):
|
def _onnx_inference(self, data):
|
||||||
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
||||||
@ -234,71 +221,23 @@ class DDSP_SVC:
|
|||||||
print("[Voice Changer] No pyTorch session.")
|
print("[Voice Changer] No pyTorch session.")
|
||||||
return np.zeros(1).astype(np.int16)
|
return np.zeros(1).astype(np.int16)
|
||||||
|
|
||||||
# if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
||||||
# dev = torch.device("cpu")
|
|
||||||
# else:
|
|
||||||
# dev = torch.device("cpu")
|
|
||||||
# # dev = torch.device("cuda", index=self.settings.gpu)
|
|
||||||
|
|
||||||
# c = data[0]
|
|
||||||
# f0 = data[1]
|
|
||||||
# convertSize = data[2]
|
|
||||||
# vol = data[3]
|
|
||||||
# if vol < self.settings.silentThreshold:
|
|
||||||
# return np.zeros(convertSize).astype(np.int16)
|
|
||||||
|
|
||||||
# with torch.no_grad():
|
|
||||||
# c.to(dev)
|
|
||||||
# f0.to(dev)
|
|
||||||
# vol = torch.from_numpy(np.array([vol] * c.shape[1])).float().to(dev).unsqueeze(-1).unsqueeze(0)
|
|
||||||
# spk_id = torch.LongTensor(np.array([[1]])).to(dev)
|
|
||||||
# # print("vol", vol)
|
|
||||||
# print("input", c.shape, f0.shape)
|
|
||||||
# seg_output, _, (s_h, s_n) = self.model(c, f0, vol, spk_id=spk_id)
|
|
||||||
|
|
||||||
# seg_output = seg_output.squeeze().cpu().numpy()
|
|
||||||
# print("SEG:", seg_output)
|
|
||||||
|
|
||||||
c = data[0]
|
c = data[0]
|
||||||
f0 = data[1]
|
f0 = data[1]
|
||||||
volume = data[2]
|
volume = data[2]
|
||||||
|
mask = data[3]
|
||||||
|
|
||||||
mask = (volume > 10 ** (float(-60) / 20)).astype('float')
|
convertSize = data[4]
|
||||||
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
|
vol = data[4]
|
||||||
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
|
|
||||||
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
|
|
||||||
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
|
|
||||||
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
|
|
||||||
|
|
||||||
spk_id = torch.LongTensor(np.array([[int(1)]]))
|
if vol < self.settings.silentThreshold:
|
||||||
result = np.zeros(0)
|
return np.zeros(convertSize).astype(np.int16)
|
||||||
current_length = 0
|
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
start_frame = 0
|
spk_id = torch.LongTensor(np.array([[int(1)]]))
|
||||||
seg_volume = volume
|
seg_output, _, (s_h, s_n) = self.model(c, f0, volume, spk_id=spk_id, spk_mix_dict=None)
|
||||||
|
seg_output *= mask
|
||||||
seg_output, _, (s_h, s_n) = self.model(c, f0, seg_volume, spk_id=spk_id, spk_mix_dict=None)
|
result = seg_output.squeeze().cpu().numpy() * 32768.0
|
||||||
seg_output *= mask[:, start_frame * self.args.data.block_size: (start_frame + c.size(1)) * self.args.data.block_size]
|
return np.array(result).astype(np.int16)
|
||||||
|
|
||||||
output_sample_rate = self.args.data.sampling_rate
|
|
||||||
|
|
||||||
seg_output = seg_output.squeeze().cpu().numpy()
|
|
||||||
|
|
||||||
result = seg_output
|
|
||||||
|
|
||||||
# silent_length = round(start_frame * self.args.data.block_size * output_sample_rate / self.args.data.sampling_rate) - current_length
|
|
||||||
# if silent_length >= 0:
|
|
||||||
# result = np.append(result, np.zeros(silent_length))
|
|
||||||
# result = np.append(result, seg_output)
|
|
||||||
# else:
|
|
||||||
# result = cross_fade(result, seg_output, current_length + silent_length)
|
|
||||||
# current_length = current_length + silent_length + len(seg_output)
|
|
||||||
# sf.write("out.wav", result, output_sample_rate)
|
|
||||||
wavfile.write("out.wav", 44100, result)
|
|
||||||
|
|
||||||
print("result:::", result)
|
|
||||||
return np.array(result * 32768.0).astype(np.int16)
|
|
||||||
|
|
||||||
def inference(self, data):
|
def inference(self, data):
|
||||||
if self.settings.framework == "ONNX":
|
if self.settings.framework == "ONNX":
|
||||||
|
@ -191,7 +191,6 @@ class VoiceChanger():
|
|||||||
try:
|
try:
|
||||||
# Inference
|
# Inference
|
||||||
audio = self.voiceChanger.inference(data)
|
audio = self.voiceChanger.inference(data)
|
||||||
print("audio", audio)
|
|
||||||
|
|
||||||
if hasattr(self, 'np_prev_audio1') == True:
|
if hasattr(self, 'np_prev_audio1') == True:
|
||||||
np.set_printoptions(threshold=10000)
|
np.set_printoptions(threshold=10000)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user