import math import torch from torch import nn from torch.nn import Conv1d, Conv2d from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm from . import commons, modules from .commons import get_padding, init_weights from .transforms import piecewise_rational_quadratic_transform LRELU_SLOPE = 0.1 class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) class ConvReluNorm(nn.Module): def __init__( self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout, ): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() self.conv_layers.append( nn.Conv1d( in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 ) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append( nn.Conv1d( hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2, ) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size**i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append( nn.Conv1d( channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask class WN(torch.nn.Module): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = torch.nn.Conv1d( gin_channels, 2 * hidden_channels * n_layers, 1 ) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate**i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding, ) in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) for l in self.in_layers: torch.nn.utils.remove_weight_norm(l) for l in self.res_skip_layers: torch.nn.utils.remove_weight_norm(l) class DilatedCausalConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True): super(DilatedCausalConv1d, self).__init__() self.kernel_size = kernel_size self.dilation = dilation self.stride = stride self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias)) init_weights(self.conv) def forward(self, x): x = torch.flip(x, [2]) x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.) size = x.shape[2] // self.stride x = self.conv(x)[:, :, :size] x = torch.flip(x, [2]) return x def remove_weight_norm(self): remove_weight_norm(self.conv) class CausalConvTranspose1d(nn.Module): """ padding = 0, dilation = 1のとき Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding output_paddingいらないね """ def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1): super(CausalConvTranspose1d, self).__init__() kernel_size = kernel_rate * stride self.trim_size = (kernel_rate - 1) * stride self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups)) def forward(self, x): x = self.conv(x) return x[:, :, :-self.trim_size] def remove_weight_norm(self): remove_weight_norm(self.conv) class LoRALinear1d(nn.Module): def __init__(self, in_channels, out_channels, info_channels, r): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.info_channels = info_channels self.r = r self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1)) self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1) self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1) nn.init.normal_(self.adapter_in.weight.data, 0, 0.01) nn.init.constant_(self.adapter_out.weight.data, 1e-6) init_weights(self.main_fc) self.adapter_in = weight_norm(self.adapter_in) self.adapter_out = weight_norm(self.adapter_out) def forward(self, x, g): a_in = self.adapter_in(g).view(-1, self.in_channels, self.r) a_out = self.adapter_out(g).view(-1, self.r, self.out_channels) x = self.main_fc(x) + torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out) return x def remove_weight_norm(self): remove_weight_norm(self.main_fc) remove_weight_norm(self.adapter_in) remove_weight_norm(self.adapter_out) class LoRALinear2d(nn.Module): def __init__(self, in_channels, out_channels, info_channels, r): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.info_channels = info_channels self.r = r self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1))) self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1) self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1) nn.init.normal_(self.adapter_in.weight.data, 0, 0.01) nn.init.constant_(self.adapter_out.weight.data, 1e-6) self.adapter_in = weight_norm(self.adapter_in) self.adapter_out = weight_norm(self.adapter_out) def forward(self, x, g): a_in = self.adapter_in(g).view(-1, self.in_channels, self.r) a_out = self.adapter_out(g).view(-1, self.r, self.out_channels) x = self.main_fc(x) + torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out) return x def remove_weight_norm(self): remove_weight_norm(self.main_fc) remove_weight_norm(self.adapter_in) remove_weight_norm(self.adapter_out) class WaveConv1D(torch.nn.Module): def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r, use_spectral_norm=False): super(WaveConv1D, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm inner_channels = int(in_channels * extend_ratio) self.convs = [] # self.norms = [] self.convs.append(LoRALinear1d(in_channels, inner_channels, gin_channels, r)) for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations), start=1): self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, k, s, dilation=d, groups=inner_channels, padding=get_padding(k, d)))) if i < len(kernel_sizes): self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, 1, 1))) else: self.convs.append(norm_f(Conv1d(inner_channels, out_channels, 1, 1))) self.convs = nn.ModuleList(self.convs) def forward(self, x, g, x_mask=None): for i, l in enumerate(self.convs): if i % 2: x_ = l(x) else: x_ = l(x, g) x = F.leaky_relu(x_, modules.LRELU_SLOPE) if x_mask is not None: x *= x_mask return x def remove_weight_norm(self): for i, c in enumerate(self.convs): if i % 2: remove_weight_norm(c) else: c.remove_weight_norm() class MBConv2d(torch.nn.Module): """ Causal MBConv2D """ def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False): super(MBConv2d, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm inner_channels = int(in_channels * extend_ratio) self.kernel_size = kernel_size self.pre_pointwise = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r) self.depthwise = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels)) self.post_pointwise = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r) def forward(self, x, g): x = self.pre_pointwise(x, g) x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant") x = self.depthwise(x) x = self.post_pointwise(x, g) return x class ConvNext2d(torch.nn.Module): """ Causal ConvNext Block stride = 1 only """ def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False): super(ConvNext2d, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm inner_channels = int(in_channels * extend_ratio) self.kernel_size = kernel_size self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels)) self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r) self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r) self.act = nn.GELU() self.norm = LayerNorm(in_channels) def forward(self, x, g): x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant") x = self.dwconv(x) x = self.norm(x) x = self.pwconv1(x, g) x = F.leaky_relu(x, modules.LRELU_SLOPE) x = self.pwconv2(x, g) x = F.leaky_relu(x, modules.LRELU_SLOPE) return x def remove_weight_norm(self): remove_weight_norm(self.dwconv) class SqueezeExcitation1D(torch.nn.Module): def __init__(self, input_channels, squeeze_channels, gin_channels, use_spectral_norm=False): norm_f = weight_norm if use_spectral_norm == False else spectral_norm super(SqueezeExcitation1D, self).__init__() self.fc1 = LoRALinear1d(input_channels, squeeze_channels, gin_channels, 2) self.fc2 = LoRALinear1d(squeeze_channels, input_channels, gin_channels, 2) def _scale(self, x, x_mask, g): x_length = torch.sum(x_mask, dim=2, keepdim=True) x_length = torch.maximum(x_length, torch.ones_like(x_length)) scale = torch.sum(x * x_mask, dim=2, keepdim=True) / x_length scale = self.fc1(scale, g) scale = F.leaky_relu(scale, modules.LRELU_SLOPE) scale = self.fc2(scale, g) return torch.sigmoid(scale) def forward(self, x, x_mask, g): scale = self._scale(x, x_mask, g) return scale * x def remove_weight_norm(self): self.fc1.remove_weight_norm() self.fc2.remove_weight_norm() class ResBlock1(torch.nn.Module): def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r): super(ResBlock1, self).__init__() norm_f = weight_norm inner_channels = int(in_channels * extend_ratio) self.dconvs = nn.ModuleList() self.pconvs = nn.ModuleList() # self.ses = nn.ModuleList() self.norms = nn.ModuleList() self.init_conv = LoRALinear1d(in_channels, inner_channels, gin_channels, r) for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)): self.norms.append(LayerNorm(inner_channels)) self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels)) if i < len(kernel_sizes) - 1: self.pconvs.append(LoRALinear1d(inner_channels, inner_channels, gin_channels, r)) self.out_conv = LoRALinear1d(inner_channels, out_channels, gin_channels, r) init_weights(self.init_conv) init_weights(self.out_conv) def forward(self, x, x_mask, g): x *= x_mask x = self.init_conv(x, g) for i in range(len(self.dconvs)): x *= x_mask x = self.norms[i](x) x_ = self.dconvs[i](x) x_ = F.leaky_relu(x_, modules.LRELU_SLOPE) if i < len(self.dconvs) - 1: x = x + self.pconvs[i](x_, g) x = self.out_conv(x_, g) return x def remove_weight_norm(self): for c in self.dconvs: c.remove_weight_norm() for c in self.pconvs: c.remove_weight_norm() self.init_conv.remove_weight_norm() self.out_conv.remove_weight_norm() class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x class ResidualCouplingLayer(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x def remove_weight_norm(self): self.enc.remove_weight_norm() class ConvFlow(nn.Module): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0, ): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) self.proj = nn.Conv1d( filter_channels, self.half_channels * (num_bins * 3 - 1), 1 ) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( self.filter_channels ) unnormalized_derivatives = h[..., 2 * self.num_bins :] x1, logabsdet = piecewise_rational_quadratic_transform( x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails="linear", tail_bound=self.tail_bound, ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x