openjdk/src/hotspot/os_cpu/linux_zero/os_linux_zero.cpp

522 lines
16 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright 2007, 2008, 2009, 2010 Red Hat, Inc.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "asm/assembler.inline.hpp"
#include "atomic_linux_zero.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm.h"
#include "memory/allocation.inline.hpp"
#include "nativeInst_zero.hpp"
#include "os_linux.hpp"
#include "os_posix.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/timer.hpp"
#include "signals_posix.hpp"
#include "utilities/align.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
address os::current_stack_pointer() {
// return the address of the current function
return (address)__builtin_frame_address(0);
}
frame os::get_sender_for_C_frame(frame* fr) {
ShouldNotCallThis();
return frame(NULL, NULL); // silence compile warning.
}
frame os::current_frame() {
// The only thing that calls this is the stack printing code in
// VMError::report:
// - Step 110 (printing stack bounds) uses the sp in the frame
// to determine the amount of free space on the stack. We
// set the sp to a close approximation of the real value in
// order to allow this step to complete.
// - Step 120 (printing native stack) tries to walk the stack.
// The frame we create has a NULL pc, which is ignored as an
// invalid frame.
frame dummy = frame();
dummy.set_sp((intptr_t *) current_stack_pointer());
return dummy;
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
// This is the value for x86; works pretty well for PPC too.
return (char *) -1;
}
address os::Posix::ucontext_get_pc(const ucontext_t* uc) {
if (DecodeErrorContext) {
#if defined(IA32)
return (address)uc->uc_mcontext.gregs[REG_EIP];
#elif defined(AMD64)
return (address)uc->uc_mcontext.gregs[REG_RIP];
#elif defined(ARM)
return (address)uc->uc_mcontext.arm_pc;
#elif defined(AARCH64)
return (address)uc->uc_mcontext.pc;
#elif defined(PPC)
return (address)uc->uc_mcontext.regs->nip;
#elif defined(RISCV)
return (address)uc->uc_mcontext.__gregs[REG_PC];
#elif defined(S390)
return (address)uc->uc_mcontext.psw.addr;
#else
// Non-arch-specific Zero code does not really know the PC.
// If possible, add the arch-specific definition in this method.
fatal("Cannot handle ucontext_get_pc");
#endif
}
// Answer the default and hope for the best
return nullptr;
}
void os::Posix::ucontext_set_pc(ucontext_t* uc, address pc) {
ShouldNotCallThis();
}
intptr_t* os::Linux::ucontext_get_sp(const ucontext_t* uc) {
if (DecodeErrorContext) {
#if defined(IA32)
return (intptr_t*)uc->uc_mcontext.gregs[REG_UESP];
#elif defined(AMD64)
return (intptr_t*)uc->uc_mcontext.gregs[REG_RSP];
#elif defined(ARM)
return (intptr_t*)uc->uc_mcontext.arm_sp;
#elif defined(AARCH64)
return (intptr_t*)uc->uc_mcontext.sp;
#elif defined(PPC)
return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
#elif defined(RISCV)
return (intptr_t*)uc->uc_mcontext.__gregs[REG_SP];
#elif defined(S390)
return (intptr_t*)uc->uc_mcontext.gregs[15/*REG_SP*/];
#else
// Non-arch-specific Zero code does not really know the SP.
// If possible, add the arch-specific definition in this method.
fatal("Cannot handle ucontext_get_sp");
#endif
}
// Answer the default and hope for the best
return nullptr;
}
intptr_t* os::Linux::ucontext_get_fp(const ucontext_t* uc) {
if (DecodeErrorContext) {
#if defined(IA32)
return (intptr_t*)uc->uc_mcontext.gregs[REG_EBP];
#elif defined(AMD64)
return (intptr_t*)uc->uc_mcontext.gregs[REG_RBP];
#elif defined(ARM)
return (intptr_t*)uc->uc_mcontext.arm_fp;
#elif defined(AARCH64)
return (intptr_t*)uc->uc_mcontext.regs[29 /* REG_FP */];
#elif defined(PPC)
return nullptr;
#elif defined(RISCV)
return (intptr_t*)uc->uc_mcontext.__gregs[8 /* REG_FP */];
#elif defined(S390)
return nullptr;
#else
// Non-arch-specific Zero code does not really know the FP.
// If possible, add the arch-specific definition in this method.
fatal("Cannot handle ucontext_get_fp");
#endif
}
// Answer the default and hope for the best
return nullptr;
}
address os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp,
intptr_t** ret_fp) {
address epc;
const ucontext_t* uc = (const ucontext_t*)ucVoid;
if (uc != NULL) {
epc = os::Posix::ucontext_get_pc(uc);
if (ret_sp) {
*ret_sp = (intptr_t*) os::Linux::ucontext_get_sp(uc);
}
if (ret_fp) {
*ret_fp = (intptr_t*) os::Linux::ucontext_get_fp(uc);
}
} else {
epc = NULL;
if (ret_sp) {
*ret_sp = nullptr;
}
if (ret_fp) {
*ret_fp = nullptr;
}
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
// This code is only called from error handler to get PC and SP.
// We don't have the ready ZeroFrame* at this point, so fake the
// frame with bare minimum.
if (ucVoid != NULL) {
const ucontext_t* uc = (const ucontext_t*)ucVoid;
frame dummy = frame();
dummy.set_pc(os::Posix::ucontext_get_pc(uc));
dummy.set_sp((intptr_t*)os::Linux::ucontext_get_sp(uc));
return dummy;
} else {
return frame(nullptr, nullptr);
}
}
bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info,
ucontext_t* uc, JavaThread* thread) {
if (info != NULL && thread != NULL) {
// Handle ALL stack overflow variations here
if (sig == SIGSEGV) {
address addr = (address) info->si_addr;
// check if fault address is within thread stack
if (thread->is_in_full_stack(addr)) {
StackOverflow* overflow_state = thread->stack_overflow_state();
// stack overflow
if (overflow_state->in_stack_yellow_reserved_zone(addr)) {
overflow_state->disable_stack_yellow_reserved_zone();
ShouldNotCallThis();
}
else if (overflow_state->in_stack_red_zone(addr)) {
overflow_state->disable_stack_red_zone();
ShouldNotCallThis();
}
else {
// Accessing stack address below sp may cause SEGV if
// current thread has MAP_GROWSDOWN stack. This should
// only happen when current thread was created by user
// code with MAP_GROWSDOWN flag and then attached to VM.
// See notes in os_linux.cpp.
if (thread->osthread()->expanding_stack() == 0) {
thread->osthread()->set_expanding_stack();
if (os::Linux::manually_expand_stack(thread, addr)) {
thread->osthread()->clear_expanding_stack();
return true;
}
thread->osthread()->clear_expanding_stack();
}
else {
fatal("recursive segv. expanding stack.");
}
}
}
}
/*if (thread->thread_state() == _thread_in_Java) {
ShouldNotCallThis();
}
else*/ if ((thread->thread_state() == _thread_in_vm ||
thread->thread_state() == _thread_in_native) &&
sig == SIGBUS && thread->doing_unsafe_access()) {
ShouldNotCallThis();
}
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC
// kicks in and the heap gets shrunk before the field access.
/*if (sig == SIGSEGV || sig == SIGBUS) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
stub = addr;
}
}*/
}
return false; // Fatal error
}
void os::Linux::init_thread_fpu_state(void) {
// Nothing to do
}
int os::Linux::get_fpu_control_word() {
ShouldNotCallThis();
return -1; // silence compile warnings
}
void os::Linux::set_fpu_control_word(int fpu) {
ShouldNotCallThis();
}
///////////////////////////////////////////////////////////////////////////////
// thread stack
size_t os::_compiler_thread_min_stack_allowed = 64 * K;
size_t os::_java_thread_min_stack_allowed = 64 * K;
size_t os::_vm_internal_thread_min_stack_allowed = 64 * K;
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
#ifdef _LP64
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
#else
size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
#endif // _LP64
return s;
}
static void current_stack_region(address *bottom, size_t *size) {
if (os::is_primordial_thread()) {
// primordial thread needs special handling because pthread_getattr_np()
// may return bogus value.
address stack_bottom = os::Linux::initial_thread_stack_bottom();
size_t stack_bytes = os::Linux::initial_thread_stack_size();
assert(os::current_stack_pointer() >= stack_bottom, "should do");
assert(os::current_stack_pointer() < stack_bottom + stack_bytes, "should do");
*bottom = stack_bottom;
*size = stack_bytes;
return;
}
pthread_attr_t attr;
int res = pthread_getattr_np(pthread_self(), &attr);
if (res != 0) {
if (res == ENOMEM) {
vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
}
else {
fatal("pthread_getattr_np failed with error = %d", res);
}
}
address stack_bottom;
size_t stack_bytes;
res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes);
if (res != 0) {
fatal("pthread_attr_getstack failed with error = %d", res);
}
address stack_top = stack_bottom + stack_bytes;
// The block of memory returned by pthread_attr_getstack() includes
// guard pages where present. We need to trim these off.
size_t page_bytes = os::vm_page_size();
assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack");
size_t guard_bytes;
res = pthread_attr_getguardsize(&attr, &guard_bytes);
if (res != 0) {
fatal("pthread_attr_getguardsize failed with errno = %d", res);
}
int guard_pages = align_up(guard_bytes, page_bytes) / page_bytes;
assert(guard_bytes == guard_pages * page_bytes, "unaligned guard");
#ifdef IA64
// IA64 has two stacks sharing the same area of memory, a normal
// stack growing downwards and a register stack growing upwards.
// Guard pages, if present, are in the centre. This code splits
// the stack in two even without guard pages, though in theory
// there's nothing to stop us allocating more to the normal stack
// or more to the register stack if one or the other were found
// to grow faster.
int total_pages = align_down(stack_bytes, page_bytes) / page_bytes;
stack_bottom += (total_pages - guard_pages) / 2 * page_bytes;
#endif // IA64
stack_bottom += guard_bytes;
pthread_attr_destroy(&attr);
assert(os::current_stack_pointer() >= stack_bottom, "should do");
assert(os::current_stack_pointer() < stack_top, "should do");
*bottom = stack_bottom;
*size = stack_top - stack_bottom;
}
address os::current_stack_base() {
address bottom;
size_t size;
current_stack_region(&bottom, &size);
return bottom + size;
}
size_t os::current_stack_size() {
// stack size includes normal stack and HotSpot guard pages
address bottom;
size_t size;
current_stack_region(&bottom, &size);
return size;
}
/////////////////////////////////////////////////////////////////////////////
// helper functions for fatal error handler
void os::print_context(outputStream* st, const void* ucVoid) {
st->print_cr("No context information.");
}
void os::print_tos_pc(outputStream *st, const void* ucVoid) {
const ucontext_t* uc = (const ucontext_t*)ucVoid;
address sp = (address)os::Linux::ucontext_get_sp(uc);
print_tos(st, sp);
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
address pc = os::Posix::ucontext_get_pc(uc);
print_instructions(st, pc, sizeof(char));
st->cr();
}
void os::print_register_info(outputStream *st, const void* ucVoid) {
st->print_cr("No register info.");
}
/////////////////////////////////////////////////////////////////////////////
// Stubs for things that would be in linux_zero.s if it existed.
// You probably want to disassemble these monkeys to check they're ok.
extern "C" {
int SpinPause() {
return -1; // silence compile warnings
}
void _Copy_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t count) {
if (from > to) {
const jshort *end = from + count;
while (from < end)
*(to++) = *(from++);
}
else if (from < to) {
const jshort *end = from;
from += count - 1;
to += count - 1;
while (from >= end)
*(to--) = *(from--);
}
}
void _Copy_conjoint_jints_atomic(const jint* from, jint* to, size_t count) {
if (from > to) {
const jint *end = from + count;
while (from < end)
*(to++) = *(from++);
}
else if (from < to) {
const jint *end = from;
from += count - 1;
to += count - 1;
while (from >= end)
*(to--) = *(from--);
}
}
void _Copy_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) {
if (from > to) {
const jlong *end = from + count;
while (from < end)
atomic_copy64(from++, to++);
}
else if (from < to) {
const jlong *end = from;
from += count - 1;
to += count - 1;
while (from >= end)
atomic_copy64(from--, to--);
}
}
void _Copy_arrayof_conjoint_bytes(const HeapWord* from,
HeapWord* to,
size_t count) {
memmove(to, from, count);
}
void _Copy_arrayof_conjoint_jshorts(const HeapWord* from,
HeapWord* to,
size_t count) {
memmove(to, from, count * 2);
}
void _Copy_arrayof_conjoint_jints(const HeapWord* from,
HeapWord* to,
size_t count) {
memmove(to, from, count * 4);
}
void _Copy_arrayof_conjoint_jlongs(const HeapWord* from,
HeapWord* to,
size_t count) {
memmove(to, from, count * 8);
}
};
/////////////////////////////////////////////////////////////////////////////
// Implementations of atomic operations not supported by processors.
// -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html
#ifndef _LP64
extern "C" {
long long unsigned int __sync_val_compare_and_swap_8(
volatile void *ptr,
long long unsigned int oldval,
long long unsigned int newval) {
ShouldNotCallThis();
return 0; // silence compiler warnings
}
};
#endif // !_LP64
#ifndef PRODUCT
void os::verify_stack_alignment() {
}
#endif
int os::extra_bang_size_in_bytes() {
// Zero does not require an additional stack banging.
return 0;
}
void os::setup_fpu() {}