2015-09-17 13:43:06 -07:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
package java.lang;
|
|
|
|
|
|
|
|
/**
|
2015-09-23 14:14:14 -07:00
|
|
|
* Port of the "Freely Distributable Math Library", version 5.3, from
|
|
|
|
* C to Java.
|
2015-09-17 13:43:06 -07:00
|
|
|
*
|
|
|
|
* <p>The C version of fdlibm relied on the idiom of pointer aliasing
|
|
|
|
* a 64-bit double floating-point value as a two-element array of
|
|
|
|
* 32-bit integers and reading and writing the two halves of the
|
|
|
|
* double independently. This coding pattern was problematic to C
|
|
|
|
* optimizers and not directly expressible in Java. Therefore, rather
|
|
|
|
* than a memory level overlay, if portions of a double need to be
|
|
|
|
* operated on as integer values, the standard library methods for
|
|
|
|
* bitwise floating-point to integer conversion,
|
|
|
|
* Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
|
2015-09-23 14:14:14 -07:00
|
|
|
* or indirectly used.
|
2015-09-17 13:43:06 -07:00
|
|
|
*
|
|
|
|
* <p>The C version of fdlibm also took some pains to signal the
|
|
|
|
* correct IEEE 754 exceptional conditions divide by zero, invalid,
|
|
|
|
* overflow and underflow. For example, overflow would be signaled by
|
|
|
|
* {@code huge * huge} where {@code huge} was a large constant that
|
|
|
|
* would overflow when squared. Since IEEE floating-point exceptional
|
|
|
|
* handling is not supported natively in the JVM, such coding patterns
|
|
|
|
* have been omitted from this port. For example, rather than {@code
|
|
|
|
* return huge * huge}, this port will use {@code return INFINITY}.
|
2015-09-23 14:14:14 -07:00
|
|
|
*
|
|
|
|
* <p>Various comparison and arithmetic operations in fdlibm could be
|
|
|
|
* done either based on the integer view of a value or directly on the
|
|
|
|
* floating-point representation. Which idiom is faster may depend on
|
|
|
|
* platform specific factors. However, for code clarity if no other
|
|
|
|
* reason, this port will favor expressing the semantics of those
|
|
|
|
* operations in terms of floating-point operations when convenient to
|
|
|
|
* do so.
|
2015-09-17 13:43:06 -07:00
|
|
|
*/
|
|
|
|
class FdLibm {
|
|
|
|
// Constants used by multiple algorithms
|
|
|
|
private static final double INFINITY = Double.POSITIVE_INFINITY;
|
|
|
|
|
|
|
|
private FdLibm() {
|
2015-09-23 14:14:14 -07:00
|
|
|
throw new UnsupportedOperationException("No FdLibm instances for you.");
|
2015-09-17 13:43:06 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return the low-order 32 bits of the double argument as an int.
|
|
|
|
*/
|
|
|
|
private static int __LO(double x) {
|
|
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
|
|
return (int)transducer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a double with its low-order bits of the second argument
|
|
|
|
* and the high-order bits of the first argument..
|
|
|
|
*/
|
|
|
|
private static double __LO(double x, int low) {
|
|
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
|
|
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return the high-order 32 bits of the double argument as an int.
|
|
|
|
*/
|
|
|
|
private static int __HI(double x) {
|
|
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
|
|
return (int)(transducer >> 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a double with its high-order bits of the second argument
|
|
|
|
* and the low-order bits of the first argument..
|
|
|
|
*/
|
|
|
|
private static double __HI(double x, int high) {
|
|
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
|
|
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
|
|
|
|
}
|
|
|
|
|
2015-09-23 14:14:14 -07:00
|
|
|
/**
|
|
|
|
* hypot(x,y)
|
|
|
|
*
|
|
|
|
* Method :
|
|
|
|
* If (assume round-to-nearest) z = x*x + y*y
|
|
|
|
* has error less than sqrt(2)/2 ulp, than
|
|
|
|
* sqrt(z) has error less than 1 ulp (exercise).
|
|
|
|
*
|
|
|
|
* So, compute sqrt(x*x + y*y) with some care as
|
|
|
|
* follows to get the error below 1 ulp:
|
|
|
|
*
|
|
|
|
* Assume x > y > 0;
|
|
|
|
* (if possible, set rounding to round-to-nearest)
|
|
|
|
* 1. if x > 2y use
|
|
|
|
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
|
|
|
|
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
|
|
|
|
* 2. if x <= 2y use
|
|
|
|
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
|
|
|
|
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
|
|
|
|
* y1= y with lower 32 bits chopped, y2 = y - y1.
|
|
|
|
*
|
|
|
|
* NOTE: scaling may be necessary if some argument is too
|
|
|
|
* large or too tiny
|
|
|
|
*
|
|
|
|
* Special cases:
|
|
|
|
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
|
|
|
* hypot(x,y) is NAN if x or y is NAN.
|
|
|
|
*
|
|
|
|
* Accuracy:
|
|
|
|
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
|
|
|
|
* than 1 ulp (unit in the last place)
|
|
|
|
*/
|
|
|
|
public static class Hypot {
|
|
|
|
public static final double TWO_MINUS_600 = 0x1.0p-600;
|
|
|
|
public static final double TWO_PLUS_600 = 0x1.0p+600;
|
|
|
|
|
|
|
|
public static strictfp double compute(double x, double y) {
|
|
|
|
double a = Math.abs(x);
|
|
|
|
double b = Math.abs(y);
|
|
|
|
|
|
|
|
if (!Double.isFinite(a) || !Double.isFinite(b)) {
|
|
|
|
if (a == INFINITY || b == INFINITY)
|
|
|
|
return INFINITY;
|
|
|
|
else
|
|
|
|
return a + b; // Propagate NaN significand bits
|
|
|
|
}
|
|
|
|
|
|
|
|
if (b > a) {
|
|
|
|
double tmp = a;
|
|
|
|
a = b;
|
|
|
|
b = tmp;
|
|
|
|
}
|
|
|
|
assert a >= b;
|
|
|
|
|
|
|
|
// Doing bitwise conversion after screening for NaN allows
|
|
|
|
// the code to not worry about the possibility of
|
|
|
|
// "negative" NaN values.
|
|
|
|
|
|
|
|
// Note: the ha and hb variables are the high-order
|
|
|
|
// 32-bits of a and b stored as integer values. The ha and
|
|
|
|
// hb values are used first for a rough magnitude
|
|
|
|
// comparison of a and b and second for simulating higher
|
|
|
|
// precision by allowing a and b, respectively, to be
|
|
|
|
// decomposed into non-overlapping portions. Both of these
|
|
|
|
// uses could be eliminated. The magnitude comparison
|
|
|
|
// could be eliminated by extracting and comparing the
|
|
|
|
// exponents of a and b or just be performing a
|
|
|
|
// floating-point divide. Splitting a floating-point
|
|
|
|
// number into non-overlapping portions can be
|
|
|
|
// accomplished by judicious use of multiplies and
|
|
|
|
// additions. For details see T. J. Dekker, A Floating
|
|
|
|
// Point Technique for Extending the Available Precision ,
|
|
|
|
// Numerische Mathematik, vol. 18, 1971, pp.224-242 and
|
|
|
|
// subsequent work.
|
|
|
|
|
|
|
|
int ha = __HI(a); // high word of a
|
|
|
|
int hb = __HI(b); // high word of b
|
|
|
|
|
|
|
|
if ((ha - hb) > 0x3c00000) {
|
|
|
|
return a + b; // x / y > 2**60
|
|
|
|
}
|
|
|
|
|
|
|
|
int k = 0;
|
|
|
|
if (a > 0x1.0p500) { // a > 2**500
|
|
|
|
// scale a and b by 2**-600
|
|
|
|
ha -= 0x25800000;
|
|
|
|
hb -= 0x25800000;
|
|
|
|
a = a * TWO_MINUS_600;
|
|
|
|
b = b * TWO_MINUS_600;
|
|
|
|
k += 600;
|
|
|
|
}
|
|
|
|
double t1, t2;
|
|
|
|
if (b < 0x1.0p-500) { // b < 2**-500
|
|
|
|
if (b < Double.MIN_NORMAL) { // subnormal b or 0 */
|
|
|
|
if (b == 0.0)
|
|
|
|
return a;
|
|
|
|
t1 = 0x1.0p1022; // t1 = 2^1022
|
|
|
|
b *= t1;
|
|
|
|
a *= t1;
|
|
|
|
k -= 1022;
|
|
|
|
} else { // scale a and b by 2^600
|
|
|
|
ha += 0x25800000; // a *= 2^600
|
|
|
|
hb += 0x25800000; // b *= 2^600
|
|
|
|
a = a * TWO_PLUS_600;
|
|
|
|
b = b * TWO_PLUS_600;
|
|
|
|
k -= 600;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// medium size a and b
|
|
|
|
double w = a - b;
|
|
|
|
if (w > b) {
|
|
|
|
t1 = 0;
|
|
|
|
t1 = __HI(t1, ha);
|
|
|
|
t2 = a - t1;
|
|
|
|
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
|
|
|
|
} else {
|
|
|
|
double y1, y2;
|
|
|
|
a = a + a;
|
|
|
|
y1 = 0;
|
|
|
|
y1 = __HI(y1, hb);
|
|
|
|
y2 = b - y1;
|
|
|
|
t1 = 0;
|
|
|
|
t1 = __HI(t1, ha + 0x00100000);
|
|
|
|
t2 = a - t1;
|
|
|
|
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
|
|
|
|
}
|
|
|
|
if (k != 0) {
|
|
|
|
return Math.powerOfTwoD(k) * w;
|
|
|
|
} else
|
|
|
|
return w;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-17 13:43:06 -07:00
|
|
|
/**
|
|
|
|
* Compute x**y
|
|
|
|
* n
|
|
|
|
* Method: Let x = 2 * (1+f)
|
|
|
|
* 1. Compute and return log2(x) in two pieces:
|
|
|
|
* log2(x) = w1 + w2,
|
|
|
|
* where w1 has 53 - 24 = 29 bit trailing zeros.
|
2015-09-23 14:14:14 -07:00
|
|
|
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
|
2015-09-17 13:43:06 -07:00
|
|
|
* arithmetic, where |y'| <= 0.5.
|
|
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
|
|
*
|
|
|
|
* Special cases:
|
|
|
|
* 1. (anything) ** 0 is 1
|
|
|
|
* 2. (anything) ** 1 is itself
|
|
|
|
* 3. (anything) ** NAN is NAN
|
|
|
|
* 4. NAN ** (anything except 0) is NAN
|
|
|
|
* 5. +-(|x| > 1) ** +INF is +INF
|
|
|
|
* 6. +-(|x| > 1) ** -INF is +0
|
|
|
|
* 7. +-(|x| < 1) ** +INF is +0
|
|
|
|
* 8. +-(|x| < 1) ** -INF is +INF
|
|
|
|
* 9. +-1 ** +-INF is NAN
|
|
|
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
|
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
|
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
|
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
|
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
|
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
|
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
|
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
|
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
|
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
|
|
*
|
|
|
|
* Accuracy:
|
|
|
|
* pow(x,y) returns x**y nearly rounded. In particular
|
|
|
|
* pow(integer,integer)
|
|
|
|
* always returns the correct integer provided it is
|
|
|
|
* representable.
|
|
|
|
*/
|
|
|
|
public static class Pow {
|
|
|
|
public static strictfp double compute(final double x, final double y) {
|
|
|
|
double z;
|
|
|
|
double r, s, t, u, v, w;
|
|
|
|
int i, j, k, n;
|
|
|
|
|
|
|
|
// y == zero: x**0 = 1
|
|
|
|
if (y == 0.0)
|
|
|
|
return 1.0;
|
|
|
|
|
|
|
|
// +/-NaN return x + y to propagate NaN significands
|
|
|
|
if (Double.isNaN(x) || Double.isNaN(y))
|
|
|
|
return x + y;
|
|
|
|
|
|
|
|
final double y_abs = Math.abs(y);
|
|
|
|
double x_abs = Math.abs(x);
|
|
|
|
// Special values of y
|
|
|
|
if (y == 2.0) {
|
|
|
|
return x * x;
|
|
|
|
} else if (y == 0.5) {
|
|
|
|
if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
|
|
|
|
return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
|
|
|
|
} else if (y_abs == 1.0) { // y is +/-1
|
|
|
|
return (y == 1.0) ? x : 1.0 / x;
|
|
|
|
} else if (y_abs == INFINITY) { // y is +/-infinity
|
|
|
|
if (x_abs == 1.0)
|
|
|
|
return y - y; // inf**+/-1 is NaN
|
|
|
|
else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
|
|
|
|
return (y >= 0) ? y : 0.0;
|
|
|
|
else // (|x| < 1)**-/+inf = inf, 0
|
|
|
|
return (y < 0) ? -y : 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
final int hx = __HI(x);
|
|
|
|
int ix = hx & 0x7fffffff;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When x < 0, determine if y is an odd integer:
|
|
|
|
* y_is_int = 0 ... y is not an integer
|
|
|
|
* y_is_int = 1 ... y is an odd int
|
|
|
|
* y_is_int = 2 ... y is an even int
|
|
|
|
*/
|
|
|
|
int y_is_int = 0;
|
|
|
|
if (hx < 0) {
|
|
|
|
if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15
|
|
|
|
y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
|
|
|
|
else if (y_abs >= 1.0) { // |y| >= 1.0
|
|
|
|
long y_abs_as_long = (long) y_abs;
|
|
|
|
if ( ((double) y_abs_as_long) == y_abs) {
|
|
|
|
y_is_int = 2 - (int)(y_abs_as_long & 0x1L);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Special value of x
|
|
|
|
if (x_abs == 0.0 ||
|
|
|
|
x_abs == INFINITY ||
|
|
|
|
x_abs == 1.0) {
|
|
|
|
z = x_abs; // x is +/-0, +/-inf, +/-1
|
|
|
|
if (y < 0.0)
|
|
|
|
z = 1.0/z; // z = (1/|x|)
|
|
|
|
if (hx < 0) {
|
|
|
|
if (((ix - 0x3ff00000) | y_is_int) == 0) {
|
|
|
|
z = (z-z)/(z-z); // (-1)**non-int is NaN
|
|
|
|
} else if (y_is_int == 1)
|
|
|
|
z = -1.0 * z; // (x < 0)**odd = -(|x|**odd)
|
|
|
|
}
|
|
|
|
return z;
|
|
|
|
}
|
|
|
|
|
|
|
|
n = (hx >> 31) + 1;
|
|
|
|
|
|
|
|
// (x < 0)**(non-int) is NaN
|
|
|
|
if ((n | y_is_int) == 0)
|
|
|
|
return (x-x)/(x-x);
|
|
|
|
|
|
|
|
s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
|
|
|
|
if ( (n | (y_is_int - 1)) == 0)
|
|
|
|
s = -1.0; // (-ve)**(odd int)
|
|
|
|
|
|
|
|
double p_h, p_l, t1, t2;
|
|
|
|
// |y| is huge
|
2015-09-30 15:25:29 -07:00
|
|
|
if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31
|
2015-09-17 13:43:06 -07:00
|
|
|
final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2
|
|
|
|
final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2
|
|
|
|
final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail
|
|
|
|
|
|
|
|
// Over/underflow if x is not close to one
|
2015-09-30 15:25:29 -07:00
|
|
|
if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418
|
2015-09-17 13:43:06 -07:00
|
|
|
return (y < 0.0) ? s * INFINITY : s * 0.0;
|
2015-09-30 15:25:29 -07:00
|
|
|
if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0
|
2015-09-17 13:43:06 -07:00
|
|
|
return (y > 0.0) ? s * INFINITY : s * 0.0;
|
|
|
|
/*
|
|
|
|
* now |1-x| is tiny <= 2**-20, sufficient to compute
|
|
|
|
* log(x) by x - x^2/2 + x^3/3 - x^4/4
|
|
|
|
*/
|
|
|
|
t = x_abs - 1.0; // t has 20 trailing zeros
|
|
|
|
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
|
|
|
|
u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits
|
|
|
|
v = t * INV_LN2_L - w * INV_LN2;
|
|
|
|
t1 = u + v;
|
|
|
|
t1 =__LO(t1, 0);
|
|
|
|
t2 = v - (t1 - u);
|
|
|
|
} else {
|
|
|
|
final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2)
|
|
|
|
final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp
|
|
|
|
final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
|
|
|
|
|
|
|
|
double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
|
|
|
|
n = 0;
|
|
|
|
// Take care of subnormal numbers
|
|
|
|
if (ix < 0x00100000) {
|
|
|
|
x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
|
|
|
|
n -= 53;
|
|
|
|
ix = __HI(x_abs);
|
|
|
|
}
|
|
|
|
n += ((ix) >> 20) - 0x3ff;
|
|
|
|
j = ix & 0x000fffff;
|
|
|
|
// Determine interval
|
|
|
|
ix = j | 0x3ff00000; // Normalize ix
|
|
|
|
if (j <= 0x3988E)
|
|
|
|
k = 0; // |x| <sqrt(3/2)
|
|
|
|
else if (j < 0xBB67A)
|
|
|
|
k = 1; // |x| <sqrt(3)
|
|
|
|
else {
|
|
|
|
k = 0;
|
|
|
|
n += 1;
|
|
|
|
ix -= 0x00100000;
|
|
|
|
}
|
|
|
|
x_abs = __HI(x_abs, ix);
|
|
|
|
|
|
|
|
// Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
|
|
|
|
|
|
|
|
final double BP[] = {1.0,
|
|
|
|
1.5};
|
|
|
|
final double DP_H[] = {0.0,
|
|
|
|
0x1.2b80_34p-1}; // 5.84962487220764160156e-01
|
|
|
|
final double DP_L[] = {0.0,
|
|
|
|
0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
|
|
|
|
|
|
|
|
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
|
|
|
|
final double L1 = 0x1.3333_3333_33303p-1; // 5.99999999999994648725e-01
|
|
|
|
final double L2 = 0x1.b6db_6db6_fabffp-2; // 4.28571428578550184252e-01
|
|
|
|
final double L3 = 0x1.5555_5518_f264dp-2; // 3.33333329818377432918e-01
|
|
|
|
final double L4 = 0x1.1746_0a91_d4101p-2; // 2.72728123808534006489e-01
|
|
|
|
final double L5 = 0x1.d864_a93c_9db65p-3; // 2.30660745775561754067e-01
|
|
|
|
final double L6 = 0x1.a7e2_84a4_54eefp-3; // 2.06975017800338417784e-01
|
|
|
|
u = x_abs - BP[k]; // BP[0]=1.0, BP[1]=1.5
|
|
|
|
v = 1.0 / (x_abs + BP[k]);
|
|
|
|
ss = u * v;
|
|
|
|
s_h = ss;
|
|
|
|
s_h = __LO(s_h, 0);
|
|
|
|
// t_h=x_abs + BP[k] High
|
|
|
|
t_h = 0.0;
|
|
|
|
t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
|
|
|
|
t_l = x_abs - (t_h - BP[k]);
|
|
|
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
|
|
|
// Compute log(x_abs)
|
|
|
|
s2 = ss * ss;
|
|
|
|
r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
|
|
|
|
r += s_l * (s_h + ss);
|
|
|
|
s2 = s_h * s_h;
|
|
|
|
t_h = 3.0 + s2 + r;
|
|
|
|
t_h = __LO(t_h, 0);
|
|
|
|
t_l = r - ((t_h - 3.0) - s2);
|
|
|
|
// u+v = ss*(1+...)
|
|
|
|
u = s_h * t_h;
|
|
|
|
v = s_l * t_h + t_l * ss;
|
|
|
|
// 2/(3log2)*(ss + ...)
|
|
|
|
p_h = u + v;
|
|
|
|
p_h = __LO(p_h, 0);
|
|
|
|
p_l = v - (p_h - u);
|
|
|
|
z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2)
|
|
|
|
z_l = CP_L * p_h + p_l * CP + DP_L[k];
|
|
|
|
// log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
|
|
|
|
t = (double)n;
|
|
|
|
t1 = (((z_h + z_l) + DP_H[k]) + t);
|
|
|
|
t1 = __LO(t1, 0);
|
|
|
|
t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
|
|
|
|
double y1 = y;
|
|
|
|
y1 = __LO(y1, 0);
|
|
|
|
p_l = (y - y1) * t1 + y * t2;
|
|
|
|
p_h = y1 * t1;
|
|
|
|
z = p_l + p_h;
|
|
|
|
j = __HI(z);
|
|
|
|
i = __LO(z);
|
|
|
|
if (j >= 0x40900000) { // z >= 1024
|
|
|
|
if (((j - 0x40900000) | i)!=0) // if z > 1024
|
|
|
|
return s * INFINITY; // Overflow
|
|
|
|
else {
|
|
|
|
final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
|
|
|
|
if (p_l + OVT > z - p_h)
|
|
|
|
return s * INFINITY; // Overflow
|
|
|
|
}
|
|
|
|
} else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075
|
|
|
|
if (((j - 0xc090cc00) | i)!=0) // z < -1075
|
|
|
|
return s * 0.0; // Underflow
|
|
|
|
else {
|
|
|
|
if (p_l <= z - p_h)
|
|
|
|
return s * 0.0; // Underflow
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Compute 2**(p_h+p_l)
|
|
|
|
*/
|
|
|
|
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
|
|
|
|
final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01
|
|
|
|
final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03
|
|
|
|
final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05
|
|
|
|
final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
|
|
|
|
final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08
|
|
|
|
final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01
|
|
|
|
final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01
|
|
|
|
final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
|
|
|
|
i = j & 0x7fffffff;
|
|
|
|
k = (i >> 20) - 0x3ff;
|
|
|
|
n = 0;
|
|
|
|
if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5]
|
|
|
|
n = j + (0x00100000 >> (k + 1));
|
|
|
|
k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n
|
|
|
|
t = 0.0;
|
|
|
|
t = __HI(t, (n & ~(0x000fffff >> k)) );
|
|
|
|
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
|
|
|
|
if (j < 0)
|
|
|
|
n = -n;
|
|
|
|
p_h -= t;
|
|
|
|
}
|
|
|
|
t = p_l + p_h;
|
|
|
|
t = __LO(t, 0);
|
|
|
|
u = t * LG2_H;
|
|
|
|
v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
|
|
|
|
z = u + v;
|
|
|
|
w = v - (z - u);
|
|
|
|
t = z * z;
|
|
|
|
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
|
|
|
r = (z * t1)/(t1 - 2.0) - (w + z * w);
|
|
|
|
z = 1.0 - (r - z);
|
|
|
|
j = __HI(z);
|
|
|
|
j += (n << 20);
|
|
|
|
if ((j >> 20) <= 0)
|
|
|
|
z = Math.scalb(z, n); // subnormal output
|
|
|
|
else {
|
|
|
|
int z_hi = __HI(z);
|
|
|
|
z_hi += (n << 20);
|
|
|
|
z = __HI(z, z_hi);
|
|
|
|
}
|
|
|
|
return s * z;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|